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Abstract: Groundwater is an important natural resource in arid and semi-arid environments, where
discharge from karst springs is utilized as the principal water supply for human use. The occurrence
of karst springs over large areas is often poorly documented, and interpolation strategies are often
utilized to map the distribution and discharge potential of springs. This study develops a novel
method to delineate karst spring zones on the basis of various hydrogeological factors. A case study
of the Bojnourd Region, Iran, where spring discharge measurements are available for 359 sites, is
used to demonstrate application of the new approach. Spatial mapping is achieved using ensemble
modelling, which is based on certainty factors (CF) and logistic regression (LR). Maps of the CF
and LR components of groundwater potential were generated individually, and then, combined to
prepare an ensemble map of the study area. The accuracy (A) of the ensemble map was then assessed
using area under the receiver operating characteristic curve. Results of this analysis show that LR
(A = 78%) outperformed CF (A = 67%) in terms of the comparison between model predictions and
known occurrences of karst springs (i.e., calibration data). However, combining the CF and LR results
through ensemble modelling produced superior accuracy (A = 85%) in terms of spring potential
mapping. By combining CF and LR statistical models through ensemble modelling, weaknesses in
CF and LR methods are offset, and therefore, we recommend this ensemble approach for similar karst
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mapping projects. The methodology developed here offers an efficient method for assessing spring
discharge and karst spring potentials over regional scales.

Keywords: ensemble model; karst springs; certainty factor; logistic regression; GIS

1. Introduction

Groundwater has been considered the most important resource in arid and semi-arid areas.
Population increases and economic growth have resulted in water shortages around the globe,
especially in developing countries, leading to greater exploitation and reliance on groundwater
resources [1,2]. Among the various forms of subsurface freshwater, karst groundwater is a major
resource for water supply in many regions, including China, Turkey, Iran, Mexico, and the United
States [3–7]. Karst aquifers are relatively high-yielding, heterogeneous systems that are characterized
by complex groundwater flow paths [8–10]. They store and supply drinking water for approximately
20–25% of the world’s population, while constituting only small areas of the global land surface [11].
The characterization of karst aquifers is hampered by their complex character, and the often limited
number of wells available to support hydrogeological observations and geological descriptions [12].

Groundwater models of karst aquifer systems invariably simplify karst features—and the spatial
heterogeneity more generally—because it is impossible to acquire sufficient data to properly delineate
the main flow features [13]. Additionally, specialized models are required to simulate the conduit flow
that occurs within karst aquifers, at least for situations where equivalent porous medium approaches
are not valid [14]. However, physically based models of karst aquifers are limited by both data
availability and the heavy computational burden of conduit-matrix simulation. Thus, strategies to
characterize the hydrogeology of karst aquifers, and in particular, to quantify spring hydrology, are
essential precursors to the effective management of groundwater in these systems [15].

Geographical information systems (GIS) and remote sensing (RS) are commonly used to evaluate
the hydrogeology of karst aquifers, including the spatial distribution of spring potential [16,17]. Recently,
Chen et al. [18] undertook a global-scale project—the World Karst Aquifer Mapping (WOKAM)—to
map karst aquifers and carbonate rock settings around the world. Karst springs, wells, caves and other
water abstraction structures were also identified, although the large scale of the project meant that
many regions have only limited information regarding point features within the landscape.

‘Spring groundwater potential’ was defined as the possibility of spring occurrence (with sufficient
water) in an area and helps planners to estimate groundwater productivity [19,20]. There are myriad
approaches to groundwater potential mapping using GIS-based statistical models. These include:
frequency ratio (FR) [16,21], weight-of-evidence [22], evidential belief function (EBF) [23], logistic
regression (LR) [24,25], certainty factor (CF) [26], analytical hierarchy process (AHP) [27], Shannon’s
entropy [28], maximum entropy [29], support vector machine (SVM) [30] and boosted regression
tree [31]. Groundwater potential mapping highlights the locations of potential groundwater zones
including low, moderate and high for the optimal use of resources [32]. In general, multivariate
statistical models (e.g., LR) cannot analyze the classes of independent factors (e.g., lithology, land
use/land cover, soil, etc.) because they just determine the weight of predictive factors. In addition,
bivariate statistical models (e.g., CF) are limited in their capacity to recognize the importance of
independent variables [26] because they use a class-based procedure in modelling. To overcome these
problems, scientists have developed ensemble statistical approaches [33–39].

Ensemble modelling is the combination of multiple predictive models that are used conjunctively
to provide an evaluation of the same dataset [39]. Ensemble modelling approaches have been widely
used in different fields, including groundwater [40–47], flood [40,48–57], landslide hazard [58–87],
land/ground subsidence [88,89], gully erosion [90,91], dust storm [92], wildfire [93], sinkhole [94],
droughtiness [95,96], earthquake [97,98] and species distribution [99–101]. These studies provide clear
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evidence that the application of ensemble models can potentially result in improved capability (over
individual methods) of GIS-based statistical models [102]. However, previous studies aimed at the
prediction of karst spring occurrence have not investigated the potential of ensemble models that
integrate bivariate and multivariate statistical models to support the construction of spring potential
maps [24,25].

The main aim of this study is to explore different statistical models, both single and ensemble,
to assess spring groundwater potential in a karst area, namely Bojnourd Region, northeast Iran.
Although various researchers have tried to delineate groundwater spring potential zones [30,45,103,104],
the evaluation of other modeling approaches is highly necessary. To address this, a new ensembling
technique is proposed to improve the accuracy of the statistical models and to identify groundwater
potential zones. The novel approach of ensemble certainty factor and logistic regression models has
not previously been touched upon in the literature. Therefore, the principal motivation of this study is
to use this ensemble model to delineate prone areas to karst springs in Bojnourd region, Khorasan
Shomali, Iran. It is anticipated that the outputs of this study will identify the strengths and weaknesses
of the applied models, thereby, providing improved insights into model choice in the spatio-temporal
analysis of karst springs discharge using statistical models.

2. Study Area

The study area, Bojnourd Region, is located in the north east of Khorasan Shomali province, Iran,
between latitudes 37◦15′ to 37◦35′ N and longitudes 57◦03′ to 57◦40′ E (Figure 1), with minimum and
maximum elevation of 875 and 2968 m, respectively. The mean precipitation is 272 mm/year and
temperature ranges between 6.8 to 19.7 ◦C [105]. There are six main lithological formations in the study
area including Aitamir (Cretaceous), Sarcheshmeh (Early Cretaceous), Shurijeh (Jurassic-Cretaceous),
Upper-Red (Miocene), Niur (Silurian) and Shemshak (Triassic-Jurassic). Lithological characteristics of
these formations are summarized in Table 1. From a geomorphological point of view, the study area is
dominated by a mountainous landscape. In addition, there are numerous folds and faults in the study
area which cause the occurrence of springs [106]. The major faults are oriented NE-SW and the others
NW-SE and N-S. Inceptisols and entisols are dominant soil types of the study area. The depth of soil
varies from one to three meters, although there are numerous surficial rocks (lithological outcrops) in
steep areas of upstream zones. According to the reports of Iranian Department of Water Resources
Management (IDWRM), hydraulic conductivities in this mountainous region range between 10−4 and
10−5 m/s.

Nearly 88% of water demand in Khorasan Shomali province is supplied by groundwater
resources [107]. Therefore, it has become necessary to predict groundwater potential zone in this
region. The discharge of springs ranges between 0.5 and 15.2 SI. The size of karstic areas in this
province is over 17,000 km2, which are used as karst water resources to provide drinking water for the
Khorasan Shomali and Khorasan Razavi provinces. Furthermore, Khorasan Shomali province covers
approximately an area of 248,000 km2, which is inhabited by more than 6 million people and where
agriculture is the major activity.
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Figure 1. Karst spring location with hill-shaded map of the study area, Khorasan Shomali, Iran.

Table 1. Geological formations in the study area.

Geology (Group) Formation Lithology

Cretaceous (C) Aitamir Olive green glauconitic sandstone and shale
Early Cretaceous (EC) Sarcheshmeh Ammonite bearing shale with interaction of orbitolin limestone

Jurassic-Cretaceous (JC) Shurijeh Pale red argillaceous limestone, sandstone and conglomerate
Miocene (M) Upper-Red Red marl, gypsiferous marl, sandstone and conglomerate

Quaternary (Q) - Low level piedmont fan and valley terrace deposits
Silurian (S) Niur Coral limestone and dolomite, shale, sandstone

Triassic-Jurassic (TJ) Shemshak Subordinate sandy limestone, dark grey shale and sandstone
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3. Methodology

The adopted methodology (Figure 2) included: preparation of data, construction of models and
production of karst spring potential map (KSPM), validation of results and evaluation of their efficiency.
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Figure 2. Methodology flowchart used in the study.

3.1. Data Used

In order to analyze karst spring potential, springs locations and 10 spring-affecting factors were
considered as dependent and independent variables, respectively. All data were obtained from the
Iranian Department of Water Resources Management (IDWRM).

3.1.1. Karst Spring Inventory

A total of 359 karst springs was identified and recorded by the Iranian Department of Water
Resources Management (IDWRM) in the study area, of which 251 (70%) were randomly selected for
calibration/training of models and the remaining 108 (30%) for validation purpose. The distribution of
training and validation karst springs is shown in Figure 1.

3.1.2. Karst Spring-Affecting Factors

As mentioned by Crozier [108], preparation of corresponding thematic data layers and the selection
of factors are important components of any model. In this study, 10 karst spring-affecting factors
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including distance from fault, land use/land cover, geology, topographic elevation, slope angle, slope
aspect, plan curvature, topographic wetness index (TWI), drainage density and distance from river
were utilized for producing KSPMs.

Distance from fault

Distance from fault is among those factors that has been widely used as an important groundwater
influential factor [109]. The faults were extracted from a geological map of the study area as line
features in ArcGIS 10.2 and a map of ‘distance from faults’ was developed using the Euclidean distance
tool and classified (Figure 3a).

Land use/ land cover

Land use/land cover is a significant factor in controlling groundwater recharge processes [110].
The land use/land cover map of the study area (Figure 3b) shows that rangeland covers most of study
area, followed by agriculture, forest and urban classes (Figure 3b).

Geology

Since the hydraulic conductivity and porosity of soils and rocks are affected by lithological
variations, groundwater occurrence is highly influenced by geology [104,111]. In this study, the geologic
map of study area with seven lithological groups was extracted from 1:100,000 scale geologic map of
Iran (Figure 3c, Table 1).
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Topographic factors

Surface topography controls the runoff rate and direction [112,113]. Therefore, topographic
elevation has been frequently used by researchers as a controlling parameter for groundwater
occurrence [31,114]. The digital elevation model (DEM) map of the study area was obtained from the
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IDWRM and we classified it using an equal-interval classification scheme (Figure 3d). IDWRM originally
produced the DEM from aerial photographs and topographical lines was obtained from the Iranian
Department of Water Resources Management (IDWRM) at 20 m cell resolution. Slope angle affects
the infiltration, subsurface flow and duration of overland flow [115,116]. Therefore, the groundwater
recharge process is strongly controlled by slope angle [117]. According to Magesh et al. [115], due
to low infiltration and high run-off in steeper slope, these areas have poor potential to groundwater
accumulation. The slope angle map of study area was extracted from the DEM and classified into seven
classes based on IDWRM classification (Figure 3e). Plan curvature represents the rate of slope aspect
or slope gradient change. Negative and positive values of plan curvatures characterize concavity and
convexity in the downslope direction, respectively. Zero curvature also represents flat areas [118]. As
mentioned by Lee and Pradhan [118], concave slope probably contains more water. The plan curvature
map of study area was produced from DEM in concave, flat and convex classes (Figure 3f). The slope
aspect layer was derived from DEM and divided into nine classes including eight main directions
(Figure 3g).

Water-related factors

There is a significant relationship between distance from river and groundwater spring
occurrence [31]. The maps of drainage density and distance from rivers were created from the
topographic data using Kernel density and Euclidean distance tools, respectively. The maps of drainage
density and distance from river are shown in Figure 3h,i, respectively. The soil moisture conditions are
reflected in values of TWI [119], which is defined as:

TWI = ln
(

As

tanβ

)
(1)

where As is the specific catchment area (m2/m) and β is slope gradient [120]. TWI map was shown in
Figure 3j. Drainage density is defined as ratio of total length of a stream to the area of the drainage
basin [121]. In general, low drainage density areas are more suitable for groundwater development in
comparison with high drainage density [122].

3.2. Statistical Methods

A bivariate statistical analysis (certainty factor) and a multivariate statistical analysis (logistic
regression) were applied individually and as an ensemble to delineate karst spring potential. Finally,
the ensemble map was compared with each individual map using the receiver operating characteristic
(ROC) analysis to find if there is any improvement in combining the models.

3.2.1. Certainty Factor Model

Shortliffe and Buchanan [123] proposed and defined certainty factor (CF) as a probability function
that was later modified by Heckerman [124]. Different researchers have applied this model in
their studies for landslide susceptibility mapping [125] and groundwater potential mapping [26].
The formula to calculate CF is [124]:

CF =


Pa−Pb

Pa(1−Pb)
i f Pa ≥ Pb

Pa−Pb
Pb(1−Pa)

i f Pa < Pb
(2)

where Pa is conditional probability of having a number of karst spring occurrence in class a, Pb is
prior probability of having the total number of karst spring occurrence in the study area. The CF
value for different attribute classes in each conditioning factor were calculated from their relationship
to the spring occurrence. The CF values ranges from −1 to +1. A positive value of CF means that
the groundwater potential is higher, while a negative value illustrates a decrease in the certainty



Water 2020, 12, 985 9 of 25

of groundwater occurrence [126]. In order to delineate the combination of two different layers of
information, which is denoted as Z, the CF values of the spring-affecting factors are pairwise combined
using the integration rules as follow [127].

Z =


CFX + CFY −CFXCFY CFX and CFY ≥ 0

CFX+CFY
1−min(|CFX | and |CFY |)

CFXand CFY Opposite sign

CFX + CFY + CFXCFY CFX and CFY < 0

(3)

where CFX and CFY are CF values of two different spring-affecting factors.
The pairwise combination is carried out in different iterations until all the spring-affecting layers

are added to prepare the KSPM. The final map was categorized into four classes: low, medium, high
and very high [29,128].

3.2.2. Logistic Regression Model

LR aims at finding the best-fit model to express the relationship among a binary dependent
variable (groundwater occurrence) and some independent variables [129]. This model is helpful to
predict the absence or presence of outcome based on predictive variables (Lee 2005). The LR model
is widely applied in different fields of geosciences [24,130]. However, it has some limitations to
determine the weight of classes of independent variables [131]. Hosmer and Lemeshow [132] and
Kleinbaum et al. [133] also explained the detailed information of this technique. The general form of
logistic regression is as follows:

Z = b0 + b1x1 + b2x2 + . . .+ bmxm (4)

where Z is a linear combination function of the explanatory variables, x1, x2, . . . , xm are independent
variables and b1, b2, . . . , bm are the coefficients of the logistic regression to be estimated [134].
The relationship between the occurrence and its dependency on several variables is defined as:

P =
ez

1 + ez (5)

where P and e are the probability of spring occurrence (varying from 0 to 1) and the Neperian number,
respectively [135]. In addition, Z factor was defined above Equation (4). Value of 1 means the
presence of a spring, and value 0 indicates the absence of a spring [24]. After creating the KSPM by
LR model, we classified it using natural break classification method. As mentioned by Hosmer and
Lemeshow [132], independent variables in LR model is sensitive to co-linearity for model fitting, while
more than two variables in LR model is often called ‘multi-collinearity’. Multi-collinearity refers to
a linear relation among two or more variables [136]. LR model was used to do statistical analysis
and determine whether there was a significant effect on spring occurrence. Tolerance (TOL) and the
variance inflation factor (VIF) are significant indicators for determining multi-collinearity among the
independent variables [137] that were applied (Table 2). Based on this diagnosis method, variables with
TOL < 0.1 and/or VIF > 10 shall be excluded from further analysis [138]. Moreover, the overall statistic
of the LR model for all 10 independent variables was assessed using χ2 value of the Hosmer–Lemeshow
test, Cox and Snell R2, Nagelkerke R2 and pseudo-R2 mesaures.3.2.3. Ensemble model.
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Table 2. Indices of multi-collinearity diagnosis for independent variables used in logistic regression
(LR) modelling.

Spring-Affecting Factors TOL VIF

Plan curvature 0.89 1.18
Slope aspect 0.96 1.20
Slope angle 0.86 1.05

Distance from river 0.94 1.20
Drainage density 0.84 1.08

TWI 0.83 1.17
Topographic elevation 0.93 1.06

Geology 0.97 1.13
Land use/ land cover 0.87 1.02
Distance from fault 0.82 1.05

Ensemble modeling is a technical process of synthesizing the results of single models into a single
incorporated model for enhancing the prediction [139]. This type of modeling approach tends to
overcome their individual disadvantages while keeping their individual advantages [102]. Weighted
linear combination technique is proposed here as an ensemble method to combine the result of CF and LR:

KSPM = (DFrDFw) + (LrLw) + (GrGw) + (ArAw) + (TWIrTWIw) + (DDrDDw)

+(DRrDRw) + (SrSw) + (ASrASw) + (PCrPCw)
(6)

where DF is distance from fault, L is land use/ land cover, G is geology, A is topographic elevation,
TWI is topographic wetness index, DD is drainage density, DR is distance from river, S is slope angle,
AS is slope aspect, PC is plan curvature and the subscripts ‘r’ and ‘w’ indicate ratings and weights
for spring-affecting factors, respectively. Ratings are obtained from the CF model (i.e., the weights of
classes of a given spring-affecting factor), whereas w was calculated based on the spatial sensitivity
analysis (SSA) of LR model. The SSA allows to determine the influence of predictive variables on the
model output [16,140]. In this study, this was conducted by excluding each spring-affecting factor and
determining w through the relative decrease of AUC values Equation (7) [29]:

w =
[AUCall −AUCi]

AUCall
× 100 (7)

where AUCall and AUCi indicate the AUC values obtained from the LR model using all spring-affecting
factors and the prediction when the ith spring-affecting factor was excluded, respectively.

3.2.3. Performance Assessment

Performance assessment is required in any predictive analysis [141]. Nampak et al. [128] also
stated that there is no merit in modeling with no scientific significance; hence, validity and uncertainty
of models need to be assessed. Furthermore, many researchers have validated their results using
different models. Naghibi et al. [31], Pourghasemi and Beheshtirad [109] and Rahmati et al. [3] have
utilized area under ROC curve (AUC) to assess the accuracy of groundwater potential maps. This
method illustrates to what extent the occurrence or non-occurrence of a considered occurrence is
correctly predicted [29]. In the ROC curve, false and true positive rates are plotted in X- and Y-axis,
respectively. The resultant AUC value ranges from 0.5 (i.e., a random prediction) to 1 (i.e., an excellent
prediction) [142].
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4. Results

4.1. CF Modelling

CF values of spring-affecting factors are presented in Figure 4. As depicted in the figure, negative
and positive relationships between factors and spring occurrence are well illustrated. Obviously,
negative relationship exists between spring potential and distance from faults parameter. Areas with
more distance from fault have lower potential to spring occurrence. In the case of geology factor, some
lithologic formations including Silurian (S), Jurassic-Cretaceous (JC) and Triassic-Jurassic (TJ) had
positive influence in spring occurrence with CF values of 0.94, 0.42 and 0.21, respectively.
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In the case of land use/land cover, urban areas and agriculture have the least and most impact on
groundwater, respectively. The impervious surface areas in urban areas tend to reduce recharge and
hence groundwater availability. As the agriculture areas as a consequence factor need to high water
requirement, these areas have a higher potential to groundwater recharge [47]. It was also found that
there was no significant correlation between spring occurrence and topographic elevation classes. Areas
with elevation ranges of 1676–1978 m and 1414–1676 m have positive influence on spring occurrence
probability with CF values of 0.45 and 0.16 which indicate a good karst spring occurrence probability.
In another study in this region, Rahmati et al. [44] indicated that spring occurrence probability will
reduce as elevation decreases which is in agreement with the results of our study. It is noted that,
groundwater is more probable to occur in areas with high TWI values because it is well apparent in
Figure 4e that positive correlation exists between increasing spring occurrence and high TWI value.

Conversely, Razandi et al. [26] stated that there is not positive correlation between groundwater
occurrence and TWI, which shows a higher groundwater potential over a decreasing TWI value.
The reason of this difference between their results and our achievements refer to geomorphological
characteristics of study areas (i.e., their study area were plain whereas our study area is a mountainous
region). In areas where drainage density ranges from 1.3 to 2.8 km/km2 (CF = 1.82), groundwater
potential is higher indicating that springs are more probable in areas with denser drainage density.
The assessment of distance from river demonstrated that areas with lower distance from river have
more potential for spring occurrence and as this distance increase, the probability to groundwater
occurrence decreases. Lee et al. [143] proved these results by indicating that drainage density and
distance from the river have positive and negative influence on groundwater yield. Results indicated
that the areas with 8–40◦ slope angles have positive influences with highest value in 14–20◦ and 20–28◦

with CF values of 0.28 and 0.25. Manap et al. [21] also mentioned that flat to moderate slopes have
higher groundwater probabilities.
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In the case of slope aspect, only west (0.22), southwest (0.19) and northwest (0.14) have a positive
influence on groundwater occurrence. It is difficult to explain this result, but it might be related to the
differences of aspects in terms of vegetation, soil depth and recharge potential. Plan curvature behavior
also illustrates that springs are more probable to occur in convex areas. Moghadam et al. [114] also
stated that concave areas are more favorable for groundwater compared to the convex slope. Finally,
according to the CF value for each influencing factor, karst spring probability map was produced and
then categorized into four classes; namely low, medium, high and very high using the natural break
classification method (Figure 5), as suggested by Naghibi et al. [31]. Areas with high and very high
karst spring potential are seen to be near rivers and faults.
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4.2. LR Modelling

According to results of TOL and VIF analysis, no severe multi-collinearity was found between
independent variables (Table 2).

As shown in Table 3, results indicated that all applied factors have significant effects on spring
occurrence (p < 0.05). Similar results can be found in many previous studies [109].

Table 3. Coefficients of each spring-affecting factors used in logistic regression (LR) model.

Spring-Affecting Factors β1 S.E2 Wald3 Df4 Sig.5

Geology (Cretaceous) −12.022 30.011 0.160 1 0.000
Geology (Early Cretaceous) −3.483 31.228 0.012 1 0.000

Geology (Jurassic-Cretaceous) 8.550 29.001 0.087 1 0.000
Geology (Miocene) −2.110 33.328 0.004 1 0.000

Geology (Quaternary) −1.930 30.943 0.004 1 0.000
Geology (Silurian) 10.211 34.550 0.087 1 0.001

Geology (Triassic-Jurassic) 4.685 31.783 0.022 1 0.001
Distance from river (m) −0.003 0.019 0.025 1 0.000

Slope angle (%) −0.199 0.021 89.798 1 0.000
Slope aspect (North) 3.340 55.313 0.004 1 0.001
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Table 3. Cont.

Spring-Affecting Factors β1 S.E2 Wald3 Df4 Sig.5

Slope aspect (Northeast) 2.011 51.066 0.002 1 0.015
Slope aspect (East) 4.516 63.014 0.005 1 0.000

Slope aspect (Southeast) 3.782 59.099 0.004 1 0.000
Slope aspect (South) 2.080 58.318 0.001 1 0.001

Slope aspect (Southwest) 13.652 61.021 0.050 1 0.000
Slope aspect (West) 5.318 54.510 0.010 1 0.000

Slope aspect (Northwest) 3.401 50.709 0.004 1 0.001
TWI −0.990 0.938 1.114 1 0.000

Drainage density (km/km2) −2.663 0.737 13.056 1 0.000
Altitude (m) 0.374 0.019 387.468 1 0.000

Distance from fault (m) −0.319 0.044 52.563 1 0.000
Plan curvature 0.044 0.026 2.864 1 0.000

Landuse (Forest) 11.408 73.990 0.024 1 0.012
Landuse (Agriculture) −0.913 80.428 0.000 1 0.018
Landuse (Rangland) 3.325 72.565 0.002 1 0.011

Constant −16.33 16.710 0.955 1 0.001

β1= logistic coefficient; S.E.2 = standard error of estimate; Wald3 = Wald chi-square values; Df4 = degree of freedom;
Sig.5 = significance.

Table 4 showed the overall statistic of the LR model for all 10 independent variables. The results
indicated that the goodness-of-fit of the equation could be accepted because the significance of χ2 is
larger than 0.05 [138]. The values of Cox and Snell R2 and Nagelkerke R2 showed that the independent
variables could explain the dependent variables [138,144].

Table 4. Overall statistics of the LR model with 10 independent variables.

Hosmer and Lemeshow Test
Cox and Snell R2 Nagelkerke R2 Pseudo R2

χ2 Significance

563.31 0.294 0.699 0.821 0.710

Using the coefficient values obtained from the final output of the LR analysis, the LR equation
was obtained, as shown in Equation (8):

Z = CGeology + (–0.003×Distance f rom river) + (–0.199× Slope angle) + CSlope aspect
+(–0.990× TWI) + (–2.663×Drainage density)
+(0.374× Topographic elevation) + (–0.319×Distance f rom f ault)
+(0.044× Plan curvature) + CLand use –16.33

(8)

where CGeology is the LR coefficient for geology factor, whereas CLand use is the LR coefficient for land
use factor. All coefficients of Equation (8) were obtained from Table 3. The final generated map using
LR model was then classified into low, medium, high and very high classes using the natural break
classification method (Figure 6), as suggested by Naghibi et al. [31]. Areas with high and very high
potential to karst springs are located in southwest to southeast of the study area.
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4.3. Ensemble Modelling

Although LR was capable to implement multivariate statistical analysis, it had some weakness in
analyzing the classes of each occurrences conditioning factor. Conversely, the CF model could evaluate
the influence of classes of each spring-affecting factor on an occurrence. However, the relationship
between karst spring locations and spring-affecting factors was mostly neglected by LR model. As a
result, it can be clearly seen that CF and LR models had some weakness when applied individually.
The generated map of ensemble CF and LR (ECL) model was prepared and then classified into
low, moderate, high and very high classes using the natural break classification method (Figure 7),
as suggested by Naghibi et al. [31].Water 2020, 12, x FOR PEER REVIEW 16 of 25 
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4.4. Validation of Generated KSPMs

The ensemble map was compared to each individual (i.e., CF and LR) map using ROC curve
method to find if there was any improvements in combining the individual models. The generated
SPMs were overlaid with 30% of spring locations for this phase, which has not been used for model
application. According to Figure 8, validation outcomes indicated that LR model could satisfactorily
generate groundwater potential map (AUC = 78.4%) and performed better than CF (AUC=66.7%).
Moreover, the ECL model had the best performance with an AUC value of 84.7%. It was shown that
the ensemble method allowed for a better prediction of groundwater potentiality.
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5. Discussion

5.1. Spatial Modeling of Karst Spring Potential

Although several studies have been conducted on construction of karst spring potential maps using
statistical models, there are different drawbacks about them, especially defining strict assumptions
prior to study. As stated by Dreiseitl and Ohno-Machado [145] and Ozdemir [146], the LR model
is usually flexible (especially when it includes only the original covariates) and may be generally
desirable. On the other hand, the weak point of bivariate statistical methods such as CF is the neglect
of relationship between the groundwater springs and independent variables as observed in this study
(i.e., it cannot determine the weight of independent variables). In other word, the CF model just
determines the weight of classes of independent variables. Therefore, to overcome these shortcomings,
we developed a GIS-based ensemble model that can link the strengths of LR and CF together.

The statistical analysis of LR (Table 3) demonstrated a high contribution of slope aspect (southwest),
geology (Cretaceous, Silurian and Jurassic-Cretaceous), land use/land cover (forest) to the modelling
process. Prior studies have noted the importance of slope aspect effects on sunshine, air temperature,
soil transformation and soil moisture content [147,148]. According to the literature, structural and
lithological variations often lead to differences in the permeability and hydraulic properties [8,149,150].
In the case of land use/land cover, it usually influences infiltration and recharge rates as well as the
relationship between surface water and groundwater [151]. This is also in agreement with earlier
reports, which showed that there is a strong relationship between land use/land cover factor and
groundwater recharge [152,153].
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5.2. Performance of Ensemble and Individual Models

In Section 4.4, models’ results were analyzed and validated using the validation dataset and
the ROC curve method. The results of validation revealed differences between all three approaches,
namely including CF (i.e., bivariate statistical model), LR (i.e., multivariate statistical model) and
their ensemble.

It should be emphasized that the ensemble model (ECL) provides the best simulation with a good
accuracy. This result showed that the accuracy of the prepared KSPM was improved (6.3–17.9%) with
the use of the ensemble of bivariate certainty factor and multivariate logistic regression. Therefore,
the ensembling process leads to successfully overcome the limitations of LR and CF models. In fact,
results shown in this study highlight a remarkable decrease of error through the ensemble approach.
This result is in agreement with Arabameri et al. [154] in which the ensemble of LR with evidential
belief function (EBF) model can extend an efficient model to reinforce the accuracy of spatial predictions.
According to results of this study, the aggregation of multiple prediction of the same variable may lead
to better performance, more exact learning and generalization than using a single model prediction.
The findings of the current study are consistent with that of Naghibi et al. [30] who found that
frequency ratio data mining ensemble model had the best performance among all the single models
for groundwater potential mapping. Study in Razandi et al. [26] also compared the performance of
different data-mining models and stated that frequency ration (FR) and weight-of-evidence (WOE)
could perform better than CF model for groundwater potential mapping in Varamin plain, Iran. This
is in line with our finding that the CF model is incapable of analyzing the relation between karst
groundwater potential and geo-environmental factors.

6. Conclusions

Springs, as groundwater resources, are important for many sectors, such as domestic consumption
and agriculture in arid and semi-arid areas of the world. Sometimes, several families or villages depend
heavily on occurrence of a spring; therefore, their spatial modeling is necessary. We designed a new
ensemble approach called ECL to deal with this issue. In conclusion, the novel ensemble model gives
better predictive performance than could be obtained from any of the constituent models. Therefore,
the strength of the proposed methodology is to improve model accuracy by using this novel ensembling
technique and to efficiently produce a KSPM for sustainable water recourses management programs.
Decision makers and water resources planners can use the proposed approach as an efficient tool to
assess the karst spring potential, to establish relationship between karst springs and geo-environmental
setting, and to plan and implement effective water resources management in drought condition. Future
studies on the current topic are therefore recommended.
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