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Abstract: In a multi-layered groundwater model, achieving accurate spatiotemporal identification
and solving the ill-posed problem is the vital topic for model calibration. This study
proposes a symmetry rank three vectorized loading scores (SR3 VLS) quasi-Newton algorithm
by modifying the Levenberg–Marquardt algorithm and importing a rank three structure from
Broyden–Fletcher–Goldfarb–Shanno algorithm for identification of hydrogeological parameters and
spatiotemporal recharge simultaneously. To accelerate directional convergence and approach a global
optimum, this study uses a vectorized limited switchable step size in the transmissive groundwater
inverse problem. The Hessian approximation rank three uses high and low-rank factor loading
scores analyzed from simulated storage fluctuation between adjacent iterations for calculation and
matrix correction. Two numerical experiments were designed to validate the proposing algorithm,
showing the SR3 VLS quasi-Newton reduced the error percentages of the identified parameters by
1.63% and 9.65% compared to the Jacobian quasi-Newton. The proposing method is applied to the
Chou-Shui River alluvial fan groundwater system in Taiwan. Results show that the simulated storage
error decreased rapidly in six iterations, and has good head convergence as small as 0.11% with
a root-mean-square-error (RMSE) of 0.134 m, indicating that the proposing algorithm reduces the
computational cost to converge to the true solution.

Keywords: groundwater modeling; parameter identification; spatiotemporal estimation of recharges;
singular value decomposition; factor loading and score; inverse ill-posed problem

1. Introduction

In arid and semi-arid areas, if there are insufficient surface water facilities to store runoff,
groundwater provides an important water supply source [1]. Conjunctive use planning for surface
water and groundwater plays an important role in total water resource management and can be
optimized through a sound groundwater management model based on mathematical system analysis.
To develop such a model, it is necessary to understand and to be able to estimate the spatiotemporal
patterns of pumpage, net recharge, and hydrogeological parameters of the groundwater system, in
which the associated simulation model and optimization model are mostly nonlinear. The governing
equation of three-dimensional groundwater flow can be expressed as [2]
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∂x

(Kxx
∂h
∂x

) +
∂
∂y

(Kyy
∂h
∂y

) +
∂
∂z

(Kzz
∂h
∂z

) + W = Ss
∂h
∂t

(1)

Water 2020, 12, 995; doi:10.3390/w12040995 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-1428-1996
https://orcid.org/0000-0002-6417-5817
http://dx.doi.org/10.3390/w12040995
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/4/995?type=check_update&version=2


Water 2020, 12, 995 2 of 26

where Kxx, Kyy, and Kzz are the hydraulic conductivities along the x, y, and z directions (LT−1); Ss is the
specific storage of porous media (L−1); h is the groundwater head (L); W is the volumetric flux per unit
volume representing sources (recharge) and/or sinks (pumpage) of the groundwater system, W > 0 for
the flow into the system (T−1); t is the time (T).

It can be seen from Equation (1) that before simulating groundwater flow, the spatiotemporal
patterns of pumpage and recharge must be specified and the hydrogeological parameters identified.
However, in previous studies, the establishment of a groundwater flow model has focused on
hydrogeological parameter identification. The spatiotemporal patterns of pumpage and net recharge
are mostly regarded as known [3–15]. If the pumpage and recharge spatiotemporal patterns are
arbitrary, the calibrated model is subject to uncertainty [16]. Furthermore, previous studies on
hydrogeological parameter identification are usually based on hypothetical cases, which seldom apply
to large-scale complex groundwater systems.

The nonlinear programming is the traditional parameter identification method in groundwater
modeling. Therein, Newton’s method is used to find the roots of first-order partial derivatives of the
objective function J′(η∗) = 0 by constructing a parameter sequence ηk based on the initial guess η0

that converges towards some optimal value η∗ with the use of the Jacobian matrix [17], which is the
first-order partial derivatives of a scalar-valued model output function. Subsequently, to improve the
convergence rate of parameter (decision variable) identification, the Hessian matrix, which is a square
matrix of second-order partial derivatives of the objective function (or scalar field), was employed
in the Gauss–Newton method [18]. The Hessian describes the local curvature of a function of many
parameters; thus, the Gauss–Newton tends to search for the parameter value along a shorter and
more direct path calculated from a direction compared to that of Newton’s method [19]. However,
finding the inverse of the Hessian in high dimensions can be an expensive operation, which can be
addressed via various factorizations or approximately using iterative methods. Moreover, computing
and storing the full Hessian matrix requires the squared number of parameters in memory, which is
unfeasible for high dimensional functions/models with several parameters [17]. Furthermore, if the
Hessian is similar to a non-invertible matrix, the inverted Hessian can be numerically unstable, and the
solution may diverge. For such situations, quasi-Newton algorithms have been developed, where an
approximation for the Hessian is constructed from changes in the gradient. The most commonly used
quasi-Newton algorithms are the Jacobian quasi-Newton method, Levenberg–Marquardt algorithm
(LMA), and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The Jacobian quasi-Newton often overestimates the Hessian [17]; hence, the convergence may not
be guaranteed in transmissive groundwater problems, and the problem may be ill-posed. Contrarily,
LMA is more robust than the Jacobian quasi-Newton due to the addition of a diagonal correction
matrix; however, it tends to be slower. Furthermore, LMA converges to the global minimum only if
the initial estimate is already close to the global minimum [20]. The BFGS algorithm is not used for
solving constrained nonlinear optimization. Moreover, Newton’s method and the BFGS algorithm do
not guarantee convergence unless the function has a quadratic Taylor expansion near an optimum
position [21]. A key reason leading to the above-mentioned challenges is the scalar nature of the step
size in the Jacobian quasi-Newton, the Marquardt damping factor in LMA, and the secant scale factor
in BFGS.

In Newton’s method and the quasi-Newton algorithm for nonlinear optimization, the line search
algorithm in the calculated direction dk is used to find the next solution ηk+1 by minimizing the
corresponding objective function, J = f

(
ηk + αk

·dk
)
, over the scalar step size αk > 0. The line search

strategy is one of two basic iterative approaches to find a locally optimal solution for scalar step size by
minimizing the objective function. The other approach is the trust region. The line search approach
first determines a gradient descent direction along which the objective function J will be reduced
and subsequently computes a step size that determines how far the vector of parameters η should
move along that direction. In the commonly used direct search double false position method, the
minimum must be bracketed in an interval; therefore, it always converges and is capable of targeting



Water 2020, 12, 995 3 of 26

more difficult problems [22]. Modern versions of the false position method employ systematic methods
of choosing new test values and are concerned with approximation speed. If a computer program
needs to repeatedly solve equations during its run, faster methods with significant time savings
are preferred. If the scalar step size expands to the vectorized limited step size and simultaneously
modifies the direction dk for better Hessian approximation, to accelerate shrinking between the step
size bracketed intervals, initial interval selection and systematic acceleration approach are key for
efficient optimization.

Recently, a few studies used advanced approaches for the identification of hydrogeological
parameters or source/sink to satisfy objective convergence conditions. However, few studies have
worked on a modified quasi-Newton algorithm for converging to the parameter’s true solution and
reducing the computational cost. Tung and Chou [23] integrated pattern classification and Tabu
Search to optimize zonation and associated average groundwater pumping rates. Tsai and Yeh [24]
used a genetic algorithm embedded with a Bayesian estimator to solve the transmissivity structure
identification problem in a two-dimensional confined aquifer. Cheng et al. [25] developed a nudging
data assimilation algorithm for estimating unknown pumping from private wells in an aquifer system.
Liu et al. [26] combined the adjoint state and gradient search methods to simultaneously estimate the
storage coefficient, transmissivity, initial condition, and boundary conditions. Liu and Hsu [27] used
independent component analysis to identify the local pumping and recharging source. Liu et al. [28]
used independent component analysis to identify the main pumping type characteristics and estimate
the pumping type quantities with a calibrated groundwater simulation model. To enhance the
identified accuracy of multiple parameters, this study modifies an iterative quasi-Newton algorithm
using a vectorized switchable step size to simultaneously identify hydrogeological parameters and
spatiotemporal patterns of pumpage and recharge in a multi-layered groundwater system.

Groundwater head (storage) hydrograph time–frequency analysis has been used to estimate
recharge with reasonable results [29–35]. However, the control volume of the hydrograph fluctuation
analysis uses a lumped parameter approach; thus, it can only estimate pumpage or recharge temporally
and not spatially. In most previous studies, groundwater recharge is limited to rainfall and river
recharge, and recharge across the boundary has received less attention. Furthermore, singular value
decomposition (SVD) can be used to identify the factors and the corresponding magnitudes that cause
the groundwater flow fluctuation. Moon et al. [33] applied SVD to explore the relationship between
groundwater head fluctuation and recharge, and Yu and Chu [36] analyzed the principal factors
affecting the groundwater head using an empirical orthogonal function (EOF). However, previous
large-scale groundwater modeling studies have seldom used SVD-calculated loadings and scores to
approximate or correct the Hessian matrix.

Thus far, very few studies have investigated large systems conditioned by actual data. This study
proposes a symmetry rank three vectorized loading scores (SR3 VLS) quasi-Newton algorithm
by modifying the Levenberg–Marquardt algorithm and importing a rank three structure from the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to solve the constrained hydrogeological
parameter identification and recharge spatiotemporal patterns simultaneously in a large-scale
multi-layered groundwater model. To accelerate convergence, approach a global optimum, and
achieve a well-posed problem, this study uses a vectorized limited switchable step size in the
transmissive groundwater inverse problem. Accordingly, to achieve the Hessian approximation, solve
nonlinear ill-posed problems, and detect the area of global minimum, a rank three structure with
high- and low-rank factor loading scores analyzed from the simulated storage fluctuation between two
adjacent iterations is used to calculate the correction matrix for the Hessian. The proposing methodology
is verified using numerical experiments and is applied in a complex practical groundwater system.

2. Methodology

This study designs the depictions of the Section Methodology composing of five sub-sections.
Section 2.1 shows the proposing optimization model for model calibration in a multi-layer groundwater
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system. Section 2.2 expresses the proposing SR3 VLS quasi-Newton algorithm by modifying the notable
Levenberg–Marquardt algorithm and importing a rank three structure from the BFGS algorithm for
solving the constrained identification of hydrogeological parameters and spatiotemporal patterns
of recharges simultaneously in a large-scale transmissive groundwater model. Section 2.3 expresses
the vectorized multi-order derivative exact double false position bracketing using SVD-related rank
and depth modified from the traditional scalar line search. Section 2.4 depicts the procedures of the
methodology. Section 2.5 expresses the visualized SVD of the change in storage between kth and
(k − 1)th iteration for Hessian approximation.

2.1. Proposing Optimization Model for Model Calibration in a Multi-Layer Groundwater System

Traditionally, for model calibration purposes, a set of the hydrogeological parameters or source/sink
patterns (η) are optimized from a limited number of observations (hobs

t,x,y). If the classical least-squares
error (LSE) is used to represent the output simulated groundwater head error, the objective function
can be expressed as the minimization problem in Equation (2a) [37]. In this study, the order differs
substantially between the storage coefficient in confined aquifers and the specific yield in unconfined
aquifers, which are the dominant independent groundwater head fluctuation variables, thus, this study
devises the LSE of the simulated and observed storage hydrograph (qsim

ts,s f , f and qobs
ts,s f , f ) as the objective

function to optimize the parameter vector η. The proposing minimized objective function is expressed
in Equation (2b):

Min
η

J(η) =
[
hsim

t,x,y(η) − hobs
t,x,y

]T[
hsim

t,x,y(η) − hobs
t,x,y

]
(2a)

Min
η

J(η) =
F∑

f=1

S f∑
s f =1

Ts∑
ts=1

(
qsim

ts,s f , f (η) − qobs
ts,s f , f

)2
=

M∑
m=1

(
ϑsim

m

(
ηk

)
− ϑobs

m

)2
=

M∑
m=1

r2
m

(
ηk

)
(2b)

where hsim
t,x,y(η) is the simulated groundwater head at an observation well based on an estimated

value of η; qobs
ts,s f , f and qsim

ts,s f , f are the observed storage and the simulated storage, corresponding to

the observed and simulated groundwater head of aquifer f in region s f for time step ts calculated
according to Hsu et al. [16], respectively; and F is the total number of aquifers. Equation (2b) assumes
that a groundwater system has S f observation wells in aquifer f with several time steps Ts, and uses
M = Ts × S f × F to represent subscript symbols qsim

ts,s f , f and qobs
ts,s f , f by single subscript symbols ϑsim

m

and ϑobs
m . To formulate the optimization model, the zonation approach [38,39] is used to partition the

parameter space according to the observation well location.
Assume that the spatiotemporal pumpage pattern can be estimated beforehand, and

the storage coefficients and specific yield values can be obtained from pumping tests.
Then, the parameter vector estimated η =

[
Kaqu, Kriv, KV, Rsurf, Rboun

]
in the optimization

model includes aquifer hydraulic conductivity Kaqu =
{
Kaqu

s f , f

∣∣∣s f = 1, . . . , S f ; f = 1, . . . , F
}
,

riverbed leakage conductivity Kriv =
{
Kriv
τγ,γ

∣∣∣τγ = 1, . . . , Rγ;γ = 1, . . . , H
}
, aquitard leakance

conductivity KV =
{
KV

s f , f

∣∣∣s f = 1, . . . , S f ; f = 1, . . . , F
}
, and the source patterns of surface recharge

Rsurf =
{
Rsurf

ts,s f

∣∣∣s f = 1, . . . , S f

}
and boundary recharge Rboun =

{
Rboun

ts,α f , f

∣∣∣α f = 1, . . . , B f ; f = 1, . . . , F
}
.

The parameter vector η has L entries and L = F × S f + R f + (F − 1) × S f + Ts × S f + Ts × F × B f in
which Kaqu

s f , f is the hydraulic conductivity of aquifer f in region s f [LT−1]; Kriv
τγ,γ is the riverbed hydraulic

conductivity of river γ in region τγ [LT−1]; KV
s f , f is the vertical hydraulic conductivity of aquitard f

in region s f [T−1]; Rsurf
ts,s f

is the surface recharge of region s f for time step ts; Rboun
ts,α f , f is the boundary

recharge of aquifer f and arc α f for time step ts [L3T−1]; and Ts, H, Rγ, and B f are the total time step
number, total number of rivers, total sectional number of river γ, and total boundary arcs of aquifer
f, respectively.
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The optimization model contains four constraints: (1) the spatiotemporal pattern of multiple
recharges should subject to mass balance, (2) the simulation of groundwater head should obey
governing Equation (1), (3) the upper and lower bounds of in situ hydrogeological parameters, and
(4) the allocated upper and lower bounds of surface recharge. In a real case, the identification of
hydrogeological parameters and recharges often form a large-scale highly nonlinear problem.

2.2. Modification of Traditional Algorithms in Nonlinear Programming for Proposing SR3 VLS Quasi-Newton
Algorithm to Solve Hydrogeological Parameters

In nonlinear programming, Newton’s method attempts to find the roots of J′ by constructing a
sequence ηk from the initial guess η0 that converges towards some value η∗ satisfying J′(η∗) = 0. This
η∗ is a stationary point of J where the second-order Taylor expansion JT(η

∗) of an objective function J
around ηk is:

JT

(
ηk+1

)
= JT

(
ηk + ∆ηk

)
≈ J

(
ηk

)
+ J′

(
ηk

)T
·∆ηk +

1
2

(
∆ηk

)T
J′′

(
ηk

)
·∆ηk (3)

Ideally, we want to pick ∆ηk such that ηk + ∆ηk is a stationary point of J. Using this Taylor
expansion as an approximation, we can at least solve for the ∆ηk corresponding to the root of the
expansion’s derivative:

0 =
d

d∆ηk

(
J
(
ηk

)
+ J′

(
ηk

)T
·∆ηk +

1
2

(
∆ηk

)T
J′′

(
ηk

)
·∆ηk

)
= J′

(
ηk

)
+ J′′

(
ηk

)
·∆ηk (4)

⇒ ∆ηk = −
[
J′′

(
ηk

)]−1
J′
(
ηk

)
(5)

The above-mentioned iterative scheme can be generalized to several dimensions by replacing the
derivative with the gradient, ∇J

(
ηk

)
and the reciprocal of the second derivative with the inverse of the

Hessian matrix, H
(
ηk

)
J
(
ηk

)
. The iterative scheme obtained on doing so is as follows:

ηk+1 = ηk
−

[
H

(
ηk

)
J
(
ηk

)]−1
∇J

(
ηk

)
, k ∈ N (6)

If all second-order partial derivatives of J exist and are continuous over the function domain, then
the Hessian matrix H of J is usually defined as follows:

H
(
ηk

)
=



∂2 J
∂η2

1

∂2 J
∂η1∂η2

· · ·
∂2 J

∂η1∂ηL
∂2 J

∂η2∂η1

∂2 J
∂η2

2
· · ·

∂2 J
∂η2∂ηL

...
...

. . .
...

∂2 J
∂ηL∂η1

∂2 J
∂ηL∂η2

· · ·
∂2 J
∂η2

L


(7)

At a local minimum, the Hessian is positive semi-definite. The geometric interpretation of
the Gauss–Newton method is that at each iteration, JT

(
ηk

)
is approximated by a quadratic function

around ηk, and a small scalar step size α ∈ (0, 1) was taken to the minimum (or maximum) of
that function, as expressed in Equation (8a). The Jacobian quasi-Newton method uses the Jacobian
matrix JD to approximate the Hessian matrix H ≈ 2JT

DJD iteratively, as expressed in Equation (8b).
The Levenberg–Marquardt algorithm adds an identity matrix I to the Hessian H ≈ JT

DJD + λI,
with the scale adjusted iteratively as needed, in which the increment vector is rotated towards the
direction of steepest descent, as expressed in Equation (8c). Considering a disadvantage arises for
large damping factor values λ, Fletcher (1971) proposed each gradient component can be scaled
by curvature, so that there is larger movement along directions where the gradient is smaller [17],
which avoids slow convergence in the direction of a small gradient. Therefore, the identity matrix
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was replaced with the diagonal matrix comprising diagonal elements of JT
DJD, which is used to

solve linear ill-posed problems, as expressed in Equation (8d). The BFGS quasi-Newton algorithm
is used for solving unconstrained nonlinear optimization problems by setting the search direction
dk = −H−1

(
ηk

)
∇J

(
ηk

)
≈ −A−1

(
ηk

)
∇J

(
ηk

)
for the analog solution of the Newton equation, where A

(
ηk

)
approximates the Hessian matrix, as expressed in Equation (8e).

ηk+1 = ηk
− αk

[
H

(
ηk

)
J
(
ηk

)]−1
∇J

(
ηk

)
, k ∈ N (8a)

ηk+1 = ηk
− αk

[
2JT

DJD

]−1
JT

Dr
(
ηk

)
, k ∈ N (8b)

ηk+1 = ηk
−

[
JT

DJD + λI
]−1

JT
Dr

(
ηk

)
, k ∈ N (8c)

ηk+1 = ηk
−

[
JT

DJD + λdiag(JT
DJD)

]−1
JT

Dr(ηk), k ∈ N (8d)

ηk = ηk−1 + A−1
(
ηk

)
·

[
∇J

(
ηk

)
−∇J

(
ηk−1

)]
, k ∈ N (8e)

ηk+1 = ηk
−αk

◦

{[(
ΨT

D

)k
Ψk

D + θk
◦

(
ΓT

D

)k
Γk

D +ωk
◦

(
ΨT

D

)k
Γk

D

]−1
·

(
JT

D

)k
·r
(
ηk

)}
, k ∈ N (8f)

To accelerate convergence, jump over local minima, and achieve a well-posed problem, this
study uses a vectorized limited switchable step size αk =

[
αk

l | l = 1 ∼ L
]
∈

(
−εk

l , εk
l

)
in the inverse

problem of transmissive groundwater whose parameters include both hydrogeology and source

simultaneously. Therefore, we achieve
∣∣∣∣rm

∂2rm
∂ηi∂η j

∣∣∣∣ ≈ ∣∣∣∣∂rm
∂ηi

∂rm
∂η j

+SVD
(
ϑk

m − ϑ
k−1
m , ηk

l − η
k−1
l

)∣∣∣∣, detect the
minima area, approach global optimum, and solve nonlinear ill-posed problems, this study modifies
LMA and imports a third rank structure from BFGS for solving constrained nonlinear parameter
identification problems, which uses a low-rank factor loading score ΨD and a high-rank loading score
ΓD analyzed from the simulated storage difference ϑk

m − ϑ
k−1
m to approximate the Hessian and calculate

the correction matrix, as expressed in Equation (8f).
In Equation (8b–d), JT

D

(
ηk

)
is the Jacobian matrix of ϑsim

m defined in Equation (9a). In Equation

(8e), set yk−1 = ∇J
(
ηk

)
−∇J

(
ηk−1

)
and sk−1 = ηk

−ηk−1, the approximate Hessian matrix A
(
ηk

)
in the

BFGS algorithm is updated by the addition of two matrices as expressed in Equation (9b), subjected to

symmetry and positive definiteness of A
(
ηk

)
. Both χkµk−1

(
µk−1

)T
and γkνk−1

(
νk−1

)T
are symmetric

rank-one matrices, and their sum is a rank two updated matrix. Imposing the secant condition [40]
A
(
ηk

)
·sk−1 = yk−1 and choosing µk−1 = yk−1 and νk−1 = A

(
ηk−1

)
·sk−1, the secant BFGS scale factors χk

and γk are expressed in Equation (9c).

JT
D

(
ηk

)
=


∂ϑsim

1
∂η1

∂ϑsim
2
∂η1

· · ·
∂ϑsim

m
∂η1

· · ·
∂ϑsim

M
∂η1

...
...

...
...

∂ϑsim
1

∂ηL

∂ϑsim
2

∂ηL
· · ·

∂ϑsim
m

∂ηL
· · ·

∂ϑsim
M

∂ηL


L×M

(9a)

A
(
ηk

)
= A

(
ηk−1

)
+ χkµk−1

(
µk−1

)T
+ γkνk−1

(
νk−1

)T
(9b)

χk =
1

(yk−1)
Tsk−1

,γk= −
1

(sk−1)
T
·A(ηk−1)·sk−1

(9c)

In the proposing SR3 VLS quasi-Newton algorithm in Equation (8f),
(
ΨT

D

)k
Ψk

D, θk
◦

(
ΓT

D

)k
Γk

D and

ωk
◦

(
ΨT

D

)k
Γk

D are symmetric rank-one matrices; however, their sum is a rank three matrix. The row

vectors of the low-rank and high-rank loading score matrix, namely
(
ΨT

D

)k
and

(
ΓT

D

)k
, are permutated

from
(
ΨT

D,l

)k
and

(
ΓT

D,l

)k
, as expressed in Equation (10a–c) and in Equation (10d–f), respectively, in which



Water 2020, 12, 995 7 of 26

the low-rank component j is 1, and the high-rank component j is from 2 to Sf. This study uses the factor

score
(
C̃
·,·, f

)k
and the factor loading

(
FT
·,·, f

)k
calculated from the simulated storage difference ϑk

m − ϑ
k−1
m

through SVD between iteration k and k − 1 to compute the elements of
(
ΨT

D,l

)k
and

(
ΓT

D,l

)k
, as expressed

in Equations (13)–(16), thereby eliminating the need for additional model runs to approximate the
Hessian. Dk

·, f is the diagonalized standard deviation matrix of ϑk
m − ϑ

k−1
m , where m= 1, 2, . . . , M, and

M = Ts × S f × F. Before SVD, the simulated storage difference ϑk
m − ϑ

k−1
m will first be normalized by

the average ak and standard deviation εk
l for each zonal s f and each aquifer f across multiple simulated

time steps ts, such that the average of the simulated storage difference of each zone equals to 0 and the
variance equals to 1. Hence, the vectorized step size αk is a switchable and limited set between −εk

l
and εk

l , namely αk =
[
αk

l | l = 1 ∼ L
]
∈

(
−εk

l , εk
l

)
.

(
ΨT

D,l

)k
=

[
Y1,1,l, Y1,2,l, · · ·Y1,ts,l, · · ·Y1,Ts,l, · · ·Ys f ,1,l, · · ·Ys f ,ts,l, · · ·Ys f ,Ts,l, · · ·YS f ,1,l, · · ·YS f ,ts,l, · · ·YS f ,Ts,l

]
(10a)

Ys f ,ts,l =

ts∑
t=1

Ys f ,t,l (10b)

(
ΨT
·,·,l

)k
=

1
ηk

l − η
k−1
l


(
C̃1,·, f

)k(
FT

1,·, f

)k
Dk
·, f −


1
...
1


Ts×1

·

(
C̃1,1, f

)k(
FT

1,·, f

)k
Dk
·, f

 (10c)

(
ΓT

D,l

)k
=

[
G1,1,l, G1,2,l, · · ·G1,ts,l, · · ·G1,Ts,l, · · ·Gs f ,1,l, · · ·Gs f ,ts,l, · · ·Gs f ,Ts,l, · · ·GS f ,1,l, · · ·GS f ,ts,l, · · ·GS f ,Ts,l

]
(10d)

Gs f ,ts,l =

ts∑
t=1

Gs f ,t,l (10e)

(
ΓT
·,·,l

)k
=

1
ηk

l − η
k−1
l


(
C̃ j,·, f

)k(
FT

j,·, f

)k
Dk
·, f −


1
...
1


Ts×1

·

(
C̃ j,1, f

)k(
FT

j,·, f

)k
Dk
·, f

 (10f)

According to this design, this study uses the orthogonal component of loading scores
(
ΓT

D

)k
and(

ΨT
D

)k
to correct the direction to better approximate the Hessian. That is, the modified algorithm

uses the vector-expanded matrix θk andωk to scale each high-rank component of the loading scores
according to the orthogonal properties eigenvalue τk

j to approximate the Hessian and explore different
local minima positions, so there is larger movement along the directions for each parameter where the

gradient is smaller. Accordingly, this study designs the symmetry rank three loading scores
(
ΨT

D

)k
Ψk

D,

θk
◦

(
ΓT

D

)k
Γk

D, and ωk
◦

(
ΨT

D

)k
Γk

D to solve nonlinear ill-posed problems, thus, properly handling the
approximated Hessian elements by scale and correction at all iterations. The calculation of the scale
matrix θk andωk are formulated as follows:

θk =

τk
1

τk
j

∣∣∣∣∣∣ j = 1 ∼ S f


L×1

[1, 1, · · · , 1]1×L (11a)

ωk = 2


√√√
τk

1

τk
j

∣∣∣∣∣∣ j = 1 ∼ S f


L×1

[1, 1, · · · , 1]1×L (11b)

In large-scale groundwater modeling with a large number of parameters and numerical grids, the
transient simulation time increases substantially [41]. To imitate the real complex alluvial groundwater
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hydrogeology in practice, meticulously detailed parameterization of aquifer’s/aquitard’s shape is
unavoidable. Hence, computing and storing the full Hessian matrix directly may be infeasible,
unavailable, and too expensive to compute at all iterations in hydrogeological parameter identification.
Furthermore, the convergence of the Jacobian quasi-Newton is not guaranteed. The approximation∣∣∣∣rm

∂2rm
∂ηi∂η j

∣∣∣∣ � ∣∣∣∣∂rm
∂ηi

∂rm
∂η j

∣∣∣∣ required to ignore the second-order derivative terms may be valid in two
conditions [17], for which convergence is to be expected: the function values rm are small in magnitude,

at least around the minimum; and the functions are only slightly nonlinear, so that ∂2rm
∂ηi∂η j

is relatively
small in magnitude. Moreover, when the (non-negative) Marquardt damping factorλ (scalar) optimized
by a line search changes, the shift vector must be recalculated. Furthermore, in cases with multiple
minima, the algorithm converges to the global minimum only if the initial guess is close to the final
solution [20]. However, for well-behaved functions and reasonable starting parameters, the LMA tends
to be slightly slower than the Jacobian quasi-Newton. Besides, letting A

(
ηk+1

)
be positive definite in

the BFGS updates should satisfy the curvature condition
(
sk−1

)T
yk−1> 0 and A

(
ηk

)
be positive definite.

A key reason leading to the above challenges is the scalar nature of the step size αk in the Jacobian
quasi-Newton, the Marquardt damping factor λ in LMA, and the secant scale factors βk and γk in
BFGS. Hence, this study uses the designed preserved approximate Hessians with positive definite
and numerically stable selections from the various combinations of low–high rank loading scores
along with the vectorized limited switchable step sizes to detect the area of the global minimum and
approach the global optimum in a multi-minima problem.

2.3. Modification from Traditional Scalar Line Search to Vectorized Multi-Order Derivative Exact Double False
Position Bracketing Using SVD-Related Rank and Depth

The traditional double false position provides the exact solution for a root-finding problem, which
determines a scalar αk

∈

[
αk,κ
∗ |κ = 1 ∼ Σ

]
, such that J′(αk,κ

∗ ) = 0, while a nonlinear objective function
J′ can be successively improved by iteration κ. If J′ is a continuous function and there exist two
points αk,κ

LB and αk,κ
UB such that J′

(
αk,κ

LB

)
and J′

(
αk,κ

UB

)
are of opposite signs, then, by the intermediate value

theorem, the function J′ has a root αk,κ
∗ in the interval

[
αk,κ

LB ,αk,κ
UB

]
. The simplest two-point bracketing is

the bisection method, which estimates the solution as the bracketing interval midpoint as expressed
in Equation (12a). If the functional value of the new calculated estimate αk,κ

MP has the same sign as

J′
(
αk,κ

UB

)
, the new bracketing interval becomes

[
αk,κ+1

LB ,αk,κ+1
UB

]
=

[
αk,κ

LB ,αk,κ
MP

]
. The fact that false position

method always converges, and has advantages that minimize slowdowns, recommends it when speed
is needed [22], in which the solved αk,κ

MP is expressed in Equation (12b). The Illinois algorithm dampens

one of the endpoint values by a factor of 1/2 to force the next αk,κ
MP to occur on that side of J′

(
αk,κ

LB

)
guaranteeing superlinear convergence, as shown in Equation (12c). The Anderson−Bjork algorithm
multiplies J′

(
αk,κ

LB

)
by m in Equation (12c), as expressed in Equation (12d).

For the vectorized step size root finding problem, which is more difficult and complicated, the
double false position can be used and written algebraically in the form: determineαk

∈

[
αk,κ
∗ |κ = 1 ∼ Σ

]
such that J′

(
•,αk,κ

∗

)
= 0, if the known conditions are J′

(
•,αk,κ

LB

)
= b1, J′

(
•,αk,κ

UB

)
= b2 at the κ-th iteration

in the exact optimization procedure of the vectorized step size. If J′
(
•,αk,κ

∗

)
is a nonlinear continuous

function and there exist two vectors αk,κ
LB and αk,κ

UB such that each corresponding element of vectors

J′
(
•,αk,κ

LB

)
and J′

(
•,αk,κ

UB

)
are of opposite signs, then by the intermediate value theorem, the function

J′
(
•,αk,κ

∗

)
has a root αk,κ

∗ in the interval
[
αk,κ

LB,αk,κ
UB

]
. In a conventional iterative nonlinear programming

for parameter identification, the information J
(
ηk

)
in Equation (6) is not used for exact approximation.

Hence, this study modifies the double false position method for estimating new parameter vector
guesses αk,κ

MP =
[
αk,κ

MP,l| l = 1 ∼ L
]

through a series of non-derivative, first-order derivative, and SVD
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depth component-based halving vectors of the objective function simultaneously in vector form, as
shown in Equation (12e).

αk,κ
MP =

αk,κ
LB + αk,κ

UB

2
(12a)

αk,κ
MP =

αk,κ
LB J′

(
αk,κ

UB

)
− αk,κ

UB J′
(
αk,κ

LB

)
J′
(
αk,κ

UB

)
− J′

(
αk,κ

LB

) (12b)

αk,κ
MP =

αk,κ
LB J′

(
αk,κ

UB

)
−

1
2α

k,κ
UB J′

(
αk,κ

LB

)
J′
(
αk,κ

UB

)
−

1
2 J′

(
αk,κ

LB

) (12c)

αk,κ
MP =

αk,κ
LB J′

(
αk,κ

UB

)
−m·αk,κ

UB J′
(
αk,κ

LB

)
J′
(
αk,κ

UB

)
−m·J′

(
αk,κ

LB

) , s.t.

 m = 1−
J′
(
αk,κ

MP

)
J′
(
αk,κ

UB

) , i f m > 0

m = 1/2, else
(12d)

αk,κ
MP,l =

ζl·
[
αk,κ

LB ◦ ∇J
(
•,αk,κ

UB

)
−mp ◦α

k,κ
UB ◦ ∇J

(
•,αk,κ

LB

)]
ζl·

[
∇J

(
•,αk,κ

UB

)
−mp ◦ ∇J

(
•,αk,κ

LB

)] (12e)

m1 =
J
(
ηk,αk,κ

LB

)
J
(
ηk,αk,κ

UB

) ·


1
...
1


L×1

, m2 =



1−
ζ1·∇J

(
•,αk,κ

MP

)
ζ1·∇J

(
•,αk,κ

UB

)
...

1−
ζl·∇J

(
•,αk,κ

MP

)
ζl·∇J

(
•,αk,κ

UB

)
...

1−
ζL·∇J

(
•,αk,κ

MP

)
ζL·∇J

(
•,αk,κ

UB

)


L×1

, m3 =


1/2

...
1/2


L×1

, m4 =


1
...
1


L×1

, m5 =



$1
...
$l
...
$L


L×1

,$l ∈

[
1

jl·dl
, 1

dl
, 1

jl
, dl

jl
, 1/2, 1

]
(12f)

where ζl is the lth unit vector; m1 is the halving vector of the proposing 0 order derivative’s double false
position method; m2, m3, and m4 are the halving vectors of the vectorized Anderson−Björk algorithm,
vectorized Illinois algorithm, and vectorized conventional false position method, respectively [22];
and m5 is the halving vector of the proposing SVD depth rank component-based double false
position method, which uses the jth component in dth depth as the high-rank loading score Γk

D for the
Hessian correction.

This study uses symmetry rank three loading score quasi-Newton associated with vectorized step
size for solving massive parameters in transmissive groundwater. This study specializes the step size
for each parameter with a switchable limited scheme; thus, this approach helps reduce the difference
between different kinds of parameters (transmissivity and source/sink) and improves the convergence
rate and searching direction by modifying the parameter step size. To achieve small error in the large
parameters ηk+1 and the desired rapid convergence in the objective function J

(
ηk+1

)
, an exact line

search approach, which computes the vectorized limited switchable step size that optimizes how far
vector of parameters ηk should move along the calculated direction, is proposing. This study proposes
a systematic strengthening approach of vectorized multi-order derivative exact double false position
bracketing using SVD-related rank and depth, which guarantee convergence for solving the vectorized
step size corresponding to different kinds of hydrogeological parameters and recharges. The detailed
procedure is listed in Step 4 of Section 2.4.

2.4. Procedures of the Methodology

Step 1: Set the iteration counter k = 0 of identified parameters ηk =
[
Kaqu

k , Kriv
k , KV

k , Rsurf
k , Rboun

k

]
,

and make an initial guess η0 for the minimum.
Step 1-1: In hypothetical experiment 1, the initial guess of ηk is set as a relatively large value.
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Step 1-2: In hypothetical experiment 2, the initial guesses of Rsurf
k and Rboun

k are set as mean values
of the calculated lumped recharge, and those of Kaqu

k , Kriv
k , and KV

k are set as medium guess values.
Step 1-3: In practical application, the spatiotemporal recharge pattern is estimated by multiplying

the temporal pattern calculated by using the lumped storage hydrograph fluctuation and the previously
estimated pumpage according to Hsu et al. [16], with the initial guess of the spatial pattern estimated
according to the factor loadings calculated from the computed distributed inflow hydrographs (∆storage
+ pumpage). The initial estimate of the hydrogeological parameters is assigned according to the in situ
pumping tests.

Step 2: Compute the second-order derivative descent direction

dk =
[(

ΨT
D

)k
Ψk

D + θk
◦

(
ΓT

D

)k
Γk

D +ωk
◦

(
ΨT

D

)k
Γk

D

]−1
·

(
JT

D

)k
·r
(
ηk

)
through the symmetry rank three

storage-based loading scores.
Step 2-1: Simulate the spatiotemporal groundwater head pattern by using the MODFLOW

from pumpage, recharge and parameters, boundary conditions, and initial conditions. The modular
MODFLOW-2005, which is a computer code that solves the groundwater flow equation, was used to
simulate the finite-difference flow through aquifers [42].

Step 2-2: Compute lumped and distributed groundwater storage hydrographs, based on the in
situ storage coefficient and specific yield (Sy) estimated from pumping tests, drilled hydrogeological
structure, and observed/simulated groundwater head hydrographs.

Step 2-3: Use various multi-rank loading score combinations calculated from the simulated storage
difference ϑk

m − ϑ
k−1
m using SVD between iteration k and k − 1 to approximate Hessians, and then use

selected positive definite and numerically stable approximations with calculated dk to search for the
global minimum.

Step 3: Choose αk to minimize f
(
ηk +αk

◦ dk
)

over αk =
[
αk

l | l = 1 ∼ L
]
∈

[
αk,κ

l |κ = 1 ∼ Σ
]
∈(

−εk
l , εk

l | l = 1 ∼ L
)
=

[
−εk, εk

]
.

Step 3-1: Set the root-finding iteration counter κ = 0 and make an initial interval
[
αk,0

LB,αk,0
UB

]
=[

−εk, εk
]

for the minimum.
Step 3-2: Use a series of potentially faster double false position methods including the proposing

vectorized multi-order derivative exact double false position bracketing using SVD-related rank
and depth, vectorized Anderson−Björk algorithm, vectorized Illinois algorithm, and vectorized
conventional false position method to calculate αk,κ

MP,l as shown in Equation (12e), in which they are
always converging and avoid slowdowns.

Step 3-3: Select the calculated αk,κ
MP =

[
αk,κ

MP,l| l = 1 ∼ L
]

with the largest shrinking rate and the

same sign as J′
(
αk,κ

UB

)
.

Step 3-4: If the shrinking rate drops below 0.5, the bisection is used to calculate αk,κ
MP,l.

Step 3-5: The new bracketing interval becomes
[
αk,κ+1

LB ,αk,κ+1
UB

]
=

[
αk,κ

LB ,αk,κ
MP

]
. Let κ = κ+ 1 and

return to Step 3-2.
Step 3-6: Until the bracketing interval of step sizes ‖αk,κ+1

UB −αk,κ+1
LB ‖< tolerance.

Step 4: Update ηk+1 = ηk
−αk

◦ dk. Set k = k + 1 and return to Step 2-1.
Step 5: Until the descent gradient of objective function ‖∇ f

(
ηk,αk

)
‖ < tolerance.
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2.5. SVD of the Change in Storage between kth and (k − 1)th Iteration for Hessian Approximation

First, we normalize the data (the average of each storage fluctuation variable equals to 0, and the
variance equals to 1) and divide all elements of each row of X by the sample standard deviation of the
variable εs f , f for an aquifer f, that is,

X̃ =



((
qsim

1,•, f

)k
− (qsim

1,•, f

)k−1
− a

)T

(
(qsim

2,•, f )
k
− (qsim

2,•, f )
k−1
− a

)T

...(
(qsim

Ts,•, f )
k
− (qsim

Ts,•, f )
k−1
− a

)T


·


1/ε1, f 0 · · · 0

0 1/ε2, f 0
...

... 0
. . . 0

0 · · · 0 1/εS f , f


(13)

where ε2
s f , f =

1
Ts−1

∑Ts
ts=1

[(
(qsim

ts,s f , f

)k
− (qsim

ts,s f , f

)k−1
)
− as f , f

]2

and as f , f =
1

Ts

∑Ts
ts=1

(
(qsim

ts,s f , f

)k
− (qsim

ts,s f , f

)k−1
)

are the sample’s variance and the average of the change in storage between kth and (k − 1)th iteration at
the sf-th observation well in aquifer f, respectively. Set D = diag

(
ε1, f , . . . , εS f , f

)
.

SVD can produce a series of datasets consisting of non-correlated new variables (partial simulated
storage difference by a parameter factor) for the original analyzed spatiotemporal variables (simulated
change in storage between kth and (k − 1)th iteration). Considering the SVD of the deviation matrix X:

X = UΣVT (14)

where the row vector of the Ts×S f order matrix U is an orthonormal left singular vector
{
u1,·, f , . . . , uTs,·, f

}
,

UTU = IS f×S f ; Σ= diag(σ1, f , . . . , σS f , f ), σ1, f ≥ . . . ≥ σS f , f ≥ 0 is a singular value. The row vector of the

S f × S f order matrix V is an orthonormal right singular vector
{
v1,·, f , . . . , vS f ,·, f

}
, VVT = VTV = IS f×S f .

The singular value σ j, f determines the eigenvalue λ j, f =
1

Ts−1σ
2
j, f . Next, let φ j,s f , f be the correlation

coefficient between the sth
f observation well’s change in storage and the jth principal component

coefficient, called factor loading, and let F =
[
φ j,s f , f

]
be the S f × S f order factor loading matrix.

Because X̃ and C̃ contain the standardized data, substituting X̃ = XD−1, C̃ = XVΛ−1/2, S = 1
Ts−1

XTX = VΛVT, Λ1/2 = 1
√

Ts−1
Σ, we can derive:

F = 1
Ts−1 X̃

T
C̃ = 1

Ts−1

(
D−1XT

)(
XVΛ−1/2

)
= D−1SVΛ−1/2 = D−1

(
VΛVT

)
VΛ−1/2

= D−1VΛΛ−1/2 = D−1VΛ1/2 = 1
√

Ts−1
D−1VΣ

(15)

The principal component analysis provides a description model for the simulated spatiotemporal
change in storage between the kth and (k − 1)th iterations by using SVD. The deviation matrix X can be
expressed by the factor score C̃ and the factor loading F as follows:

X = UΣVT = UΣVTD−1D =
√

Ts − 1U
(

1
√

Ts − 1
D−1VΣ

)T

D = C̃FTD (16)

According to the mathematical meaning, the above formula can be interpreted as: there are L
independent parameters caused the change in storage following perturbation by (ηts,s f , f )

k
− (ηts,s f , f )

k−1.

The factor score (transpose) matrix C̃
T
=

[
c̃1,•, f · · · c̃Ts,•, f

]
stores Ts observations for L factors in

aquifer f, where vector c̃ts,•, f =
(
c̃ts,1, f , . . . , c̃ts,S f , f

)T
records the (ts)

th observation of the Sf factors, as
shown in Figure 1.
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3.1. Setup of the Test Case 

This study uses USGS developed groundwater modeling software ModelMuse v. 3.10 [42] to set 
up two hypothetic numerical experiments for verification of the proposing parameter identification 
methodology. The length, width, and height of the designed experimental groundwater system are 
2000 × 1000 × 20 m, and the grid specifies the number of columns and row from the top view is 20 × 
10 and the width of each column and row is 100 m, as shown in Figure 2. The magnitude of the 
hypothetical actual parameter values is set according to the alluvial order from southeast to 
northwest that the set values are described in supplementary materials Section 1, and the layer type 
is set as convertible. 

Figure 1. Schematic diagram of singular value decomposition of changes in storage between the
kth and (k − 1)th iterations with once simulation perturbation: (a) observed change in storage(
qsim

ts,•, f

)k
− (qsim

ts,•, f

)k−1
; (b) decomposed components of change in storage perturbed by the correction in

the parameter
(
ηts,•, f

)k
− (ηts,•, f

)k−1
.

The signal c̃ts,•, f (temporal step size) first passes through a mixing process which called the factor
loading F (customized spatial direction), where φ j,s f , f determines the loading weight (namely, the

correlation coefficient) from the lth parameter’s factor perturbed between the kth and (k − 1)th iterations

c̃•,l, f to the change in storage at
(
s f

)th
observation well x•,s f , f . Then, L variables pass through the

stretching process D (standard deviation) to enlarge or reduce the range of correction values. Finally,
shift a again to generate the component of the change in storage between the kth and (k − 1)th iterations(
qsim

ts,•, f

)k
−

(
qsim

ts,•, f

)k−1
.

3. Numerical Experimental Validation

3.1. Setup of the Test Case

This study uses USGS developed groundwater modeling software ModelMuse v. 3.10 [42] to set
up two hypothetic numerical experiments for verification of the proposing parameter identification
methodology. The length, width, and height of the designed experimental groundwater system are
2000 × 1000 × 20 m, and the grid specifies the number of columns and row from the top view is
20 × 10 and the width of each column and row is 100 m, as shown in Figure 2. The magnitude
of the hypothetical actual parameter values is set according to the alluvial order from southeast to
northwest that the set values are described in supplementary materials Section 1, and the layer type is
set as convertible.
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Figure 2. Overview of the numerical experiment area.

3.2. Results and Discussion of the Experimental Verification

3.2.1. Experiment 1—Identification of a Single Type of Parameter

The descent footprint of the objective function of Experiment 1 is illustrated in Figure 3a. Results
show that the objective function of the three tested algorithms all can successfully descend to search
for an optimum value, in which the LMA can descend more rapidly than the SR1 VLS quasi-Newton
algorithm and the Jacobian quasi-Newton. However, the SR1 VLS quasi-Newton identifies more
accurate parameter values in five of the six zonal parameters, as shown in Figure 4. The identified error
percentage of the Jacobian quasi-Newton at iteration five across multiple zonal hydraulic conductivity
ranges from 0.18% to 3.75% with an average of 2.39%, those of LMA range from 0.15% to 3.50% with
an average of 1.78%, and those of the SR1 VLS quasi-Newton range from 0.09% to 2.65% with an
average of 0.76%. Moreover, the VLS quasi-Newton algorithm only made 25 number of transient
simulation times among five iterations for calculation of the Hessian matrix and step sizes, but that
of the Jacobian quasi-Newton and LMA requires 39 number of simulation times for calculation.
Hence, the VLS quasi-Newton only needs 63.64% of simulation times comparing to the Jacobian
quasi-Newton and LMA in a six-zonal parameter system to achieve and converge to an optimum.
The detailed optimization process and discussion of Experiment 1 are described in Section 2 of the
Supplementary Materials.
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3.2.2. Experiment 2—Identification of Multiple Types of Parameters Simultaneously

The descent footprint of the objective function of Experiment 2 is illustrated in Figure 3b. Results
show that the objective function of the three tested algorithms all can successfully descend at a quadratic
convergence rate to search for an optimum, although the SR3 VLS quasi-Newton algorithm with partial
aid of SR1 VLS structure descends more slowly than the Jacobian quasi-Newton before iteration 3
and descends more rapidly than LMA. However, the SR3 VLS quasi-Newton iteratively can identify
more precise values for hydraulic conductivity, surface recharge, and boundary recharge, as shown
in Figure 5a–c, respectively. As the step size of the LMA and Jacobian quasi-Newton is a scalar, the
parameter correction vector tends towards highly sensitive surface recharges. The average identified
error percentages of the Jacobian quasi-Newton, LMA and the SR3 VLS quasi-Newton at iteration
five across multiple zonal hydraulic conductivities are 6.79%, 53.13%, and 0.04%, respectively; those
across multiple surfaces recharges are 1.75%, 5.76%, and 0.09%, and those across multiple boundary
recharges are 20.62%, 52.31%, and 0.08%. This demonstrates that the set objective functions (LSE of
groundwater storage) accompanied by the high–low factor loading scores for direction calculation,
which is corrected/enlarged/scaled by the vectorized switchable step sizes, can detect the area of
multiple minima, approach the global optimum, and prevent the ill-posed problem. Moreover, the
average error of hydraulic conductivity identified by the Jacobian quasi-Newton between Experiment
2 and Experiment 1 rises 4.40%, while Experiment 2 increases twelve parameters over Experiment 1,
indicating that the ill-posed occurrence risk rises when the total number of parameters increases. The
detailed optimization process, the number of transient simulation times, and discussion of Experiment
2 are described in supplementary materials Section 3.
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4. Practical Application

4.1. Study Area

The basin area of the Cho-Shui River alluvial fan which locates at the middle-west of Taiwan
is 2079 km2. According to terrain, geology, and stratigraphy, the Cho-Shui River alluvial fan can be
divided into the apex, middle, and distal fans, as shown in Figure 6a. The aquifer stratification in
the alluvial fan is shown in Figure 6b. It shows that rainfall, river, and irrigation water recharge the
groundwater system through the unconfined aquifer at the fan apex and that the groundwater then
flows west to the coast. The groundwater system in the alluvial fan is approximately 330 m thick, which
can be divided into four aquifers and three aquitards. The specific yield (Sy) of the unconfined aquifer
at the apex of the fan is 0.137 to 0.237, and the storage coefficient of the confined aquifer varies from
10−4 to 10−3 [16]. Accordingly, the constructed conceptual groundwater flow model of the Cho-Shui
River alluvial fan using MODFLOW-2005 is shown in Figure 6c.
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4.2. Calibration Outcome and Discussion of the Mega-Parameters Variables of Groundwater Flow Modeling

According to the Cho-Shui River alluvial fan monitoring wells from F1 to F4, the number of
Voronoi parameter variable partitions were set to 30, 49, 31, and 16, respectively, with a total of 126
parameter partitions across four aquifers. Therefore, the aquifer hydraulic conductivity, Kaqu,k

s f , f , has 126

parameters from F1 to F4, with the initial value of Kaqu,k
s f , f set by the in situ pumping test. There were six

parameters for riverbed conductivity, Kriv,k
τγ,γ , with the initial value of Kriv,k

τγ,γ set by the in situ investigated

geological formation. Moreover, there were 96 parameters for aquitard leakance conductivities KV,k
s f , f

from T1 to T3, with the initial value of KV,k
s f , f calculated using Kzz and the thickness of the aquifer [2].

There were 36 intervals (= 12 months × 3 years) in time, leading to 1080 (=30 × 36) surface parameters
that needed identifying. The arc number of recharge across the boundary (=8) was set from F1 to F4,
leading to 1152 (= 8 × 4 × 36) parameters. Hence, the entire groundwater flow model for the Cho-Shui
River alluvial fan had 2454 parameters to be estimated (126 + 96 + 1080 + 1152 = 2454).

4.2.1. Calculated Results and Discussion of Spatiotemporal Pumpage During 2012–2014

Taiwan Power Company investigated the spatial distribution of pumping wells and recorded
the electricity usage for all wells in the Cho-Shui River alluvial fan since 2000. The water usage goals
are divided into irrigation wells and non-irrigation wells, with only 610 wells having water rights,
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while the number of private wells is up to 155,324. The spatial distribution is shown in Figure 6a.
Results show that the annual pumpage for irrigation during 2012–2014 was 16.54 × 108, 15.67 × 108,
and 15.80 × 108 m3, in consecutive years, while that for non-irrigation was 7.72 × 108, 7.99 × 108,
and 7.46 × 108 m3, respectively. The annual total pumpage was 23.73 × 108 m3, of which irrigation
pumpage accounted for 67.4% of the total.

Figure 7 illustrates the spatial pattern of the month with maximum pumpage (sub-figures (a), (d),
and (h)), the month with minimum pumpage (sub-figures (c), (f), and (i)), and the month closest to the
median (sub-figures (c), (f), and (i)) during 2012–2014. Results show that the maximum pumpage in
2012 and 2013 (2.09 × 108 and 2.13 × 108 m3) was in March (at the end of the dry season) and February
(starting the mixed cultivation period of paddy and dry farming). Because of large water demand
and insufficient surface water supply, the water sources for each demand during this month relied
mainly on groundwater pumping. Moreover, the minimum pumpage during 2012–2014 (1.33 × 108,
1.54 × 108, and 1.18 × 108 m3) were in November and December, which are the end of the wet season
and the dry farming cultivation period, respectively. Moreover, in the unusually dry year in 2014, there
was only one typhoon Fung-Wong, which occurred at the end of September to provide rainfall and
surface water. Therefore, the maximum pumpage was in August (2.30 × 108 m3), with the pumpage
being closest to the mean value in April (2.08 × 108 m3). Overall, high-intensity pumping is mainly
concentrated in the distal alluvial fan. During the dry season and the month with high water demand,
the high-intensity pumping areas extend to the interior of the middle alluvial fan.

i

Figure 7. Calculated monthly pumpage of Cho-Shui River alluvial fan during 2012–2014.
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4.2.2. Initially Estimated Spatiotemporal Pattern of Groundwater Recharge

After analyzing the principal components of the monthly spatiotemporal inflow and transmission
during 2012–2014, the overlain multi-rank factor loading for initial groundwater recharge spatial
allocation in F1, F2, F3, and F4 is from PC1 to PC5, which is determined by practical in situ conditions
and the minimal value and maximal objective function gradient, as shown in Figure 8. This figure
shows that the recharge in F1 and F2 of the Cho-Shui River alluvial fan has higher loadings in the
proximal fan. This is because the lithology in the apex is mostly composed of high permeability
gravel, which presents a gradually decreasing trend for permeability from the apex to the tail [16].
Furthermore, the loadings’ spatial pattern in F3 is larger near the northern and eastern regions. This
suggests that the recharge source of F3 is mainly from recharge across the boundary, while that from
aquitard leakance conductivities is less [36]. The boundary recharge in F4 is mainly distributed in the
northeastern region, while the leakage from F3 is mainly concentrated in the middle and distal fans.
The above analysis shows that a multi-rank loading combination can initially estimate the general
trend of the spatial pattern of surface recharge and boundary recharge.
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4.2.3. Calibration Process and Discussion

During the iterative calibration process, the high-rank components for Hessian approximation
moved along the corrected direction for surface recharge identification ranging from 2 to 4, with the
average of F1, F2, F3, and F4 being 2.37, 2.78, 2.53, and 2.29, respectively. For boundary recharge
identification, components ranged from 5 to 9, with the average of F1, F2, F3, and F4 being 6.62, 8.43,
7.29, and 5.37, respectively; and those for hydraulic conductivity identification ranged from 8 to 16,
with the average of F1, F2, F3, and F4 being 10.78, 13.61, 11.37, and 9.14, respectively. After 24 iterative
calculations, the convergent process of the error descent of each aquifer is shown in Figure 9. After the
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first iteration, the simulated storage error percentage ( E
ts,s f

 qsim
ts,s f , f (η)−qobs

ts,s f , f

qobs
ts,s f , f

× 100%

) of each aquifer in

the transient state can be effectively reduced. Before iteration #6, the average error descent rate per
iteration from F1 to F4 was −59.73%, −17.10%, −17.62%, and −23.96%, respectively, which illustrates
that the vectorized limited step size can effectively accelerate convergence along the corrected direction
for each parameter. Because of the complex groundwater recharge mechanism and hydrogeological
structure in F1, the initial simulated error percentage was greater than in the other three deep aquifers.
After iteration #6, the error percentage of F1 begins to converge, showing a steady decline, which
is lower than the other three deep aquifers, with the average error descent rates from F1 to F4 of
−0.72%, −0.46%, −0.91%, and −0.87%, respectively. Finally, after 24 iterations, the stopping criterion
was met, and the error percentages from F1 to F4 are 0.11%, 23.58%, 28.99%, and 29.55%, respectively.
Results showed that due to an insufficient number of groundwater head monitoring wells and low
frequency of the pumping test in deep aquifers (F2, F3, and F4), the groundwater budget estimated
from groundwater head fluctuation was highly uncertain. Therefore, the error percentage in F2, F3,
and F4 are larger than in F1.
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Figure 9. Simulated storage error percentages vs. number of iterations for the Chou-Shui River alluvial
fan groundwater system.

4.2.4. Results and Discussions of Identified Parameters

After 24 iterations, the calculated E
ts,s f

[
βk

ts,s f , f

]
hyetographs across the aquifers are shown for twelve

months in Figure 10, where βk
ts,s f , f is the ratio between the identified surface recharge and lumped

recharge. The βk
ts,s f , f values of F1, F2, F3, and F4 in the wet season (April to August) range from

64.3–144.0%, 63.9–88.5%, 63.8–83.8%, and 69.4–86.8% during 2012–2014, respectively, while those in the
dry season (September to March) ranged from 21.4–67.2%, 12.8–35.7%, 17.6–35.6%, and 11.4–34.5%,

respectively. The βk
ts,s f , f value in the dry season is smaller ( E

ts,s f ,k

[
βk

ts,s f ,1, βk
ts,s f ,2, βk

ts,s f ,3, βk
ts,s f ,4

]
=

[35.5%, 27.0%, 27.0%, 27.3%]), showing that the recharge source is mainly from the boundary because
of less precipitation [16]. The precipitation during the wet season, when groundwater storage increases,

is high, resulting in a larger βk
ts,s f , f ( E

ts,s f ,k

[
βk

ts,s f ,1, βk
ts,s f ,2, βk

ts,s f ,3, βk
ts,s f ,4

]
= [89.8%, 74.1%, 73.0%, 74.6%]).

After a large amount of surface water enters into the aquifer, increasing the groundwater head higher
than the boundary of the river or sea head, outflow and loss from the groundwater aquifer occurred [16].

Therefore, the βk
ts,s f , f of F1 in July and August is greater than 1 ( E

s f ,k

[
βk

7,s f ,1, βk
8,s f ,1

]
= [109.9%, 117.3%]),

which indicates that the actual recharge is larger than the volume fluctuation in the groundwater head.
Furthermore, the deep aquifer recharge sources are the leakage from the shallow aquifers and boundary
recharge [36]. Verifiably, due to the lower Kaqu

ts,s f
and KV

ts,s f
in the aquitard, the leaking recharge efficiency
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is poor than the boundary recharge, resulting in the average E
ts,s f ,k

[
βk

ts,s f ,2, βk
ts,s f ,3, βk

ts,s f ,4

]
only reaching

46.6%, 46.2%, and 47.0%, respectively, which are less than 50%.Water 2020, 12, x FOR PEER REVIEW 21 of 27 
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Figure 11 illustrates the identified surface recharge spatial pattern of Aquifer 1 and leakance
conductivities of Aquitards 1, 2, and 3. Results show that surface recharge and aquitard leakance
conductivities across aquifers in the Chou-Shui River alluvial fan are most active in the proximal
fan [36] (area percentage subject to surface recharge on F1 > 0.02 m/d = 87.2%, and area percentage
subject to aquitard leakance conductivities on F2, F3, and F4 > 0.002 1/d = [93.6%,71.2%,84.5%].
The geological broken belt in the middle fan is the second-highest recharge region. Additionally, the
identified spatial pattern of Kaqu

ts,s f
is shown in Figure 12. Results illustrate that the Kaqu

ts,s f
patterns of F1

and F4 are consistent with the river’s alluvial order from upstream to downstream, while those of F2
and F3 show a highly non-homogeneous and non-isotropic pattern due to multiple transgressions and
regressions [16].
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Figure 11. The identified spatial pattern of surface recharge Rsurf
ts,s1

and aquitard leakance conductivities
KV

s f , f : (a) Aquifer 1; (b) Aquitard 1; (c) Aquitard 2; and (d) Aquitard 3.
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Figure 13 illustrates the spatial pattern of root mean square error (RMSE) between simulated and
observed groundwater heads across multiple aquifers in the Cho-Shui River alluvial fan. The average
groundwater head RMSE of F1, F2, F3, and F4 is 0.134 m, 0.677 m, 0.708 m, and 0.916 m, respectively.
Results show that the simulated groundwater head accuracy of F1 is better than that of F2, F3, and F4,
because of the high uncertainty in the hydrogeological structure of the deep aquifer. However, the
correlation coefficient of F2, F3, and F4 can reach 0.659, 0.544, and 0.609, respectively, allowing the
simulated hydrograph to capture the groundwater head fluctuation trend. The above-identified and
simulated results illustrate that the rank three combined high–low-rank factor loading scores analyzed
from the simulated storage fluctuation between adjacent iterations for the Hessian approximation not
only can reduce the computation efforts but also can converge to the global minimum solution subject
to the true in situ hydrogeology. The areas with larger RMSE in F1 are mainly distributed in the apex
and part of the distal fan because the monitoring, estimation, and simulation of boundary recharge
are difficult.
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The comparisons among the simulated and observed groundwater head hydrographs across
multiple aquifers are illustrated in Figure 14, in which MT station (Figure 14a), TK station (Figure 14b),
and TH station (Figure 14c) are located in the distal fan, middle fan, and proximal fan, respectively.
Results illustrate that the RMSEs of Aquifer 2 (Figure 14-2) in stations MT, TK, and TH are as large
as 3.78, 7.40, and 3.67 times that of Aquifer 1 (Figure 14-1), respectively; and those of Aquifer 3
(Figure 14-3) is as large as 4.67, 3.60, and 4.87 times that of Aquifer 1 (Figure 14-1), showing that the
confined aquifer with insufficient monitoring network (e.g., middle fan of Aquifer 2 and proximal fan
of Aquifer 3) would be hard to detect the actual flow condition and reduce the identified accuracy
in groundwater head and parameters. From Figure 14-4 which illustrates the quartile analysis of the
simulated error across multiple aquifers, this study discovers that the groundwater head at Aquifer
1 across all sub-fans can achieve closely full fitting in groundwater head. However, the transient
simulated errors at Aquifers 2 and 3 increase in which the standard deviation is 1.26m and 0.88m in
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MT station, respectively; that is 1.52m and 0.92m in TK station, and that is 0.61m and 1.83m in TH
station. Hence, this study discovers that the exchange and flow mechanism in distal and middle fan at
Aquifer 2 is more complex than that at Aquifer 3; Contrarily, the mechanisms in the proximal fan at
Aquifer 3 is more complex than Aquifer 2. The current monitoring network is incapable to detect the
full inflow, outflow, and groundwater flow accurately at Aquifers 2 and 3.
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5. Conclusions and Suggestion

In a multi-layered complex groundwater model, achieving accurate spatiotemporal identification
for different kinds of parameters and solving the ill-posed problem is the vital research
topic in model calibration. This study proposes an SR3 VLS quasi-Newton algorithm by
modifying the Levenberg–Marquardt algorithm and importing a rank three structure from
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the Broyden–Fletcher–Goldfarb–Shanno algorithm to solve the constrained identification of
hydrogeological parameters and spatiotemporal recharge patterns simultaneously associated with an
iterative approach in a large-scale multi-layered groundwater model. The recharge parameters include
surface and boundary recharge, and the hydrogeological parameters consist of riverbed leakage, aquifer
hydraulic, and aquitard leakance conductivities. To accelerate directional convergence, approach a
global optimum, and achieve a well-posed problem, this study uses a vectorized limited switchable
step size in the inverse problem of transmissive groundwater. Accordingly, to achieve the Hessian
approximation, solve nonlinear ill-posed problems, and detect the global minimum area, this study
imports a rank three structure, which uses a high-rank and a low-rank factor loading score analyzed
from the simulated storage difference between two adjacent iterations to calculate the correction
matrix for the Hessian. Moreover, it modifies the traditional algorithm from the scalar line search
to vectorized multi-order derivative exact double false position bracketing using SVD-related rank
and depth information for solving the vectorized step size corresponding to different hydrogeological
parameters and recharges. The proposing methodology is verified by numerical experiments and is
applied in a complex practical multi-layered groundwater system.

This study designed two numerical experiments to verify the capability of identifying multiple
parameters and recharges through the proposing modified algorithm. Experiment 1 identified six
zonal hydraulic conductivities, using a single factor loading score to approximate the Hessian. Except
for six hydraulic conductivities, the parameters to be identified in Experiment 2 increased six surfaces
recharges and six boundaries recharges that uses overlaid high–low factor loading scores. Results
show that the iteratively objective function footprint of the three tested quasi-Newton algorithms
(Jacobian, LMA, and SR3 VLS) all successfully descend at a quadratic convergence rate to search for
an optimum. The identified average error percentage of the Jacobian quasi-Newton, LMA, and the
SR3 VLS quasi-Newton algorithm across multiple zonal hydraulic conductivities in Experiment 1 are
2.39%, 1.78%, and 0.76%, respectively; and those across multiple surfaces recharges in Experiment 2
are 1.75%, 5.76%, and 0.09%. This demonstrates that the set objective function (LSE of groundwater
storage) and the high–low combination of factor loading scores employed can detect the exact global
minimum area, in which the vectorized limited switchable step sizes were striving to accelerate
convergence along the corrected direction to leap from local optimum and approach a global optimum
iteratively. Hence, the identified parameters by using the SR3 VLS quasi-Newton can converge to the
true solution by solving nonlinear ill-posed problems. Moreover, the adopted PC Rank Depth pattern
for identification illustrates that surface recharge is the largest and most direct factor affecting the
fluctuation of groundwater storage with shorter travel times, and boundary recharge greatly influences
the storage fluctuations with longer response lag time.

The established method was applied to the groundwater system of the Chou-Shui River alluvial
fan in Taiwan. The simulated period is from January 2012 to December 2014. Results show that the
RMSE during the calibration process can quickly converge in six iterations, with a decreased rate of
−59.73%, −17.10%, −17.62%, and −23.96%, by considering the transmissive flow differences between
single perturbation and multiple corrections of parameters simultaneously. Moreover, the average
simulated storage error percentage of aquifer 1 is as small as 0.11%, with an RMSE of 0.134 m. This
shows that the developed methodology not only validly detects the flow tendency and error source to
quantify the spatiotemporal correction values but also precisely simulates the peak and fluctuation in
groundwater head.

While calculating the multi-rank factor loading score analyzed from the simulated storage
difference using SVD, if the monitoring well pattern is poor or overdense, the decomposed high–low
loading scores for the rank three Hessian approximate may be far away from the real matrix. To achieve
accurate and beneficial identification of parameters, optimal monitoring network design is the source
of performance limitation of the developed SR3 VLS algorithm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/995/s1,
Figure S1: PC Rank Depth adoption diagram for identification of hydraulic conductivity during iterations across
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multiple parameter zones, Figure S2. Footprint of iterations vs. hydraulic conductivity in Experiment 1 and
Experiment 2 optimized by (a) Jacobian quasi-Newton method; (b) LMA; (c) SR3 VLS quasi-Newton algorithm,
Figure S3. PC Rank Depth adoption diagram for identification of recharge during iterations across multiple
zones in Experiment 2, Figure S4. Footprint of iterations vs. surface recharge (-1) and boundary recharge (-2) in
Experiment 2 optimized by (a) Jacobian quasi-Newton; (b) L–M algorithm; (c) SR3 VLS quasi-Newton algorithm.
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