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Abstract: A novel meso- and microporous tire-derived-carbon support with magnetic iron oxide 
nanoparticle adsorbents that selectively adsorbs Se(IV) ions from simulated contaminated water has 
been developed. In this work, the physicochemical characteristics of the composite adsorbent are 
characterized with respect to porosity and surface area, chemical composition, and microstructure 
morphology. The kinetics of this composite adsorbent in a fixed-bed setting has been determined. 
Several column runs were conducted and analyzed by inductively coupled plasma-optical emission 
spectroscopy (ICP-OES) to determine the concentration gradient vs time. These results were then fit 
to a pseudo-second order rate law to obtain equilibrium values. Combining calculated equilibrium 
values with effluent concentration data, enabled the application of the Adams–Bohart model to 
determine reaction constants and column coefficients. Column parameters obtained from different 
flow rates and fittings of the Adams–Bohart model were remarkably consistent. These findings 
enable the application of this sorbent to fixed-bed column systems and opens up further research 
into mixed pollutants tests with real wastewater and scaling of selenium pollutant removal.  

Keywords: selenium removal; wastewater purification; nanoadsorbents; carbon magnetic iron 
oxide particles; bench scale column extraction; column kinetics 

 

1. Introduction 

Mining, fossil, and petrochemical operations often produce significant quantities of wastewater 
with high concentrations of toxic metals such as selenium, arsenic, and lead [1–4]. The millions of 
gallons of wastewater produced from industrial activities present an economic, legal, and 
technological challenge as the water must be treated before being stored or reintroduced back into 
the environment [5–8]. Previous research has explored the use of composite materials derived from 
sources of industrial waste, such as tires and iron chloride [9], as adsorbents that can affordably and 
sustainably reduce selenium concentrations to EPA standards of ≤50 ppb. These materials can be 
easily integrated into an industrial purification process by flowing wastewater through a fixed bed 
of composite adsorbents in a continuous-flow system.  

Ion uptake rates of adsorbents vary when scaling from batch adsorption to continuous column 
tests due to transport effects. Fixed beds can experience uneven flow distribution, z-axis 
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concentration gradients, mass transport limitations due to the presence of inert media, and other mass 
transport limitations. However, fixed-bed columns are of simple design and perform effectively in 
the removal of low concentration pollutants [10]. Kinetics models, such as the Adams–Bohart model, 
have been developed to model the sorbent behavior in continuous settings [11]. Employing such 
models to understand the behavior at a small scale can ease transition to full-scale industrial 
processes. By quantifying the maximum adsorption capacity, rate of adsorption, and breakthrough 
curve (a plot of concentration of the adsorbate in the effluent vs. time) [12], the operation of 
adsorption columns can be optimized. Rate law and kinetic constants can also be used to normalize 
columns to account for varying volumes, masses, and flow rates.  

A variety of materials are known to adsorb selenium species effectively including mesoporous 
materials [13], graphene based composites [14], and a variety of metal oxides [15], layered-double 
hydroxides [16], metal-organic frameworks (MOFs) [17], MgO nanosheets [18], carbon nanotubes 
[19], and bioremediation-based methods [20–22]. Other methods, such as mineralization [23], 
capacitive deionization, and catalyzed reduction [24] are also known but not the focus of the current 
work. As separation materials are developed, they need to be aligned with a more sustainable future 
in mind. There are twelve principles of circular chemistry of particular importance [25]. In this work, 
the adsorbent material addressed two concerns in this area, namely the collection and use of waste 
and the optimization of resource efficiency. The sorbent was synthesized from waste tire material 
and iron chloride, FeCl3, both of which are waste products from different sectors. Additionally, the 
sorbent was able to be regenerated and reused, decreasing the need for large amounts of adsorbent 
material.  

A tire-derived carbon has recently been demonstrated in our laboratory as an effective support 
for iron oxide magnetic adsorbents for selectively removing Se(IV) ions from contaminated water [9]. 
While it is most effective in a fluidized bed, due to the ease of removal of the magnetized particles, 
determining its viability in fixed-bed systems is still of importance. This is due to the lower cost, 
simplicity, and predictable behavior in the removal of low concentration pollutants. Herein, the 
physicochemical characteristics of this composite adsorbent were characterized, and its kinetic 
behavior with respect to Se(IV) uptake in a fixed-bed setting was determined and analyzed to inform 
its effective use. 

2. Experimental Methods 

2.1. Carbon Supported Magnetic Nanoparticle Adsorbents (C-MNA) Synthesis 

Tire derived carbon was synthesized as described in previous work [9]. To enhance its activity, 
it was ground with potassium hydroxide pellets (Sigma Aldrich, >85%) in a 1:4 weight ratio. The 
mixture was then placed in a furnace and heated at a 10 °C/min ramp rate to 800 °C, where it was 
kept under nitrogen atmosphere for 1.5 h. The mixture was then removed, cooled to ambient 
temperature, and neutralized with 3M hydrochloric acid (EMD Millipore). 

C-MNA was synthesized by suspending 0.5 g of activated carbon in 120 mL of deionized water 
containing 13 mmol of iron sulfate, FeSO4·7H2O (Sigma Aldrich, ≥99.0%) and 15.6 mmol FeCl3·6H2O 
(Sigma Aldrich, ≥97.0%). The mixture was then sonicated for 5 min and stirred at 70 °C for 1 h. 3M 
sodium hydroxide solution was added in excess to maximize iron oxide nanoparticle (FeNP) 
precipitation. C-MNA was then vacuum filtered and separated from the excess iron chloride mother 
liquor via magnetic filtration and washing with DI water.  

2.2. Column Set Up 

A solution containing 5 ppm Se(IV) at pH 5 was prepared by dissolving sodium selenite (Sigma 
Aldrich, 99%) into deionized water. The pH was adjusted with dilute hydrochloric acid. As 
demonstrated in Figure 1, the column was prepared by using a standard jacketed borosilicate glass 
column with a radius of 0.5 cm and a bed height of 13 cm, lining the bottom with approximately 2.5-
cm height of cotton, adding sand containing 5 weight % of C-MNA, and finally adding 2.5-cm height 
of pure sand on the top. A peristaltic pump was used to deliver the Se(IV) solution at varying flow 
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rates. The effluent was collected manually in increments of 9.5 mL and sampled for analysis via 
inductively coupled plasma optical emission spectroscopy (ICP-OES) [26]. The column was prepared 
for trials by flowing 20 mL of dilute hydrochloric acid of pH 5 through the column before adding the 
Se(IV) solution. After the adsorbent was fully saturated with Se(IV), the column was flushed with 1 
M sodium hydroxide solution of pH 11 to desorb Se(IV). This demonstrates that the adsorbents can 
be recycled as shown in Figure 1. 

 
Figure 1. Schematic of the bench scale column set up. After Se (IV) removal from the contaminated 
stream, 1M NaOH solution can be flushed into the column to desorb Se (IV) in the form of sodium 
selenite by exiting through the top of the column. 

2.3. Characterization 

X-ray powder diffraction (XRD) patterns were collected using a PANalytical Empyrean 
instrument (Malvern, UK) with a Cu Kα radiation. All data were processed with HighScore Plus 
(Malvern, United Kingdom). Brunauer-Emmett-Teller (BET) surface areas and pore-size distributions 
were determined from nitrogen adsorption isotherms at 77 K using Autosorb-1 from Quantachrome 
(Anton Paar GmbH, Austria). The pore-size distributions and pore volumes were calculated from the 
DFT/Monte Carlo method using the QSDFT adsorption branch model. ICP-OES compositional 
analysis was performed to determine selenite removal from the solution using a Thermo Fisher iCAP 
Model 7400 ICP-OES Duo. The ICP-OES has a minimum selenium detection limit of 0.77 µg/L at 
wavelength 196 nm. During measurements, the linear standard curve had an R2 value of 1 and a limit 
of detection of 0.049 ppm. A Zeiss Merlin VP scanning electron microscopy (SEM) (White Plains, NY, 
USA) operated at 3 kV and a Hitachi HD-2300A scanning transmission electron microscope (STEM) 
with a field emission source operated at 200 kV in bright-field imaging mode at a 2.1 Å resolution, 
were used to characterize the surface morphologies of the samples.  

2.4. Kinetic Model 

The kinetic equations were derived from the kinetic rate law equation for pseudo-second order 
reactions, as a variety of carbon based materials display this general adsorption behavior [27,28]. 
Equation (1) assumes that the adsorption capacity is correlated to the number of active sites on the 
surface. ݀ݍ௧݀ݐ = ݇ሺݍ௘ −  ௧ሻଶ (1)ݍ
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In this equation, qe and qt refer to the equilibrium concentration and the concentration at time t, 
respectively. The k parameter is the kinetic constant. With the boundary conditions of t0 = 0, t = t, q0 = 
q(t = 0) = 0, and q(t) = qt, a solution was derived and rearranged to a linear form as seen in Equations 
(2)–(5). Equation (5) is then used to fit experimental data. 1ݍ௘ − ௧ݍ − ௘ݍ1 = ௘ଶݍ௧ݍ (2) ݐ݇ − ௧ݍ௘ݍ =  (3) ݐ݇

௧ݍ = ௘ଶ1ݍݐ݇ + ௧ݍ௘ (4) 1ݍݐ݇ = ൬ ௘ଶ൰ݍ1݇ ݐ1 +  ௘ (5)ݍ1

The derivation of the Adams–Bohart model starts with a modified chemical rate law expression 
as shown in Equation (6) [29]. ߲ݐ߲ݍ = ݇஺஻ܥሺݍ଴ −  ሻ (6)ݍ

The analytical solution provided by Adams and Bohart is shown in Equations (7) and (8) [30]. ܥܥ଴ = ሻߙሺ݌ݔሻ݁ߙሺ݌ݔ݁ + ሻߚሺ݌ݔ݁ − 1 (7) 

ߙ = ݇஺஻ܥ଴ ൬ݐ − ൰ݒܼ ߚ ; = ݇஺஻ߩ௣ݍ଴ܼݒ 1 − ߝߝ   (8) 

Here, the following simplifications are made [28]: 

,ሻߙሺ݌ݔ݁ .1 ሻߚሺ݌ݔ݁ ≫   1  

a. The quantity 1 at the denominator of Equation (7) is thus regarded as insignificant. 

ݐ .2 ≫ ௓௩ 

a. Since the time of the experiment far outweighs the residence time, the residence-time term 
can be ignored. 

The following definitions are also used: 

଴ሺ1ݍ௉ߩ .1 − ሻߝ = ଴ܰ 
ݒߝ .2 =   ݑ

Equation (7) is then simplified into the recognizable form in Equation (9) [12]. Although this 
equation is used to calculate the breakthrough time, or the time before the effluent concentration 
exceeds acceptable levels [12], the Adams–Bohart equation can be used to predict changes in the 
effluent concentration over time.  ݈݊ ൬ܥ௢ܥ஻ − 1൰ = ݇஺஻ ௢ܼܰݑ − ݇஺஻ܥ௢ݐ஻ (9) 

Equation (9) can be rewritten with the following adjustments as seen in Equation (10). ଴ܼܰݑ = ܯ௢ܳݍ
  

We can rewrite ݑ as ொ஺  and then rewrite ଴ܼܰܣ as ݍ௢ܯ since both reduce to the amount of 
solute adsorbed in the system.  ݈݊ ൬ܥ௢ܥ஻ − 1൰ = ݇஺஻ݍ௢ܳܯ − ݇஺஻ܥ௢ݐ஻ (10) 
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3. Results and Discussion 
The C-MNA adsorbent utilized in this study was fully characterized, including SEM, EDS, and 

magnetic property measurements in previous work [9]. XRD patterns of the column mixture of 
adsorbent and inert packing material shown in Figure 2 indicates the presence of both C-MNA and 
sand in the mixed material. SEM images of sand, C-MNA and the composite mixture are shown in 
Figure 3. SEM images of C-MNA and the porous carbon surfaces are clearly seen. Additionally, the 
large sand particles are mixed with smaller C-MNA particles homogenously in the mixture. Finally, 
a BET analysis was performed to determine the surface area of the different materials as another 
assurance of C-MNA mixing with the inert packing material. In Figure 4, surface areas of 6.8 m2/g for 
sand, 638 m2/g for C-MNA, and 45.5 m2/g for the mixture were determined, confirming that the high 
surface area C-MNA was mixed with inert sand packing material.  

 
Figure 2. X-ray powder diffraction (XRD) patterns of column materials sand, C-MNA, and a mixture 
of the two. 

 
Figure 3. SEM images of (a) sand; (b) C-MNA adsorbent material; and (c) mixture of sand and C-
MNA composite material. 
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Figure 4. BET analysis of (a) sand; (b) C-MNA adsorbent material; and (c) mixture of sand and C-
MNA used in the column. 

In continuous flow systems, kinetics data are normalized for comparison to the residence time. 
The residence time, or the total time that the solution is in contact with the sorbent, is calculated by 
dividing the total bed volume by the volumetric flow rate.  ܴ݁݁ܿ݊݁݀݅ݏ ܶ݅݉݁ =  (11) ݁ݐܴܽ ݓ݋݈ܨ ܿ݅ݎݐ݁݉ݑ݈݋ܸ݁݉ݑ݈݋ܸ ݀݁ܤ

By expressing kinetics relative to residence time, we can make sure that the effects of bed volume 
size or flow rate are not omitted. In our column runs, we assumed that there was good radial mixing 
and no axial dispersion. As seen in Figure 5, the composite adsorbent steadily adsorbed Se(IV) until 
reaching a plateau between 0.4 and 0.5 mg Se per g adsorbent, suggesting monolayer formation on 
the carbon surface of the adsorbent [29]. Subsequent adsorption is thought to be a result of mass 
transfer of Se(IV) into the mesopores of the carbon support structures and formation of a multilayer 
on the surface of the iron nanoparticles, since the adsorption profile fits the two stage adsorption 
characteristic of a Type IV adsorption isotherm [19]. At a higher flow rate of Se(IV) solution, the initial 
rate of Se(IV) adsorption is higher than Se(IV) adsorption at a lower flow rate because there is a 
greater concentration gradient between the bulk concentration and the concentration adsorbed [27], 
which means a greater driving force for mass transfer.  

 
Figure 5. Se adsorption of column at differing flow rates to determine breakthrough times. 
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Sand was mixed with adsorbent because the small grain size of the adsorbent caused packing 
issues. Previous studies used sand as an inert medium to house sorbents [26]. However, sand is 
known to physisorb selenium as well as other contaminants [31,32]. To quantify the adsorption 
capacity of the sand, a column was filled with pure sand (still including the cotton layer at the 
bottom), and water containing 5 ppm Se(IV) at a pH of 5 was flowed through the column. The 
concentration of the effluent was compared to the initial concentration to calculate how much Se(IV) 
was adsorbed per gram of sand. At a flow rate of 2.92 mL/min and a pH value of 5, the adsorption 
capacity was low (6.8 µg/g), as shown in Figure 6, compared to the total of ~500 µg/g in the presence 
of the composite adsorbent. Based on these tests, the adsorption of sand was determined to be 
negligible. Instead, the adsorption is attributed to the embedded FeNPs and surface adsorption on 
the carbon support. Although correction for Se(IV) adsorption by sand did not change fundamental 
conclusions about the reaction rate or adsorption behavior, the equilibrium concentrations and 
kinetics constants were affected. As a result, all data subsequently shown and discussed contain 
corrections made for sand adsorption.  

 
Figure 6. Adsorption of Se in sand as a control for inert column materials present. 

3.1. Rate Law 

To further elucidate the mechanism and kinetics of the composite adsorption of previously 
studied carbon and iron-based adsorbents, the adsorption rate was modeled using a second-order 
kinetic rate equation, as shown in Equation (7). From Figure 7, the adsorption kinetics is strongly 
consistent with pseudo-second order reactions and corroborates trends observed in kinetic data taken 
from other studies [33,34]. The equilibrium concentration and kinetic constant were also obtained 
from this model and subsequently used in Adams–Bohart kinetic model calculations (see Table 1).  

Table 1. Equilibrium concentration and kinetic constants from 2nd order kinetic model fitting. 

Residence Time 
(min) 

Theoretical Se Uptake 
(mg g−1) 

Observed Se Uptake 
(mg g−1) 

Kinetic Constant 
(g mg−1 min−1) 

3.25 3.305 0.513 0.001 
6 0.724 0.407 0.013 
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Previous batch studies report the maximum adsorption concentration achieved was 1.14 mg/g 
[9]. When the sorbent is mixed with inert sand in a fixed-bed column, several factors could lead to a 
decrease in the observed uptake of Se. Channeling could restrict water flow to certain sections of the 
column, preventing the sorbent in that region from interacting with selenite. The inert medium could 
cover the mesopores in the composite sorbent, again restricting adsorbate flow to the iron 
nanoparticles housed within the mesopores. In addition, batch tests are performed with the adsorbent 
free flowing in solution, thus increasing the wettability of the sorbent in comparison to the fixed 
column. Finally, due to lower concentrations of the adsorbate near the bottom of the column, 
preventing the full utilization of the adsorbent for selenite removal, the adsorbent in that area could 
require extended time to reach equilibrium.  

 
Figure 7. Linear regression fit of data to second order kinetics equation in agreement with expected 
pseudo-second order behavior. 

3.2. Adams–Bohart Model 

The Adams–Bohart model utilizes the following assumptions: (1) flow rate is constant, (2) 
absence of axial dispersion, (3) behavior matches the rectangle (irreversible) isotherm (i.e., highly 
favorable adsorption), and (4) adsorption rate follows second-order reaction kinetics [30]. The data 
were fit with a linear regression line as shown in Figure 8, and the rate constant (kBA) was calculated 
from the m and b terms of the linear regression equation (y = mx + b).  

The literature shows two forms (Equations (9) and (10)) of the Adams–Bohart model [11,30]. 
Although both models yield kinetic constants while maintaining dimensional homogeneity, they 
differ slightly in the method by which the kinetic constant is derived. One equation can be used to 
calculate the constants by equilibrium adsorption per unit volume, while the other can be used to 
determine the constants on a per unit mass basis. The two forms of the same model would be 
considered identical if the contents of the column were homogenized and uniform [30]. However, the 
presence of both an inert medium and the composite sorbent in our column means that local densities 
and adsorption capacities could vary. In our case, we chose to include the mass and volume of sand 
in our calculations in order to obtain more precise values. As discussed above, further tests indicated 
that the sand did play a minor role in the adsorption of Se(IV). 



Water 2020, 12, 1234 9 of 12 

 

 
Figure 8. Linear regression fit of data to Adams–Bohart model. Values from these regressions were 
used in the calculation of kinetic constants in Tables 2 and 3. 

Table 2. Kinetic constants calculated from the slope. 

Residence Time (min) Equation Used kAB (mL/mg/min) 
3.25 9 0.011 

 10 0.013 
6 9 0.009 
 10 0.009 

Table 3. Kinetic constants calculated from the y-intercept. 

Residence Time (min) Equation Used kAB (mL/mg/min) 
3.25 9 0.002 

 10 2.167 
6 9 0.005 
 10 4.661 

Linear regression fits were performed on the data in Figure 8, providing two equations to 
determine kinetic parameters from. For a resonance time of 3.5 min and 6 min, the regressions were 
y = −0.0502x + 2.1309 and y = −0.0617x + 2.4508, respectively. Since the rate constant appears in both 
the m and b terms of the linear regression equation, each fitting could yield two rate constants. 
Between these two terms the slope (m) produced more consistent parameter values, making them 
more useful for the predictions of the fixed-bed behavior [30]. A better agreement with the observed 
column adsorption behavior was seen by only including the initial adsorption of the column. This is 
reflective of the constraints of the model, as the Adams–Bohart model is typically used to depict 
breakthrough curves rather than overall adsorption curves [12]. As seen in Tables 2 and 3, many of 
the kinetic constants derived from the m and b components across all forms of the Adams–Bohart 
model and all residence times were similar. Only the values calculated on a per unit mass basis 
(Equation (10)) deviated significantly, potentially due to variance in equilibrium concentration 
calculations or sand adsorption behavior. The differing rate constants from the m and b terms 
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potentially originate from multiple kinds of adsorption taking place or multiple reactions occurring. 
Another possibility is the existence of a pseudo-solution which can be eliminated by comparing the 
kinetic rate constants from both equations and over both runs. When compared to values obtained 
from experimental data, the theoretical values calculated from concentration measurements resulted 
in rate constants that displayed a small initial deviation from the experimentally obtained values that 
subsequently decreased as the column reached full saturation.  

4. Conclusions 

Column kinetics were determined by first analyzing the rate law to obtain equilibrium 
concentrations. Subsequently, this data was fitted to the Adams–Bohart model, enabling the 
calculation of critical data on column kinetics of C-MNA adsorbents in a fixed-bed system. Since the 
data displayed strong correlation to a pseudo-second order linear regression fit, the equilibrium 
concentrations could be applied to an Adams–Bohart providing a better understanding of column 
behavior. Within a continuous-flow setting, the Adams–Bohart model predicts column behavior with 
reasonable accuracy, given certain limitations. Given the mixture of semi-inert sand and composite 
adsorbent, calculations were found to be more accurate when the mass and volume of the sand were 
included in the model. Given the lack of literature on the Se(IV) adsorption behavior in a fixed-bed 
column, this analysis provides valuable insight as corporations and governments continue to require 
new technologies for waste and contaminated water processing. This work provides insights to 
enable further work on mixed pollutant removal in addition to industrial scaling of this column.  

Finally, although magnetism has not been taken advantage of in the current work, it can be used 
to create macroporosity in a sorbent bed and thereby increase mass transfer, while reducing pressure 
drop. It is well known that magnetically stabilized beds can have the benefits of fixed beds, in terms 
of simplicity and high separation efficiency, and fluidized beds with respect to high mass-transfer 
rates and low pressure drop. Future work will be focused on removing Se(IV) from real wastewater 
using magnetically stabilized sorbent beds with magnetic sorbent based on tire-derived carbon. 
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Abbreviations 

Relevant Variables 
k kinetic constant (g mg−1 min−1) 
qe equilibrium concentration (mg g−1) 
qt concentration at time t (mg g−1) 
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t time (min) 
CB breakthrough concentration (mg cm−3) 
C sorbate concentration in bulk (mg cm−3) 
C0 initial sorbate concentration in feed (mg cm−3) 
kAB Adams–Bohart rate constant (cm3 mg−1 s−1) 
M mass of adsorbent (g) 
N0 sorption capacity per unit volume of fixed bed (mg cm−3) 
q sorbate concentration in adsorbent (mg g−1) 
q0 sorption capacity per unit mass of adsorbent (mg g−1) 
Q flow rate (cm3 s−1) 
tB breakthrough time (s) 
u superficial velocity (cm s−1) 
ν interstitial velocity (cm s−1) 
V volume of solution (mL) 
Z total bed depth (cm) 
ε column void fraction 
ρP apparent adsorbent density (g cm−3) 
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