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Abstract: The inundation areas of floodplains are crucial to wetland ecosystems, especially in
supporting biodiversity. Accurately identifying the spatial and temporal patterns of inundation areas
is important for understanding floodplain ecosystem processes. Here, lakes in the Yangtze River
Floodplain were divided into two types according to hydrological conditions: the natural connected
lakes (Dongting Lake and Poyang Lake) with natural water level fluctuations and the isolated lakes
(lakes in Jianghan Plain) with stable water levels. We established a method to identify inundation
areas using multi-sources remote sensing data based on the Google Earth Engine. The dynamics of
inundation areas were determined, and the relative indices were calculated in common year (2017)
and a drought year (2018). The differences between the connected lakes and the isolated lakes were
analyzed, and impacts of hydrological fluctuations on inundation area and habitat quality were
evaluated. The results show that lakes with natural hydrological fluctuations have a greater regulative
flexibility, with both patch density (PD) and submerged elasticity index (SEI) values higher than
that of isolated lakes. The trend of the vegetation index in the connected lakes and in the isolated
lakes is also different. The mean EVI in Dongting Lake and Poyang Lake showed a U-shaped trend
which is similar to the shape of the trend of PD. The trend of mean enhanced vegetation index
(EVI) in the isolated lakes is the opposite and has a lower range of variation over a year. This study
provides new indicators and rapid methods for habitat quality assessment in floodplains, as well as
presenting scientific information useful for improving wetland management in the middle and lower
Yangtze River.

Keywords: inundation area; hydrological connectivity; remote sensing images; Google Earth Engine;
Yangtze River Floodplain
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1. Introduction

Floodplains are among the most productive ecosystems in the world and the inundation
area, in particular, is an important component which is critical to biodiversity conservation [1,2].
Most fundamental ecological functions and services in the floodplain ecosystem, such as flood
mitigation, food production, recreation and biodiversity sustenance, and the support of human
wellbeing and cultural values, are related to the inundation area [3]. In the wet season in the floodplain
basin, monsoonal rains lead to gradually rising water levels which deliver sediment and nutrients
to the inundation areas [4], while, in the dry season, the water level drops, exposing inundation
wetlands provide sustenance for many creatures, and triggering important life cycle processes [5].
Hydrological factors are the core driving force to maintain ecological process and function in wetland
ecosystems [6]. Dynamics of flood duration, the timing of exposed and submerged that caused by
water level fluctuations, are key factors that shaped differences in wetland landscapes [7]. Therefore,
identifying the spatiotemporal pattern of inundation areas is important for figuring out wetland
changes and their processes. The Yangtze River is a typical large floodplain [8], however inundation
areas in this region have decreased dramatically due to the building of dams and reclamation of land
for agriculture [9]. Loss of inundation areas might lead to changes in wetland landscape structure and
a decline of biological habitat and biodiversity [10,11].

Figuring out the spatial and temporal pattern of inundation areas accurately and timely is important
for revealing the ecosystem processes of floodplains [12]. The inundation area is an important parameter
in hydrodynamic modelling. In fact, it was assumed that static variables were represented due to
a lack of data and inefficient extraction methods, which affect simulation accuracy [13,14] due to
the limited the understanding of the internal feedback mechanisms for hydrological models and
hydrodynamics [15]. The recent open assess time series remote sensing data enables the effective
extraction of information on large-scale water surfaces, which can be used to identify inundation areas
and their dynamics [16,17].

However, existing extraction methods based on remote sensing information, such as visual
interpretation and object-oriented extraction, are inefficient. The spatiotemporal patterns of inundation
areas in the floodplain are highly dynamic due to hydrological change [18]. Most of the studies above
used specific satellite imageries or one composite image from a specific stage when mapping inundation
areas, which cannot capture these rapid changes [19,20]. Therefore, to present the status and dynamics of
inundation areas accurately, time-series satellite images with medium and high temporal resolution are
required. These images require a large amount of data interpretation and analysis work, which leads to
challenges in terms of data computation and storage [21]. The development of cloud-based computing
power, such as the Google Earth Engine (GEE), has created a great potential for processing large-scale
remote sensing data. GEE provides researchers with a large amount of multi-sourced remote sensing
data, including Landsat, Modis, Sentinel, and related data products, as well as online parallel computing
capabilities for high-performance cloud computing [22]. Recently, cloud computing based on GEE
platforms has effectively supported global intertidal extraction [23,24], forest identification [22,25],
the extraction of rice growing areas [26,27], and open water body determination [23,28,29].

Inundation areas are the dominant component in the middle and lower Yangtze River floodplain,
which support the functioning of the whole ecosystem, as well as biodiversity, through material and
energy exchange driven by wet-dry alternation [5]. These areas are also critical for long-distance
migratory water birds along the East Asia and Australian Flyway [30]. Most of these migratory
birds depend on inundation areas as their wintering habitat [31]. Over the past several decades,
in 1950s–1970s in particular, most lakes in this region have been cut off from the natural rhythms of
the Yangtze River through the construction and operation of a series of dams or sluice gates, leaving
only Dongting Lake and Poyang Lake which have naturally hydrological connectivity in the river
basin. Whether there are differences between naturally connected lakes and the hydrologically isolated
lakes physically? In particular, do the connected lakes have better flexibility than the isolated ones?
To answer this question, it is necessary to extract the inundation areas as quickly as possible and make
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a quantitative analysis. Here, we establish the method to identify inundation areas of lakes from the
multi-source remote sensing database on GEE, quantitatively analyze the structure and the dynamics
of connected and isolated lakes by using the patch density (PD) and the submerged elasticity index
(SEI, submerged elasticity index) in a common year (2017) and a drought year (2018).

Our study presents an effective method and the thresholds to determine inundation areas,
which makes the identification of such areas rapidly and accurately. Compared with the original
visual interpretation, it improves the efficiency of data processing. This study also constructs a time
series of inundation areas based on multi-sources remote sensing data and established a quantitative
indicator (SEI) to evaluate the lakes’ regulative flexibility. The results can provide important scientific
information for habitat management and conservation in floodplain areas.

2. Materials and Methods

2.1. Study Area

The middle and lower Yangtze River basin are affected by a typical subtropical monsoon climate.
The average annual precipitation is between 1000 and 1400 millimeters, which deposited into the basin
mainly in April to July, accounting for approximately 42% to 53% of the annual rainfall, while during the
November to next February, the average annual precipitation is very little [32]. The unbalanced seasonal
distribution of rainfall leads to changes in wetland areas. Take Poyang Lake for example, its water level
difference between dry and wet season is nearly 14 m [33], which leads to the significant differences
of lake areas in dry (only about 146 km2) season and wet (almost 4070 km2) season [34]. The annual
average temperature is 18 ◦C, and the average winter temperature is about 5 ◦C. The freshwater lakes
in the Yangtze River basin include Dongting Lake (DT) in Hunan province (Figure 1a) and Poyang
Lake (PY) in Jiangxi province (Figure 1c), which are connected to the Yangtze River and have a seasonal
wet-dry cycle [3]. Intra-annual water level fluctuations form inundation areas, which are critical for
the habitats of water birds and other wild animals.

Additionally, there are some lakes now isolated from the Yangtze River due to reclamation for
agricultural and rural development, as well as hydrological facilities. For example, the Jianghan Plain
in Hubei province (Figure 1b) used to have 1066 lakes, but some of them were cut off from the Yangtze
River by dams and sluices. In this study we choose the two connected lakes and nine isolated lakes
in Jianghan Plain with areas of more than 3000 Ha. The nine isolated lakes are: (1) Zhangdu Lake;
(2) Dong Lake; (3) Tangxun Lake; (4) Niushan Lake; (5) Lu Lake; (6) Futou Lake; (7) Baoan Lake;
(8) Liangzi Lake; and (9) Xiliang Lake.
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Figure 1. Location of the study area: (A). Dongting Lake (DT). (B). Jianghan Lakes (JH), which consists 
of (1) Zhangdu Lake; (2) Dong Lake; (3) Tangxun Lake; (4) Niushan Lake; (5) Lu Lake; (6) Futou Lake; 
(7) Baoan Lake; (8) Liangzi Lake; and (9) Xiliang Lake. (C). Poyang Lake (PY). The satellite image of 
the study area is the median value of Sentinel-2 in 2018, which uses the color composite of the Sentinel-
2 time-series: blue = band 2, green = band 3, and red = band 4. 

2.2. Satellite Data Acquisition and Pre-Processing 

Satellite data derived from Sentinel-2 images and Landsat Operational Land Imager (OLI) 
images. The spatial resolutions of Sentinel-2 and Landsat OLI are 10 m and 30 m, respectively. In this 
paper, all images are resampled to 30 m resolution for analysis in GEE. To ensure that we had a high 
quality image dataset, the image selection used two criteria: (1) the image must be complete, to ensure 
it contains the same analysis unit; (2) the cloud area must be less than 30%, to reduce the influence of 
cloud on the accuracy of the extraction results. Following these criteria, incomplete images and 
images with a high proportion of cloud were removed. Satellite images from 2017 and 2018 were 
used to make the comparative analysis. In total, more than 1000 images were used in this study.  

We select the same spectral bands from the two sets of data, i.e., red, green, blue, near-infrared 
spectra, and short-wave infrared which correspond to bands B2, B3, B4, B8, and B6 in the Sentinel-2 
images, and B2, B3, B4, B5, and B11 in the Landsat OLI images. The target images were archived in 
GEE as an image collection and subsequently processed in GEE following the workflow shown in 
Figure 2. All the images were geometrically rectified and pixel values were converted into surface 
reflectance.  

Figure 1. Location of the study area: (A). Dongting Lake (DT). (B). Jianghan Lakes (JH), which consists
of (1) Zhangdu Lake; (2) Dong Lake; (3) Tangxun Lake; (4) Niushan Lake; (5) Lu Lake; (6) Futou Lake;
(7) Baoan Lake; (8) Liangzi Lake; and (9) Xiliang Lake. (C). Poyang Lake (PY). The satellite image of the
study area is the median value of Sentinel-2 in 2018, which uses the color composite of the Sentinel-2
time-series: blue = band 2, green = band 3, and red = band 4.

2.2. Satellite Data Acquisition and Pre-Processing

Satellite data derived from Sentinel-2 images and Landsat Operational Land Imager (OLI) images.
The spatial resolutions of Sentinel-2 and Landsat OLI are 10 m and 30 m, respectively. In this paper,
all images are resampled to 30 m resolution for analysis in GEE. To ensure that we had a high quality
image dataset, the image selection used two criteria: (1) the image must be complete, to ensure it
contains the same analysis unit; (2) the cloud area must be less than 30%, to reduce the influence of
cloud on the accuracy of the extraction results. Following these criteria, incomplete images and images
with a high proportion of cloud were removed. Satellite images from 2017 and 2018 were used to make
the comparative analysis. In total, more than 1000 images were used in this study.

We select the same spectral bands from the two sets of data, i.e., red, green, blue, near-infrared
spectra, and short-wave infrared which correspond to bands B2, B3, B4, B8, and B6 in the Sentinel-2
images, and B2, B3, B4, B5, and B11 in the Landsat OLI images. The target images were archived in GEE
as an image collection and subsequently processed in GEE following the workflow shown in Figure 2.
All the images were geometrically rectified and pixel values were converted into surface reflectance.
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Figure 2. Workflow of the data processing of Sentinel-2 and Landsat Operational Land Imager (OLI) 
time-series images in the Google Earth Engine (GEE) platform. 

2.3. Data Grouping 

To analyze the differences between lakes, the image collection was classified by the lake 
boundaries and divided into three collections: DT, PY, and JH. Each lake boundary was determined 
visually, checked against Google Earth images, and used as masks to exclude redundant terrestrial 
areas. Images for each lake were grouped by month and those collections in 2017 and in 2018 were 
obtained to represent the dynamics of the lake within each of the years under study. In order to 
balance the influence of low-quality images and obtain the full picture of a specific month, we used 
the median value of each pixel in the same month to represent the average hydrological situation of 
the month. Multi-source data were collected to ensure, as far as possible, that the available images 

Figure 2. Workflow of the data processing of Sentinel-2 and Landsat Operational Land Imager (OLI)
time-series images in the Google Earth Engine (GEE) platform.

2.3. Data Grouping

To analyze the differences between lakes, the image collection was classified by the lake boundaries
and divided into three collections: DT, PY, and JH. Each lake boundary was determined visually,
checked against Google Earth images, and used as masks to exclude redundant terrestrial areas. Images
for each lake were grouped by month and those collections in 2017 and in 2018 were obtained to
represent the dynamics of the lake within each of the years under study. In order to balance the
influence of low-quality images and obtain the full picture of a specific month, we used the median
value of each pixel in the same month to represent the average hydrological situation of the month.
Multi-source data were collected to ensure, as far as possible, that the available images covered both
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the dry and wet periods of each lake. There were at least eight available images for each lake for each
year, which enabled us to determine the variation of each lake’s inundation area (Table 1).

Table 1. Remote sensing data source for DT, PY, and JH in 2017 and 2018.

2017 2018

Month DT PY JH DT PY JH

January — — — — Sentinel-2 — — Sentinel-2 — —
February Sentinel-2 Sentinel-2 Landsat OLI Sentinel-2 Sentinel-2 Landsat OLI

March — — — — — — Sentinel-2 Sentinel-2 Sentinel-2
April Landsat OLI Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2
May Sentinel-2 Landsat OLI Sentinel-2 — — — — — —
June Landsat OLI — — — — Landsat OLI Sentinel-2 Landsat OLI
July Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2

August Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2
September Sentinel-2 Sentinel-2 Sentinel-2 — — Sentinel-2 Sentinel-2

October Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2
November Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2 Sentinel-2
December — — Sentinel-2 Sentinel-2 — — — — Sentinel-2

2.4. Indicator Calculation

2.4.1. Algorithms to Extract Water Bodies

Modified normalized difference water index (mNDWI), a widely used water-related spectral index,
was calculated from satellite data on the GEE platform. mNDWI is sensitive to open surface water
bodies. Two vegetation indices related to vegetation greenness: Nominalized difference vegetation
index (NDVI) and enhanced vegetation index (EVI) were also calculated. Together, these indices have
been used to identify open surface water bodies [18],

mNDWI =
ρgreen − ρswir

ρgreen + ρswir
(1)

EVI = 2.5×
ρnir − ρred

ρnir + 6× ρred − 7× ρblue + 1
(2)

NDVI =
ρnir − ρred

ρnir + ρred
(3)

where ρblue, ρgreen, ρred, ρnir, and ρswir are the blue, green, red, near-infrared, and shortwave infrared
bands of the Sentinel-2 and Landsat OLI imagery, respectively. We used mNDWI combined with
vegetation indices (EVI and NDVI) to reduce commission errors of mixed pixels when identifying
water bodies. The water body identification method used is given by Equation (4) [18,29].

Water =
{

1, EVI < 0.1 and(mNDWI > EVI or mNDWI > NDVI)
0, Other values

(4)

2.4.2. Algorithms for Patch Density (PD) and Submerged Elasticity Index (SEI)

The landscape index is a simple quantitative indicator that reflects the spatial configuration
and structural composition at the landscape scale and can provide highly concentrated landscape
information [35]. Landscape patch density is used to measure the degree of landscape fragmentation
in a period [36,37]. Water birds are likely to inhabit areas with large expanses of open water to avoid
human interference. Therefore, to some extent, we can say that the lower the patch density value of
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an open water body, the less suitable is that environment for water bird habitat. Open water body
patch density (PD) was calculated from Equation (5):

PD =
N
A

(5)

where N is the number of open water body patches where we vectorize the extracted open water surface
and count the number of closed water surfaces. A is the open water body area (m2). We calculated the
PD value of each lake for each month, to quantify dynamic changes and the spatial distribution of the
open water body within one year.

The frequency of water bodies (Fwater) in a year is calculated using Equation (6):

Fwater =

∑
Nwater

Nmonth
(6)

where Fwater is the frequency of open surface water bodies scaled between 0 and 1 among all the target
images,

∑
Nwater is the sum of each pixel of water bodies in one year, and Nmonth is the total number of

target images in one year.
The submerged elasticity index (SEI) is an improved index based on Feng et al. [19], who defined

inundation area as the area between the maximum and minimum submerged areas and we use the
ratio of the inundation area to the maximum submerged area to represent the hydrological regulative
capacity, calculated using Equation (7):

SEI =
Amax −Amin

Amax
(7)

where Amax and Amin are the maximum and minimum water body area for each lake, respectively.

2.4.3. Algorithms for EVI

The satellite images were segmented into water body and non-water body (grassland, mudflat,
reeds, forest, and others) [38]. Non-water bodies were the main habitats for water birds, as it provides
food for them. EVI has a good fit with vegetation growth and is closely related to plant
photosynthesis [39] and so we used EVI to reflect greenness of habitat and as a proxy for biomass
or food abundance at the site. Equation (2) was used to extract the mean EVI value time series for
non-water bodies for each lake in GEE. All the statistical analysis described here was carried out using
SPSS software (IBM SPSS Statistics 19, IBM Inc., USA).

3. Results

3.1. Water Body Areas, Distribution, Variation, and Patch Densitiy (PD)

The areas and distribution of water surfaces were extracted from the multi-source remote sensing
data for 2017 (Figure 3A) and 2018 (Figure 3B). It can be seen from the figures that PY and DT,
which connected to the Yangtze River, have the similar hydrological regime. The largest water body
areas occur in wet season (basically in July and August) and smallest water body areas occur in the dry
season (from December until February). A different situation is apparent for the lakes in JH, which are
isolated from the Yangtze River. In this case, the largest water surface area occurs in October, November,
and December in 2017, and in November and December in 2018. There is little variation of waterbody
over the course of the year for the lakes in JH.

The PD of the two types of lakes is also significantly different. DT (Figure 3C,F) and PY (Figure 3D,G)
have a U-shaped trend, while the trend for the lakes in JH (Figure 3E,H) is the opposite, with an inverted
U-shape in 2018. P values of all fitting results are less than 0.01, which can be seen from Figure 3.
The difference between the maximum and minimum of the patch density of DT, PY, and lakes in JH
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was 1.97, 1.58, and 1.14 in 2017, and 1.91, 1.88, and 0.39 in 2018, respectively. The average value of the
patch density for DT and PY is greater than for JH in both 2017 and 2018.

The PD indices for PY are strongly correlated with the water level data recorded at Xingzi
Hydrological Station in 2017 and 2018, indicating that the PD index extracted by remote sensing does
match the fluctuation of the lake water level (Figure 3I). We define dry and common years according
to the data from representative Xingzi Hydrological Station in Poyang Lake over the past 60 years.
The average annual water levels of Xingzi Station is 13.31 m [40], while the average annual water level
in 2018 was 11.91 m, which is classified as a dry year. The average water level in 2017 was 13.05 m,
which is approached to 13.31 m, is regarded as the common year (Figure 3J). This difference can be
observed by comparing the water surface maps, Figure 3A with Figure 3B.
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The water body frequency can reflect the spatial distribution of the inundation area (Figure 4) 
and the submerged frequency within a year. We defined water pixels with annual water frequencies 
≥75% as year-long water bodies, while the other water pixels were classified as either inundation 
areas (annual water frequency ≥20%) or ephemeral water bodies (<20%). For JH, in 2017 (Figure 4C) 
and 2018 (Figure 4E), the graph of water body frequency to total area ratio tends to rise from low to 
high, with year-long water bodies having the largest proportion (0.74 in 2017 and 0.90 in 2018). The 

Figure 3. Water surface distribution of DT, PY, and JH extracted from remote sensing images in (A)
2017 and (B) 2018. The trend of PD in (C) PY, (D) DT, and (E) JH in 2017. The trend of PD in (F) PY,
(G) DT, and (H) Jianghan Lakes in 2018. (I) shows the relationship between PD index and water level
data from Xingzi Station in Poyang Lake. (J) shows the monthly average water level at the Poyang
Lake Xingzi Station in 2017 and 2018.
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3.2. Water Body Frequency, Trends, and Submerged Elasticity index (SEI)

The water body frequency can reflect the spatial distribution of the inundation area (Figure 4)
and the submerged frequency within a year. We defined water pixels with annual water frequencies
≥75% as year-long water bodies, while the other water pixels were classified as either inundation areas
(annual water frequency ≥20%) or ephemeral water bodies (<20%). For JH, in 2017 (Figure 4C) and
2018 (Figure 4E), the graph of water body frequency to total area ratio tends to rise from low to high,
with year-long water bodies having the largest proportion (0.74 in 2017 and 0.90 in 2018). The ratio of
inundation area is only about 0.17 in 2017 and 0.32 in 2018. PY and DT showed different behavior.

In 2017 (Figure 4C), the water body frequency to total area ratio for DT and PY is also gradually
increasing, although it increases less than in the case of the lakes in JH. The inundation area ratios in
DT and PY, with values of 0.48 and 0.34, respectively, were also higher than in JH. In 2018 (Figure 4E),
the year-long water body area ratio for DT and PY decreased and the inundation area increased
(0.61 and 0.59). In particular, the arid part of the inundation area (water frequencies <40%) formed
a large proportion of the inundation area compared to 2017.

The SEI of PY and DT is much higher than for the lakes in JH in both two years (Figure 4D).
For PY and DT there is little difference in the value of SEI between 2017 and 2018, while for the lakes in
JH the SEI in 2018 is almost double the 2017 value.
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Figure 4. Water body frequency maps for DT, PY, and JH in 2017 (A) and 2018 (B). (C) Area ratio of
water body frequencies for PY, DT, and JH in 2017 (C) and 2018 (E). (D) Submerged elasticity index
(SEI) for DT, PY, and JH in 2017 and 2018.

3.3. Vegetation Variation and Correlation between Mean Enhanced Vegetation Index (EVI)
and Pacth Desentiy (PD)

The distribution and variety of mean EVI in the three regions in 2017 (mean EVIA) and 2018
(Figure 3B) was also tested. The mean EVI of JH Lakes is lowest in winter and reaches its peak in
summer in 2017 (Figure 5E) and 2018 (Figure 5H). In contrast, PY (Figure 5C) and DT (Figure 5D) reach
the maximum mean EVI in winter with the smallest values occurring in summer. It is worth noting
that in 2018, the mean EVI of PY (Figure 5F) and DT (Figure 5G) had two peaks, which occurred in
March and April. P values of all fitting results are less than 0.0001, which can be seen from Figure 5.
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We find a significant correlation between PD and mean EVI in these lakes: p = 0.036 (p < 0.05),
n = 28 in 2018 (Figure 5I) and p = 0.049 (p < 0.05), n = 29 in 2017 (Figure 5J). In this study, p < 0.05
means that there is a statistical difference. The PD explained 15% and 20% of the variation of the mean
EVI in 2018 and 2017, respectively.Water 2020, 12, 991 10 of 15 
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4. Discussion

4.1. The Differences of Regulative Flexibility Between Hydrologically Connected Lakes and Isolated Lakes

Our results support that lakes with a naturally fluctuating water level have greater regulative
flexibility in response to extreme environments. The main difference in the regulating capacity of
connected lakes and isolated lakes lies in the extent of seasonal flooding areas. This adjustment
difference leads to changes in wetland structure, such as PD, which leads to changes in wetland
function. We use PD, SEI, and the inundation areas to characterize the regulative flexibility. PD can
quantify the degree of fragmentation in land use type and landscape scale [35]. Whether in a drought
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year (2018) or an average year (2017), PY and DT exhibit higher values of PD and SEI than the values
for the isolated lakes in JH, implying that the former have a stronger regulative flexibility due to
effective inundation areas and greater landscape diversity. PD showed a positive correlation with
size of inundation area. Moreover, PD can also reflect ecosystem structures and the larger the PD,
the more separated and heterogeneous is the composition of habitat. In the wet season, when water
level rises and the open water surface area expands, the PD index of PY and DT is the smallest of
any time in the year. In the dry season, as the water level drops, the mudflat and wet meadow areas
become exposed [2], and PD reaches its maximum value for the year, which is beneficial for feeding
migratory waterfowl [1]. However, such regular wet-dry alternation is hardly ever seen in isolated
lakes. For the isolated lakes in JH, this lack of alternation is mainly because a stable water level is
imposed by natural rainfall and human water consumption [8]. Year-long water bodies make up the
largest proportion of JH, in both dry (2018) and wet (2017) years.

However, the area of inundation increased in 2018, due to drought in the autumn. Inundation area
refers to the area that is submerged by a flood pulse and then exposed in a periodic hydrological wet-dry
cycle [19]. The extent of inundation area in different lakes varies in such a periodic hydrological cycle
due to lake size, hydrological traits, and the hydrological connectivity caused by human interference.
Generally, it is thought that a hydrologically isolated lake will adversely affect the abundance of most
creatures, because it indicates the presence of a low proportion of available habitat and have negative
ecological and hydrological impacts to floodplain wetlands [41–43]. For lakes in the same floodplain,
the hydrological connectivity becomes the main factor. Hydrological fluctuations bring food resources
and energy exchange to the inundation area of the lake. Therefore, these areas are more effective to the
ecological processes and their functions more effective than the fixed maximum water boundaries [3].

The SEI is higher in PY and DT, compared with lakes in JH. An inter-annual comparison revealed
that SEI in JH doubled in the drought year of 2018 compared to 2017, while for PY and DT there is
little difference in SEI values between the two years. Our study came to a similar conclusion. It shows
that the naturally fluctuating lakes have better stability, flexibility, and self-regulation. The results also
show that drought events can benefit isolated lake systems by increasing the hydrological cycle and
easing the negative effects caused by dams.

What should be mention is that there are also limitations in this research. The influence of weather
and clouds cannot avoid, and multi-sources data, such as Radar images, maybe combined in the
future work to composite high-frequency data series. Besides, ground investigation data, such as soil
moisture, vegetation species diversity etc., should also be considered when developed the indicators to
represented physical differences of hydrological connected and isolated lakes.

4.2. Impacts of Hydrological Regimes on Habitat Availability and Quality

The hydrological regimes in connected lakes and isolated lakes are different and these differences
will affect wildlife habitat availability and quality. Vegetation index, EVI, and NDVI for example,
derived from remote sensing data can be used to represent the growth stage of plants, which is usually
closely related to herbivore food quality [44]. These vegetation indices are widely used in the modeling
of habitats for herbivores [45,46], water birds [47] or deer [48]. The vegetation index has different trends
in lakes with natural fluctuations (DT and PY) and in isolated lakes.

The mean EVI for DT and PY showed a U-shaped trend which is like the trend of PD. The lowest
mean EVI occurs in summer, when most vegetation is submerged, and the highest values occur in
winter. In the drought year, the mean EVI showed two peak values for the connected lakes, which may
be caused by the delayed rising water level in spring which, unusually, enabled the vegetation to
continue growing and reach a peak around April. The mean EVI in the isolated lakes is consistent with
the phenology of local vegetation growth, with a growing season from April to September. The EVI
mean of JH has a lower range of variation in the whole year than PY and DT, ranging from −0.2 to 0.2.
This lower range occurs because the lakes in JH have a relative stable water level and so the inundation
area which favors the distribution of vegetation is small.
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Connected lakes provide a higher quantity and quality of food for water birds than the isolated
lakes. It also evident that the inundation areas, which favor habitat availability, correlate with water
bird abundance [1]. Different birds occupy different niches in wetlands, while the wetland landscape
diversity in connected lakes is higher (shown as a high PD index), and habitats are more accessible [49].

Habitat quality is mainly reflected in food resources (expressed as the EVI index). The median
EVI area lasts longer, that is, the vegetation is in the early development stage, and the habitat quality
is higher [50]. Mudflat and wet meadow in the inundation areas, as well as water bodies composed
wetland structure in the Yangtze River floodplain, form a natural barrier to humans, enabling aquatic
animals, such as water birds, to make their habitats [1].

4.3. Management Implications for Waterbird Conservation

The open access of remote sensing data and the availability of the GEE platform offer the possibility
of quick and accurate extraction of inundation areas. This work provides a case study of an effective
way to gain insight into floodplain and inundation areas which will save a large amount of ground
survey work. The key to improving global biodiversity conservation is to protect habitats and increase
habitat availability and quality for wild animals [51]. The construction of dams leads to unprecedented
uncertainty in the floodplain regimes, posing new challenges for conservation management. Predicting
inundation frequencies and vegetation growth processes is necessary to obtain suitable indicators for
wetland management [38].

Our research shows that lakes with natural hydrological fluctuations have a higher degree of
regulatory flexibility, due to the relatively large extent of their inundation areas and greater habitat
heterogeneity. The results suggest some wetland management techniques that may be effective:
Enlarge inundation areas through water level manipulation [52], pump the water from isolated lakes
to simulate drought status, and increase natural hydrological fluctuations in lakes through manual
intervention, to meet the requirements of specific species.

5. Conclusions

This paper presents an effective method to determine the inundation areas, as well as a quantitative
method to assess the impacts of hydrological connectivity on lakes. The following main conclusions
are as follows:

The proportion of seasonal inundation areas is the root cause of the differences between the
ecosystem structure and function of connected lakes and isolated lakes. The range of seasonal inundation
areas in the former is nearly twice or three times that of the latter. Thus, it leads to higher landscape
diversity and higher productivity in connected lakes than that of isolated ones, both of which are
responsible for maintaining higher biodiversity.

The response of connected lake to extreme climate has higher regulation flexibility. It has
a significant difference of seasonal inundated areas between drought year (in 2018) and common year
(in 2017) in isolated lakes, while it is opposite in connected lakes which indicates that the ecosystems in
connect lakes are more stable, in the other words, it has higher flexibility in regulation.

Different hydrological conditions resulting in different availability of habitat and the quality
of habitat food. The stable water level in isolated lakes may have negative effect on biodiversity,
especially on feeding of water birds. Thus, the connected lakes provide more food resources for water
birds. We suggest that through hydrological regulation and interference measures, restoring the
wet and dry alternation pattern and enlarge the seasonal inundation area in isolated lakes to benefit
their biodiversity.
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