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Abstract: Precipitation extremes and their underlying causes are important processes to understand
to plan appropriate adaptation measures. This paper presents an analysis of the spatiotemporal
variability and trend of precipitation extremes in the important source region of the Yellow River and
explores the connection to global teleconnection patterns and the 850-mb vector wind. Six indices for
precipitation extremes were computed and analyzed for assessment of a changing regional climate.
Results showed that these indices have a strong gradient from the northwest to the southeast part
for the period 1961–2015, due to the great influence from the south-easterly summer monsoon flow.
However, no statistically significant trends were found for the defined indices at the majority of
stations, and their spatial distribution are noticed by irregularly mixed positive and negative changes
except for the maximum number of consecutive wet days (CWD). Singular value decomposition
analysis revealed that the precipitation extreme indices—including annual total precipitation when
daily precipitation >95th percentile (R95p), annual count of days with daily precipitation ≥10 mm
(R10mm), annual maximum consecutive 5-day precipitation (R5d), total precipitation divided by the
number of wet days (SDII), and CWD—are negatively related to the El Nino-Southern Oscillation
(NINO 3.4) in the first mode, and the maximum number of consecutive dry days (CDD) is positively
related to the Scandinavian pattern in the second mode at 0.05 significance level. The 850-mb vector
wind analysis showed that the southwestern monsoon originating from the Indian Ocean brings
sufficient moisture to this region. Furthermore, the anti-cyclone in the western part of the North
Pacific plays a significant role in the transport of moisture to the source region of the Yellow River.
The links between precipitation extremes and teleconnection patterns explored in this study are
important for better prediction and preparedness of climatic extremes.

Keywords: precipitation extremes; teleconnection patterns; wind vector; the source region of the
Yellow River

1. Introduction

The Yellow River Basin has experienced major floods and droughts that have caused devastating
damages in recent years. This region is more fragile and vulnerable to climate extremes due to
population growth, aging infrastructure and urbanization development [1–3]. The source region of
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the Yellow River (SRYR) produced one third of the whole basin’s streamflow, and climate change and
climate variability are expected to largely influence the precipitation in this region, and impose stress on
the water resources [4]. Precipitation extremes have increased in intensity and frequency under global
warming [5–7], and this change has significant impact on the natural habitats of human communities
in terms of property damage, loss of life and endangered species. It has been a fundamental issue for
the government, the public and the research community due to the disastrous consequences [8–12].
Hence, understanding extreme climatic events is an important goal for water managers and policy
makers in order to identify and mitigate the risks and the resulting hydrologic responses.

Teleconnection patterns are recurring, persistent and large-scale oscillating circulation systems
in the atmosphere, which are identified as modes of low-frequency pressure variability. They are
strongly linked to the local and regional extreme hydro-climatic events at different places in the
world [13,14]. Teleconnections can be defined as the statistical relationships for climate variables
at different locations, and the spatiotemporal aspects of teleconnections can be explained by the
dynamical structure of the atmosphere [15]. Researches have shown that teleconnection patterns
have strong influence on the hydro-climatic variabilities at different spatiotemporal scales [8,16].
The relationship between the wind vector and precipitation has often been analyzed to explore
possible mechanisms of precipitation variability [17,18]. Studies have demonstrated that the composite
distribution of atmospheric circulation and monsoon variability, as affected by wind anomalies at the
850-mb, can explain precipitation anomalies in China [19,20].

Some research has contributed to long-term precipitation change using observational data in the
SRYR with a focus on changes in mean values [21–24]. Research recently has tried to establish the links
between global atmospheric circulation and local hydrological events [25–29].Krichak, et al. [30]
explored teleconnection relationships with precipitation extremes in the Mediterranean region.
They found that the interannual variability of the frequency of days with heavy precipitation was
affected by the teleconnections influence on the spatial patterns in the regions with enhanced potential
vorticity of air moisture. Casanueva et al. [8] displayed significant relationships between the Atlantic
Multidecadal Oscillation and R95p. Hatzaki et al. [14] examined the influence of Eastern Mediterranean
pattern on the duration, frequency, and intensity of precipitation extremes. Wang et al. [31] presented the
observational evidence to show that ENSO has a strong influence on China’s climate. Zhang et al. [32]
examined the wind anomaly at 850-mb to identify large-scale atmospheric circulation patterns for
annual and seasonal precipitation changes in the Yangtze River basin. Hellstrom [33] identified the
850-mb wind for precipitation extremes in Sweden. Yang et al. [34] established the possible links
between precipitation extremes and climate patterns in the Pearl River Basin.

In view of the above, the investigations of precipitation extremes changes are quite limited in the
SRYR. The precipitation extremes in the SRYR can be possibly explained by examining its connections
with teleconnection patterns and analyzing the 850-mb wind vector. To the authors’ knowledge,
this has not been investigated and analyzed in detail in relation to results from previous studies.
Hence, this research comprehensively examines the spatial and temporal features of precipitation
extremes considering precipitation percentile, intensity and persistence by trend analysis methods.
Most importantly, this work improves the knowledge by exploring the physical mechanisms of
change in precipitation extremes in the SRYR through its linkage to global teleconnection patterns.
Furthermore, the association between the 850-mb wind vector and precipitation extremes in the
SRYR was examined to improve our physical understanding of hydrological processes in this region.
It is significant to identify the above relationships for the SRYR as they have major implications on
ecological sustainability, disaster control and integrated water resources planning and implementation.
It could also be helpful for projecting the frequency and severity of precipitation extremes in the SRYR.
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2. Study Area and Methods

2.1. Study Area and Data

The SRYR (32◦12′–35◦48′ N and 95◦50′–103◦28′ E) is located on the northeast Qinghai-Tibet
Plateau with an area of 12.2 × 104 km2 covering 16% of the whole river basin. It is characterized by the
significant altitude variation from 2670 m to 6253 m (Figure 1), which contributes significantly to the
spatiotemporal hydro-climatic variability. Climatologically, the SRYR is recognized as a semi-humid
region. In the cold season, the dominant climate is governed by the arid north-western environment
and cold moist air [35]. In the warm season, the southwest monsoon from the Indian Ocean brings
abundant warm vapor to the SRYR, forming the Plateau’s humid monsoon climate [36]. Average annual
precipitation decreases from the southeast to the northwest ranging from 300 to 750 mm. About 75% of
the annual precipitation falls between June and September. The characteristics of precipitation in the
SRYR are long duration, low intensity and large area coverage [36].
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Figure 1. Precipitation stations, river network and topography in the SRYR.

Daily precipitation at ten meteorological stations in this region were acquired from the China
Meteorological Administration (Figure 1). The data period is from 1961 to 2015, except for the
Tongde and Zeku stations where the data period is from 1961 to 2010. The data continuity and
quality have been verified by the above administration. Based on the impact of possible related
teleconnection patterns on the precipitation in China and data availability, ten monthly climate
indices data for different teleconnection patterns, including El Nino-Southern Oscillation (NINO 3.4),
North Atlantic Oscillation (NAO), Polar/Eurasia Pattern (POL), East Atlantic Pattern (EA), West Pacific
Pattern (WP), East Atlantic/West Russian Pattern (EA/WR), Pacific/North American Pattern (PNA),
Scandinavian Pattern (SCA), India Ocean Dipole (IOD), and Pacific Decadal Oscillation (PDO),
were accessed from the Climate Prediction Centre (NOAA). Detailed description of the above
teleconnection patterns could be checked in the research by Washington et al. [37] and Barnston
and Livezey [38]. The 850-mb vector wind reanalysis data for the period of 1961–2015 from the National
Center for Environmental Prediction (NCEP)/the National Center for Atmospheric Research (NCAR)
were used to explore the possible underlying reasoning of the spatiotemporal features of precipitation
extremes (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html).

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
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2.2. Methods

2.2.1. Precipitation Extreme Indices

To be able to evaluate the frequency and intensity of extreme weather, a set of extreme climate
indices are formulated and coordinated by ETCCDI (http://etccdi.pacificclimate.org/indices.shtml).
Consequently, the above extreme indices were developed so that researchers worldwide can calculate
the indices in exactly the same way, such that their analyses will fit seamlessly into the global climate
change picture [39]. It should also be noted that one of major problems for extremes is that they are
particularly sensitive to “scaling issues” in which there is a fundamental mismatch between the spatial
representativeness of point-based and gridded values [40]. Numerous researches have used these
defined indices for extreme climate research [6,8,41]. Table 1 shows the precipitation extreme indices
used here. Six precipitation extreme indices based on the daily precipitation data were computed
and examined. The selected indices were used for assessing an extreme climate considering the
precipitation robust statistical properties, including percentile, intensity and persistence. The upper
fifth percentile (R95p) indicates the total precipitation of very wet days. Extreme events exceeding
precipitation absolute thresholds are defined by the count of days with heavy precipitation larger than
10 mm (R10mm). Cumulates for consecutive days are assessed by annual maximum 5-day precipitation
total (R5d). Precipitation characteristics of daily intensity is represented by SDII. CDD and CWD are
computed annually and they are for exploring durational aspects of extreme climate.

Table 1. Six precipitation extreme indices selected in this research. RR means daily precipitation. A wet
day is defined as RR ≥ 1 mm, and a dry day is defined as RR < 1 mm.

Category Index Description Unit

Precipitation percentile R95p Annual total precipitation when RR > 95th percentile mm

Precipitation intensity

R10mm Annual number of days with RR ≥ 10 mm days

R5d Annual maximum consecutive 5-day precipitation mm

SDII Total precipitation divided by the number of wet days mm/day

Precipitation persistence
CDD Maximum number of consecutive dry days days

CWD Maximum number of consecutive wet days days

2.2.2. Trend Analysis

The characteristics of trend and variability in precipitation extreme indices for the period of
1961–2015 in the SRYR were investigated through linear regression and the Mann-Kendall test. Due to
the limited and unevenly distributed stations in the SRYR, Thiessen polygon method was used to assess
the regional trend in order to obtain a general picture of precipitation extreme changes in this region.
The Mann-Kendall test is non-parametric, and it is a function of the ranks of the data series, indicating
that it is not influenced by the data distribution and is insensitive to the outliers. The Mann-Kendall
test could examine the trend of the data series, however, the magnitude of trends were also determined
using Theil–Sen approach in some research [42]. Statistical level of significance was examined at the
0.05 for the trend test.

2.2.3. Analysis on the Teleconnections

Singular value decomposition (SVD) as the multivariate data analysis method is widely
used to reveal the relationship between two different datasets in hydrological and meteorological
studies [28,43,44]. The method can extract the dominant modes from the two analyzed datasets that
are allowed to be regular or irregular. This is of great importance since the dominant modes of
covariance are often associated with the physical interpretation. SVD is the diagonalization of the
cross-covariance matrix between two datasets and reveals corresponding spatial distributions with a

http://etccdi.pacificclimate.org/indices.shtml


Water 2020, 12, 978 5 of 15

few pairs of eigenvectors explaining the most variance [28,45]. In this study, SVD was conducted on
the cross-covariance matrix of six precipitation extreme indices and ten climatic indices using annual
data series for the same period. The annual climate indices were calculated by the sum of the monthly
data, and both matrices are composed of the column vectors of the two different indices. The means
of the variables were removed, and then the data matrix was standardized. The conduction of SVD
produced two matrices of singular vectors and one set of singular values. A singular vector pair
describes spatial patterns for each field that has overall covariance given by the corresponding singular
value [46]. Each mode of the optimally related patterns was characterized by the normalized squared
covariance, which ranged from 0, where the two fields are not related, to 1, when the variations are
perfectly correlated [46]. The mode included a pair of two optimally related time series, one for the
precipitation extremes and the other for climate indices. The modes with most normalized squared
covariance in this research were visually presented to compare the relationship between variations in
climate indices and precipitation extreme indices variability.

From the singular vector pairs of the cross-covariance matrix, the temporal expansion series of
each field was acquired through projecting the data onto the appropriate singular vector. The so-called
heterogeneous correlation maps from the above represent the correlation coefficients between the
variables of one field (precipitation extreme indices) and the singular vector of the other field
(climate indices) [46]. In our case, the heterogeneous correlation indicates how well the pattern of the
precipitation extremes relate to the corresponding singular vector of climate indices. The different
heterogeneous patterns are mutually orthogonal in the space domain [46]. The correlation coefficients
were also shown to indicate the strength of the relationship between the two fields. This can be
used to compare the relative importance of a particular mode in the expansion. A detailed statistical
description can be seen in Wallace et al. [45] and Bretherton et al. [47].

3. Results and Discussion

Figure 2 presents the spatiotemporal pattern of precipitation extreme indices in the SRYR for
the period 1961–2015. An increasing gradient from the northwest to the southeast part in the SRYR
can be clearly seen for the R95p, R10mm, R5d, SDII, and CWD. Compared to the above five indices,
the CDD has an opposite trend. This is due to the topographical gradient of precipitation and the
annual precipitation distribution being largely affected by the south-easterly summer monsoon [21].
Hu et al. [36] reported that the precipitation intensity indices are in general related to the heavy rainfall
events in the SRYR. R95p increases from the northwest to the southeast ranging from 59.2 mm to
142.3 mm. R5d shows an increasing trend from 39.9 mm in the northwest to 72.5 mm in the southeast,
which agrees with the spatial feature of R10mm with 6–23 days. SDII has a relatively even distribution
and the majority of stations have a value from 5.2 to 6.5 mm. The CWD is, at most stations, less than
8 days. CDD decreases from 105 days in the northwest to 42 days in the southeast. It is clear that the
above indices change with regard to the precipitation amount, while intensity and duration have been
spatially coherent over the SRYR due to the monsoon effect.
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Figure 3 shows the precipitation extreme indices trend for the period of 1961–2015 in SRYR.
Although most stations do not exhibit statistically significant trends for the six precipitation extreme
indices, some spatial variations are detected. However, Fu et al. [48] found that the whole Yellow
River Basin had experienced a decreasing trend of extreme precipitation events during the period
1961–2009. Dong et al. [49] revealed that extreme precipitation showed a significant negative trend in
the mid-to-lower reaches of the Yellow River. No statistically significant trend is seen for R95p and CDD
at all stations. Few stations show statistically significant decreasing trend for R10mm, R5d, and CWD.
SDII has a mixed pattern of statistically significant trends. In general, the trends of the indices show a
mix of upward and downward features except for the CWD. R95p, R10mm, R5d, and SDII display a
mixed and irregular upward and downward trend, and the number of stations in both positive trend
and negative trend is similar. This agrees with the previous research by Wang et al. [50] on changes
in precipitation extremes in the Yellow River Basin for the period 1959–2008. Seasonal analysis by
Hu et al. [36] indicated an increasing trend in the R5d index in winter. Li et al. [51] examined that
precipitation-based indicators showed more mixed patterns of change and few stations had significant
trends on the Loess Plateau of China. CDD shows a generally decreasing trend except for one station.
All stations for CWD display a decreasing trend.

Table 2 presents the regional and stationary linear trends quantitatively. The data series of
annual regional precipitation extreme indices, with statistically significant level at 0.05, are shown in
Figure 4. Statistical level of significance was examined at 0.05 for the trend test. Both the precipitation
percentile (R95p) and precipitation intensity (R10mm, R5d, and SDII) had slightly increasing trends.
Wang et al. [50] showed that the regional average series of R95p, R10mm, and R5d had consistent
negative trends across the Yellow River Basin. However, our analysis on the SRYR reveals an opposite
trend. Both CDD and CWD indicate precipitation persistence with decreasing trends of −2.3 and
−0.2 days/decade, respectively.
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Figure 3. Precipitation extremes trends for the period 1961–2015 in the SRYR. The increasing (decreasing)
trends are marked by upward (downward) triangles. Statistically significant trends are marked by
red triangles.

Table 2. Regional and stationary linear trend of precipitation extremes indices.

Station/Indices R95p
(mm/decade)

R10mm
(days/decade)

R5d
(mm/decade)

SDII
(mm/decade)

CDD
(days/decade)

CWD
(days/decade)

Hongyuan −2.33 0.38 0.49 0.08 −1.16 −0.54

Ruoergai 1.44 −0.35 1.21 −0.01 −0.92 −0.40

Maqu 4.65 0.33 1.39 0.03 −2.50 −0.12

Jiuzhi −7.34 −0.53 −3.36 −0.15 −2.92 −0.09

Henan −3.48 −0.33 −1.98 −0.05 −2.41 −0.37

Dari 3.60 −0.02 0.88 0.03 −1.20 −0.07

Maduo −0.09 0.12 −0.25 0.02 −5.64 −0.25

Xinghai 2.88 0.29 0.12 0.12 −2.48 −0.23

Zeku −6.58 −1.80 −6.25 −0.21 −8.02 −0.25

Tongde −5.65 −0.64 −2.29 −0.10 5.50 −0.20

Whole Region 0.85 0.09 0.15 0.02 −2.31 −0.20
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To identify the influence of global large-scale circulation on extreme precipitation in the SYRY,
the cross-variance matrix of six annual regional precipitation extremes and ten climate indices from
1961 to 2015 were considered for the SVD calculation. Figure 5 shows the data series of different indices
in the first two modes from the SVD output. It is noticed that only the first two modes are statistically
significant, and they have the most explained variance with 62 and 37%, respectively. Hence, the first
two modes accounting for 99% of explained variability can most easily be associated to physical
phenomena and further clarify the spatiotemporal difference of precipitation extremes. The similar
trend and variability in time series shows that precipitation extremes can be physically interpreted
from the teleconnection patterns. The teleconnection influence for precipitation extremes in the SRYR
can be attributed to two main factors: The geographic location and the difference in precipitation
extremes variability. Since the two modes are orthogonal, meaning that the precipitation extremes
variability in this region are diverse and should be analyzed separately. To be able to quantitatively
examine the relationship between precipitation extreme indices and climate indices, Table 3 presents the
corresponding heterogeneous correlation of different indices for the first two modes. It is noteworthy
that the precipitation extreme indices including R95p, R10mm, R5d, SDII, and CWD are negatively
related to NINO 3.4 in the first mode, and the CDD is positively related to the SCA in the second mode
at 0.05 significance level. Hence, the first mode is dominated by the covariability between the above
five precipitation extremes and NINO 3.4, and the second mode highlights the covaribility between
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the CDD and the SCA. Overall, the internanual variability of precipitation extremes in the SRYR can be
explained by the ENSO and SCA events.
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Table 3. Heterogeneous correlation between precipitation extreme indices and climate indices
(statistically significant values at the 0.05 level are in bold).

Mode R95p R10mm R5d SDII CDD CWD NAO EA WP PNA EA/WR SCA POL PDO NINO 3.4 IOD

Mode 1 0.36 0.37 0.31 0.32 −0.11 0.26 0.04 −0.03 −0.20 −0.04 −0.15 −0.06 0.04 −0.16 −0.36 −0.09

Mode 2 −0.09 0.10 −0.18 −0.11 −0.36 0.19 0.21 0.03 −0.13 0.12 0.09 −0.41 0.04 0.13 0.08 −0.09

Numerous studies have worked on the influence of teleconnections on precipitation in the Yellow
River. To illustrate the effects of ENSO and SCA influence on precipitation extremes in the SRYR,
Figure 6 presents the spatial correlation between precipitation extreme indices and significantly
correlated climate indices from the SVD results. The Pearson correlation coefficients between R95p,
R10mm, R5d, SDII, and CWD and NINO 3.4 were calculated. The Pearson correlation coefficients
between CDD and SCA were calculated. Positive correlations were detected for CDD, and dominant
negative values were found for the other five indices. This is in accordance with the SVD results.
No spatially coherent changes were found in general. However, high correlation can be seen in the
north part of SRYR for CDD. The correlation coefficients have a decreasing trend for SDII from the
northwest to southeast.

It is well known that ENSO has a significant impact on the East Asian monsoon, and hence further
influence the precipitation in China. The spatial and temporal variability of extreme precipitation over
China was highly affected by ENSO, the intensity of East Asian Monsoon and wind circulations in
the region. The summer rainfall from June to September in the SRYR has strong links with global sea
surface temperature, and higher sea surface temperature in equatorial Pacific Ocean during the El
Nino phase is in correspondence with less summer rainfall [26]. This explains the negative association
between the several investigated precipitation indices and NINO 3.4. Bueh and Nakamura [52]
investigated the physical characteristics of the SCA and its influence on the Eurasian hydroclimate.
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Zhang [53] pointed out that the accumulated cold air that spilled out south-eastwards, caused a severe
cold wave in north China and Mongolia, and a record-breaking snowstorm when the SCA pattern
weakened temporarily during the winter time. Liu et al. [54] showed that precipitation in central Asia
has about 10% less than the average during the positive phase of the SCA. Our results suggest that
SCA has a positive linkage with the consecutive drought in the second mode. The findings from this
work verify the linkages between precipitation extremes and large-scale atmospheric circulation and
also make contribution to the spatial distribution of associations over the SRYR.
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Figure 7 shows the 850-mb vector wind from June to September for the period of 1961–2015
to investigate possible underlying reasoning of variability for precipitation extremes in the SRYR.
The 850-mb wind variability is associated with water vapor movement from the west part of the
tropical Pacific to China, and it is a significant indicator for the precipitation intensity [55–57]. It can be
pointed out that the southwestern monsoon from the Indian Ocean brings plentiful moisture to this
region. Furthermore, the anti-cyclone in the western part of the North Pacific (WNP) also has a crucial
impact in the transport of moisture to SRYR. The precipitation variability in the SRYR is dominated by
the monsoon from the Indian Ocean and anti-cyclone in the WNP region, which coincides with the
results from Huang et al. [58] and Liu et al. [59].

The large-scale atmospheric circulation and the Asian monsoon are related to ENSO intensity
and variability, which have a large impact on precipitation patterns in China [60–65]. The physical
reasoning for the relationship between precipitation and ENSO regimes can be explained through
characteristics of circulation and monsoon [66]. Feng et al. [57] found that precipitation variability in
China was mainly caused by anti-cyclonic flow in the WNP, connected with ENSO and ENSO Modoki
events. Wang et al. [67] reasoned in a similar manner, that ENSO activities highly affect the local
precipitation variability in the Yellow River Basin. Achuthavarier et al. [68] examined the role of the
Indian Ocean in the ENSO-Indian summer monsoon teleconnection, and found out that ENSO-induced
sea surface temperature forms a strong dipole pattern oriented along the zonal direction in the Indian
Ocean, preventing the ENSO signals from reaching the Indian monsoon region. Ashok et al. [69]
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examined that the Indian Ocean Dipole plays an important role in the correlation between the ENSO
and Indian Ocean Monsoon. Feng and Hu [70] investigated that the monsoon from the Indian Ocean
connects and regulates the ENSO effect on summer rainfall in northern China. It can be pointed out
that the effect of atmospheric circulation and monsoon on precipitation extremes in the SRYR is related
to ENSO variability, considering the high correlation between NINO index and precipitation (shown in
Table 3).
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4. Conclusions

The spatiotemporal trend and variability of precipitation extremes in the SRYR were examined
using selected indices of daily precipitation data from 1961 to 2015. The Mann-Kendall test was used
to explore spatial patterns of change. SVD was conducted to identify linkages between precipitation
extremes in the SRYR and global teleconnection patterns. The 850-mb vector wind from June to
September for the period 1961–2015 was explored for possible physical mechanisms. It was found
that spatiotemporal variability of precipitation extremes is greatly affected by the south-easterly
summer monsoon, and a significant increasing/decreasing trend was noticed from the northwest to
the southeast part. Statistically significant trends were not found for the majority of the stations and
the six precipitation extreme indices. Instead, the trend of precipitation extremes varies at different
stations. Regional analysis showed that both CDD and CWD, indicating precipitation persistence,
show decreasing trends with −2.3 and −0.2 days/decades, respectively. The other four indices have
slightly increasing trends. SVD was used on the cross-covariance matrix of the precipitation extremes
and climate indices datasets. The SVD results verified the linkages between some of the climate indices
and precipitation extremes in the SRYR. The first two modes of SVD were elaborated on in detail since
they can be linked with teleconnection patterns. The findings indicated that five precipitation extreme
indices are negatively related to the ENSO, and CDD is positively linked with the Scandinavian pattern.
It can be pointed out that the southwestern monsoon from the Indian Ocean brings plentiful moisture
to the region. Furthermore, the anti-cyclone in the western part of North Pacific (WNP) contributes
to the transport of moisture to the SRYR. The above findings have major implications for flood and
drought control in the basin.
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