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Abstract: Understanding the amount of pollutants contributed by impermeable urban surfaces
during rain events is necessary for developing effective stormwater management. A process-based
pollutant load model, named Modelled Estimates of Discharges for Urban Stormwater Assessments
(MEDUSA), was further developed (MEDUSA2.0; Christchurch, New Zealand) to include simulations
of dissolved metal loadings and improve total suspended solids (TSS) loading estimations. The model
uses antecedent dry days, rainfall pH, average event intensity and duration to predict sediment
and heavy metal loads generated by individual surfaces. The MEDUSA2.0 improvements provided
a moderate to strong degree of fit to observed sediment, copper, and zinc loads for each modelled
road and roof surface type. The individual surface-scale modelling performed by MEDUSA2.0 allows
for identification of specific source areas of high pollution for targeted surface management within
urban catchments.

Keywords: MEDUSA2.0; stormwater quality; total suspended solids; particulate and dissolved
metals; rainfall characteristics

1. Introduction

The accumulation, or build-up, of pollutants on an impermeable surface during dry periods
is the result of interactions between several processes, including atmospheric deposition, wind
erosion, surface material breakdown due to weathering, and direct deposition of particles from
vehicle wear [1–3]. During rain events, kinetic energy in the raindrops enables the entrainment and
transportation of pollutants from the impermeable surfaces. Simultaneously, additional pollutants
may enter the runoff from wet deposition, where the raindrops scavenge particles from the air as
they fall [4], or via dissolution of the surface material due to acidity of the rainfall [5,6]. Rainfall
characteristics, such as rainfall pH, rainfall intensity (average event intensity (INTavg) and peak
intensity (INTpeak)), duration (Dur), depth, and the length of the dry period between rain events
(antecedent dry days: ADD), therefore influence the amount of pollutants that build up and are washed
off urban surfaces. Several studies have found correlations between pollutant build-up and wash-off

and rainfall characteristics for both total suspended solids (TSS) and heavy metals (Table 1), and these
relationships vary with both pollutant and surface type.
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Table 1. Reported relationships between pollutants in untreated runoff and rainfall characteristics
(chronological order).

Runoff Type Year of Study TSS Total Copper and Zinc

Highway 1998 [7] INTavg, runoff volume

Roof (copper) 2001 [8] Cu only: INTavg (power
relationship)

Urban runoff 2002 [9] Dur, INTavg, days since last event >25
mm

Urban runoff 2003 [10] Rainfall intensity

Roof, road 2005 [11]
Significant: INTpeak;

Not significant: ADD, INTavg, Depth,
Runoff volume, Max runoff discharge

Highway 2006 [12] Depth, INTpeak

Highway 2007 [13]
Significant: INTavg;

Not significant: ADD, Depth, Dur,
Runoff volume

Carpark 2009 [14] ADD ADD

Carpark, roof, road 2010 [15]
Most significant: Depth, INTpeak,

Less so: Dur, antecedent storm
rainfall depth

Urban street 2011 [16] INTavg, INTpeak, Dur

Atmospheric
deposition 2013 [17] Dry deposition: ADD; Bulk

deposition: Depth

Roof (copper,
galvanized) 2014 [6] pH (Cu: power relationship;

Zn: linear relationship)

Atmospheric
deposition 2015 [18] INTpeak, Dur Depth

Urban runoff 2017 [19] ADD, Depth
ADD

Zn only - Not significant:
Depth

Urban runoff 2019 [20] Significant: ADD, Depth, INTavg

Urban runoff 2019 [21]
Significant: Depth, INTpeak,

ADD (all negative correlations)
Not significant: Dur

Carpark 2019 [22] Depth, ADD Depth, ADD

Note: TSS, total suspended solids; ADD, antecedent dry days; Dur, duration; INTavg, average intensity; INTpeak,
peak intensity.

Many stormwater quality models describe pollutant build-up and wash-off processes using rainfall
characteristics to predict the resultant pollutant contribution from impermeable surfaces [23–25]. Model
simulation structures can vary both spatially and temporally. Some models simulate individual surfaces,
whereas other models are structured to simulate spatially distributed surfaces in a catchment or provide
lumped representations of catchments. In terms of temporal scale, models can predict pollutant loads
or concentrations either as continuously simulated values, on a single rain event basis or as an annual
load [26,27]. Continuous models simulate pollutant load over a long time period, and account for the
continuous build-up and wash-off of pollutants across each time step using the principles of mass
balance [26,28]. An event model simulates results for an individual storm event. Annual load models
use unit area pollutant load factors (based on published literature) to estimate the annual load for
each pollutant.

Although some available models are sophisticated and many are comprehensive in their scope,
their complexity and need for detailed input data (e.g., catchment hydraulics), or their aggregation of
surfaces to a subcatchment level, pose a restriction to their use. A balance is needed between accuracy
and reliability of the model outputs against the time and cost of obtaining the required input data.

This gap has led to the development of a process-based model framework, the Modelled
Estimates of Discharges for Urban Stormwater Assessments (MEDUSA) model (first introduced in
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Fraga et al. (2016) [29]). However, the original model form did not include predictions of dissolved
metals. Heavy metal partitioning in dissolved and particulate form is not only an important indicator
of the potential environmental effects of the stormwater runoff, but it also directs the type of treatment
that would be effective at reducing the heavy metal load. Furthermore, new field data enabled better
representation of TSS and rainfall characteristics relationships to be incorporated into MEDUAS2.0
for improved TSS predictions. MEDUSA2.0 now predicts the TSS, total copper (TCu), dissolved
copper (DCu), total zinc (TZn), and dissolved zinc (DZn) loads contributed by individual surfaces for
individual rain events, using rainfall parameters as the independent variables. Different equations
are used for each pollutant, with TSS load most related to antecedent dry days (ADD), rainfall
intensity and duration; TCu and TZn loads most closely related to rainfall pH, ADD, average intensity,
and duration; and DCu and DZn related back to the total metals loads. The equation coefficients are
also specific to each surface type, thereby enabling dynamic relationships between various rainfall
parameters and different impervious surfaces to be quantified in terms of pollutant generation in runoff.
The MEDUSA2.0 framework assumes that the rate at which the material is washed from a surface is
proportional to the amount of material built up on the surface at the start of a rain event and that the
rate can be described by an exponential equation [7,24,30].

The objective of this paper was to present the MEDUSA2.0 physical process-based (i.e., build-up
and wash-off processes) model. Firstly, the need for improvements from the previous version of
MEDUSA is informed through review of literature and a new dataset of untreated runoff quality from
various impermeable urban surfaces. The improvements are recorded in terms of model framework
and equations. Model calibration and validation is also presented using the extensive field data.
The paper also provides a catchment-wide application of MEDUSA2.0, and reports on the usability,
benefits, and future needs of the model.

2. MEDUSA2.0 Model Framework

MEDUSA2.0 is an event-based pollutant load process model. It predicts the amount of TSS, TCu,
DCu, TZn, and DZn contributed by an individual impermeable surface during a rain event, on the
basis of the surface area, material type, and the surface’s relationship to specific rainfall characteristics,
namely, rainfall pH, average intensity, duration, and length of antecedent dry period (updated from
Fraga et al. (2016) [29]) (Figure 1 and Table 2). These particular pollutants were prioritized for
modelling as previous receiving environment monitoring had identified these pollutants as elevated
and of concern [31,32].
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the rate of wash-off is generally expected to reduce 

(exponentially) over the course of a rain event due to the 
decreasing amount of available material remaining on the 

surface [23]. 
Depth of event 

(mm) 
Greater rainfall depths, and therefore larger rainfall volumes, 

will generate larger total amounts of pollutants [35]. 

MEDUSA2.0 predicts the TSS event load from each contributing road and roof surface (TSSRoad 
and TSSRoof) using a relationship defined in Egodawatta et al. (2009) [1]: TSSୖ୭ୟୢ,ୖ୭୭୤ = A(aଵADDୟమ)(C୤)(1 − eୟయ୍୒୘×ୈ୙ୖ), (1)

where A is the surface area, ADD is the length of antecedent dry period (days), INT is the average 
rainfall intensity of the event (mm/h), DUR is the event duration (h), Cf is the capacity factor 

Figure 1. MEDUSA2.0 model framework. TSS, total suspended solids; TCu, total copper; DCu,
dissolved copper; TZn, total zinc; DZn, dissolved zinc.

Table 2. Rainfall characteristics used in the urban runoff pollutant load modelling.

Rainfall Characteristic Significance in Pollutant Generation Processes

Rainfall pH
Rainfall is naturally acidic due to raindrops’ scavenging of carbon
dioxide to form carbonic acid as they fall. The low pH can dissolve

metallic components of a surface [33,34].

Rainfall intensity (mm/h)
Average event intensity was characterized for each sampled event.

The intensity is an indication of the kinetic energy present that allows
the entrainment and transport of particles in runoff from a surface [24].

Length of antecedent dry
period (days)

Pollutants accumulate on impermeable surfaces due to atmospheric
deposition, direct deposition from vehicles, and weathering of surface,
during the dry periods between rain events. Studies have shown a log
or arctan relationship where pollutant build-up rates are most rapid at

the start of the antecedent dry period then slower over time [6].

Event duration (h)

Pollutant wash-off continues throughout a rain event, however, the
rate of wash-off is generally expected to reduce (exponentially) over
the course of a rain event due to the decreasing amount of available

material remaining on the surface [23].

Depth of event (mm) Greater rainfall depths, and therefore larger rainfall volumes, will
generate larger total amounts of pollutants [35].

MEDUSA2.0 predicts the TSS event load from each contributing road and roof surface (TSSRoad

and TSSRoof) using a relationship defined in Egodawatta et al. (2009) [1]:

TSSRoad, Roof = A(a1ADDa2)(Cf)
(
1− ea3INT×DUR

)
, (1)

where A is the surface area, ADD is the length of antecedent dry period (days), INT is the average
rainfall intensity of the event (mm/h), DUR is the event duration (h), Cf is the capacity factor (simplified
to 0.75 for roofs, 0.25 for roads), and a1 to a3 are empirically-derived coefficient values. The capacity
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factor is a measure of a specific rainfall intensity’s ability to mobilize sediment available on the
impermeable surface (1).

Total metal loads from roof surfaces (TCuRoof and TZnRoof; µg) are predicted using the following
relationship:

TCuRoof, TZnRoof = X0A 1
k

(
1− ek.INT.DUR

)
for DUR ≤ Z , (2)

TCuRoof, TZnRoof = X0A 1
k

(
1− ek.INT.Z

)
+ XestA(INT)(DUR−Z) for DUR > Z , (3)

where X0 is the initial copper or zinc concentration (µg/L); Xest is the second stage copper or zinc
concentration (µg/L) that the runoff drops to over a transition period, Z (hours), as observed from the
intra-event concentration sampling; A is surface area (m2); k is the wash off coefficient (i.e., based on
the rate of decay to second stage concentrations from initial concentrations); INT is average rainfall
intensity (mm/h); and DUR is event duration (h). X0 and Xest can be described by the following
relationships to rainfall characteristics (where X0 = Cu0 and Xest = Cuest for copper, and X0 = Zn0 and
Xest = Znest for zinc):

Cu0 =
(
b1PHb2

)(
b3ADDb4

)(
b5INTb6

)
, (4)

Cuest = b7PHb8 , (5)

Zn0 = (c1PH + c2)(c3ADDc4)(c5INTc6) , (6)

Znest = c7PH + c8, (7)

where PH is rainfall pH, ADD is antecedent dry period (days), INT is average rainfall intensity (mm/h),
and b1 to b8 and c1 to c8 are empirically-derived coefficient values. Note that the relationship of copper
to pH is a power relationship, whereas zinc has a linear relationship with pH that is based on empirical
observations (14).

Total metal loads for road and carpark surfaces were found to strongly correlate to the TSS load in
the calibration data and therefore the model predicts total metal loads for all road and carpark surfaces
as a proportion of the TSS load, as follows:

TCuRoad, Carpark = d1 × TSSRoad, Carpark, (8)

TZnRoad, Carpark = e1 × TSSRoad, Carpark, (9)

where d1 and e1 are dimensionless proportionality coefficients derived from experimental data.
As the heavy metal build-up and wash-off processes remain the same for each surface type across

multiple rain events, the model assumes that the ratio of dissolved to particulate metals is relatively
constant for any given surface type (as evidenced by untreated runoff quality data; see Appendix A).
Accordingly, dissolved metal loads for all roof, road, and carpark surfaces (DCuSurface and DZnSurface)
are calculated as a proportion of the total metal load in the model, as follows:

DCuSurface = f1 × TCuSurface, (10)

DZnSurface = g1 × TZnSurface, (11)

where f1 and g1 are dimensionless proportionality coefficients derived from experimental data.

3. Model Calibration and Validation

3.1. Sample Collection and Analysis for Calibration Data

Runoff quality data was collected from the Okeover catchment in western Christchurch, New
Zealand, to calibrate the MEDUSA2.0 model coefficients for the local (low-intensity) rainfall conditions.
Untreated runoff samples were collected from four different urban surfaces within the Okeover
catchment: a concrete tile roof (a common residential roofing material), a copper roof (used primarily
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as an architectural material), a galvanized roof (a common industrial, commercial, and residential
roofing material), and a coarse asphalt road (most common road surface in the city). Further details of
the sampled surfaces’ characteristics are found in Charters et al. (2015) [36].

Time-series samples were collected throughout 25 rain events (see Table A1 in Appendix B) using
a combination of grab sampling and automatic sampling (ISCO 6712C Compact Portable Automatic
Sampler). Samples were analysed for TSS (as per American Public Health Association (APHA) method
2540 D (APHA, 2005)), and TCu, DCu, TZn, and DZn concentrations (as per APHA method 3125 B), as
previous receiving environment monitoring had identified these particular pollutants as elevated and
of concern [31,32].

3.2. Sample Collection and Analysis for Validation Data

First flush (FF; defined as the first 1 L of runoff for this study) and second stage (SS; taken at
least 1 h after FF capture) samples from the Heathcote catchment, adjacent to the Okeover catchment,
were used for validating the models. The validation dataset included a painted galvanized roof and
collector road that were sampled over nine rain events (see Table A2 in Appendix B). Thermo Scientific
Nalgene Storm Water Sampler bottles (1 L high density polyethylene (HDPE)) were used to collect the
FF samples. For the collector road site, they were deployed by suspending the bottle from the sump
grate in the corner of the sump where the initial runoff would flow in. For the galvanized roof site,
the bottle was fitted within a Thermo Scientific Nalgene Storm Water Mounting Kit and fixed under
the downpipe. Grab sampling (1 L HDPE) was used for all SS samples. Samples were analysed for
TSS, TCu, DCu, TZn, and DZn, as per the Okeover samples.

3.3. Sampled Event Rainfall Data

For each sampled event, rainfall was collected and its pH measured during sample collection.
For the Okeover calibration data, rainfall data were sourced from Campbell weather station data
at the University of Canterbury within the Okeover catchment. For the Heathcote validation data,
rainfall data were sourced from the National Institute of Water and Atmosphere’s (NIWA) Kyle St
Weather Station, within 2.5 km of the sampling sites. Rainfall data were compared between the
University of Canterbury station and the NIWA station for the same rain events, as they are 2.2 km
apart, and little difference was found in recorded amount and time of rain start and end, confirming
the appropriateness of using the NIWA station data for the Heathcote sites. The 5 min interval data
were aggregated into average event intensity (mm/hr), antecedent dry period (days), event duration
(hours), and total event depth (mm) for each sampled event (Table 2 and Appendix B). Rainfall within
6 h of the previous rain was considered as being part of the same event.

3.4. Total Event Loads from Observed Concentrations

Event pollutant loads (g/m2/event or mg/m2/event) for each surface were calculated on a per area
basis using the measured pollutant concentrations for each sample and rainfall depth accumulated
over the time interval between samples. These event loads derived from observed concentration data
(hereafter, observed loads) were used to both calibrate the model to achieve as close as fit as possible
to these event loads and for validation. Optimal calibration was achieved by adjusting the model
coefficient values (i.e., a1 to a3 in Equation (1), b1 to b8 in Equations (4) and (5), c1 to c8 in Equations (6)
and (7), d1 and e1 in Equations (8) and (9), and f1 and g1 in Equations (10) and (11)) to obtain the best
predictive accuracy and goodness of fit.

3.5. Assessing Model Fit to Case Study Observed Data

The Nash–Sutcliffe model efficiency (NSE) and percent bias (PBIAS) statistics were used to assess
the predictive power of the model and its goodness of fit to observed data for calibration and validation.
The NSE was developed for assessing hydrological models [37], but has also been employed for
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modelling sediment and nutrient loadings [38]. It describes the predictive accuracy of the model in
comparison to the observed data. The NSE is defined as:

NSE = 1−

∑J
j=1

(
xj

o − xj
m

)2

∑J
j=1

(
xj

o − x0
)2 , (12)

where xo is the mean of the observed pollutant loads, xj
m is the modelled load, and xj

o is the observed
load for rain event j. An NSE value of 1 indicates a perfect fit between the modelled and observed loads,
a value of 0 < NSE < 1 indicates the model is a better predictor than the observed mean, and NSE = 0
indicates the model is only as accurate as the observed mean, whereas NSE < 0 indicates the observed
mean is a better predictor than the model. Modelled and observed loads were log-transformed before
the NSE was applied to reduce the influence of any peak events as they increase the sensitivity of NSE
to systematic over- or under-prediction [39].

The percent bias (PBIAS) is a measure of the average tendency of the model-predicted values to
be greater or smaller than their observed values [40]. It has been commonly used for hydrological
models and is recognized for its ability to clearly identify poor model performance [40]. The PBIAS is
defined as:

PBIAS = 100×
(∑

(xm − xo)∑
xo

)
, (13)

where xm is the modelled load and xo is the modelled load and is the observed load. A value of 0
indicates a perfect fit; the smaller the PBIAS value, the better the performance of the model.

4. Case Study Application: Okeover Catchment Description

The Okeover Catchment is a mixed residential/institutional catchment in western Christchurch,
New Zealand. A GIS map of the 61 ha catchment (of which 40% is impermeable) was developed
that delineated all individual roof, road, and carpark surfaces contributing runoff to the stormwater
network and ultimately to the Okeover Stream via multiple discharge points (Figure 2). Each surface
was classified on the basis of material type and assigned appropriate model properties (Figure 3 and
Appendix C). Hardstand areas such as driveways on private residential property were not included in
the modelling as their pollutant loads to the net stormwater runoff were considered to be negligible.
Roofs are the largest surface type in the catchment (58% of impermeable surfaces), with 51% of
roofs galvanized and 25% of roofs concrete tile (Figure 3). MEDUSA2.0 was run for each of the
delineated surfaces.
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5. Results

5.1. Optimized Model Fits

The MEDUSA2.0 model produced moderate to strong goodness of fit NSE values for all pollutants,
for all four surfaces (Table 3). Of the four sampled surfaces, the optimized MEDUSA2.0 model was
most effective at predicting road runoff pollutant loads (NSEs of 0.66–0.74). The highest copper loads
(per area) were from the copper roof, and the model was moderately effective at predicting TCu and
DCu from a copper roof (NSEs of 0.46 and 0.69, respectively). The highest zinc loads (per area) were
from the galvanized roof, and MEDUSA2.0 was also effective at predicting TZn and DZn from this
roof type (NSEs of 0.66 and 0.68, respectively). PBIAS results (see Appendix D) were all < ±10 for the
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MEDUSA2.0 model, with exceptions of the galvanized roof TCu and DCu models and the copper roof
DZn model. The resultant model loads are shown against the observed loads in Figures 4–6.

Table 3. Nash–Sutcliffe model efficiencies (NSEs) of MEDUSA2.0 predicted loads against observed
loads for the Okeover surfaces (calibration) and Heathcote surfaces (validation).

Parameter Surface Okeover Surfaces Heathcote Surfaces

TSS

Concrete roof 0.50

Copper roof 0.49

Galvanized roof 0.43 0.63

Asphalt road 0.74 0.75

TCu

Concrete roof 0.55

Copper roof 0.46

Galvanized roof 0.58 0.18

Asphalt road 0.66 0.71

DCu

Concrete roof 0.47

Copper roof 0.69

Galvanized roof 0.59 −0.72

Asphalt road 0.68 0.69

TZn

Concrete roof 0.63

Copper roof 0.68

Galvanized roof 0.66 0.56

Asphalt road 0.73 0.72

DZn

Concrete roof 0.69

Copper roof 0.68

Galvanized roof 0.68 0.71

Asphalt road 0.69 0.80

Note: TSS, total suspended solids; TCu, total copper; DCu, dissolved copper; TZn, total zinc; DZn, dissolved zinc.Water 2020, 12, x FOR PEER REVIEW 10 of 19 
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Figure 6. Predicted loads against observed loads for (a) total zinc and (b) dissolved zinc, for
Okeover surfaces.

MEDUSA2.0 produced moderate to strong NSEs when applied to untreated runoff data from the
same surface types in the adjacent Heathcote catchment used for validation (Table 3), with the sole
exception being total and dissolved copper prediction for the galvanised roof. It should be noted that
the copper concentrations on the sampled galvanized roofs were found to be low, as the sole source
was atmospheric deposition.

5.2. Example Application of MEDUSA2.0 to A Case Study Catchment: Okeover Catchment, Christchurch,
New Zealand

Once the model was calibrated and its goodness of fit assessed, the calibrated MEDUSA2.0 model
was applied to the local Okeover catchment, where the untreated runoff samples used for model
calibration had been collected. The model was run for a full year of rain events from the year 2012
(see Appendix E for summarized event details), as researchers at the University of Canterbury had
measured rainfall pH for several rain events in 2012. Therefore, a complete set of characterized
rainfall events was available, with minimal assumptions required for rainfall pH. Although there
will be variation from year to year, 2012 also had relatively typical annual rainfall for Christchurch
(Christchurch Botanic Gardens weather station recorded 631 mm annual rainfall for 2012 [41]);
Christchurch’s mean annual rainfall is 647 mm [42] and it provides an indication of the expected
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variation of rain events across a year. Average event loads were derived from the average of all 88 rain
events of 2012.

The modelling predicted substantial annual pollutant loads (Table 4), with roads and carparks
contributing most of the predicted 4.9 t/year of TSS, but roofs contributing most of the predicted
54 kg/year of zinc. There was also significant load variation (multiple orders of magnitude) for each
pollutant across the 88 modelled events (Figure 7).

Table 4. Predicted total annual pollutant loads in Okeover catchment.

Surface Type TSS (kg/year) TCu (kg/year) TZn (kg/year)

Roofs 439 1.2 45.3

Roads 2770 1.2 5.4

Carparks 1704 0.8 3.3

Total 4914 3.2 54.1
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Figure 7. Event load variation across the 88 modelled events of 2012, by surface type, for (a) TSS,
(b) total copper, and (c) total zinc.

6. Discussion

6.1. MEDUSA2.0 Model Performance

MEDUSA2.0’s predictive performance was good for all the modelled pollutants with NSE of
≥0.43 for TSS, ≥0.46 for TCu, and ≥0.63 for TZn. MEDUSA2.0 offers a process model that can be
calibrated to a particular catchment using local runoff quality data, for estimating pollutant loads from
individual impermeable surfaces during each rain event. Where MEDUSA2.0 was able to be applied to
surfaces outside the Okeover catchment (i.e., with the Heathcote catchment data), the model produced
moderate to strong NSEs with the sole exception of copper loads from the painted galvanised roof.
However, as the only source of copper on such a roof is from atmospheric deposition and is of low
magnitude, it is not surprising that an effective model fit cannot be readily found. A mean value could
instead be derived from local runoff data and applied instead of directly modelling the copper load on
such a low-copper surface using rainfall characteristics.
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6.2. Influence of Rainfall Characteristics on Pollutant Loads

In the MEDUSA2.0 model, ADD is used to predict TSS loads, regardless of surface type, which is
based on observations of dry weather pollutant build-up on surfaces [1,43]. The MEDUSA2.0 model
also assumes rainfall pH is a significant variable relating to both initial and second stage copper
concentrations, and the initial concentrations are also dependent on ADD and average intensity. For the
TCu model, the copper roof was substantially more influenced by rainfall pH than the other two roof
surfaces and, to a lesser extent, by average rainfall intensity (see Appendix D for coefficient values). For
the TZn model, the galvanized roof was more influenced by rainfall pH (particularly during second
stage conditions) than the other two roof surfaces. It was also more influenced by ADD and, to a lesser
extent, average rainfall intensity. This could be expected, as the natural (slight) acidity of rainfall is
a key driver of the copper and zinc generation (via dissolution) on the copper and galvanized roofs,
respectively. Likewise, the influence of ADD could be expected as the dry weather period allows
build-up of pollutants from atmospheric deposition, but also, importantly, contributes to weathering
and degradation of the metallic surfaces with a corresponding increased leaching rate.

Gnecco et al. [11] did not find any correlation between runoff pollutant amounts such as event
mean concentration (EMC) and ADD, and attributed this to the low-to-medium rainfall intensity and
low total rainfall volume of their sampled events, where the amount of pollutant wash-off was too
low to show differences in dry weather TSS build-up between each event. This study’s rainfall is
similarly of low intensity. A study within the same Okeover catchment of atmospherically deposited
TSS, copper, and zinc did show that pollutant build-up was significantly influenced by ADD; however,
pollutant wash-off processes had a stronger influence than build-up processes on the overall pollutant
loads generated from atmospheric deposition [18].

6.3. Individual Model Limitations

Currently, MEDUSA2.0 has a restricted number of pollutant–rainfall parameter relationships,
which may inadvertently present inaccurate model coefficient values. For example, the calibrated TSS
coefficient values for MEDUSA2.0 suggests that the copper roof was substantially more influenced by
ADD than the concrete and galvanised roofs (i.e., higher ADD coefficient values; see Appendix D).
However, because MEDUSA2.0’s framework is restricted to relating TSS loads to ADD only, it is likely
that the high TSS loads from copper roofs are not due directly to ADD (patination is largely driven by
water, carbon dioxide, and time), but simply a means by which the model can reproduce high TSS
loads. Furthermore, the NSE values of the calibrated MEDUSA2.0 model were lower for TSS than
for metal predictions, suggesting that factors beyond rainfall characteristics are important drivers
of pollutant build-up and wash-off. As always, there is a balance sought in the model framework
between achieving a reasonable fit without over-parameterization of the model or creating an overly
complex running process. Further research is needed to characterize a wider variety of surface types
(such as commercial and industrial carparks and roads of different traffic characteristics) to better
represent them in the model and incorporate surface factors such as aspect and slope as appropriate.
MEDUSA2.0’s use of generalized build-up and wash-off equations allows the model to be applied to
catchments outside of Christchurch’s low intensity rainfall climate, and further studies are presently
underway to assess the ease and effectiveness of recalibrating MEDUSA2.0 to other catchments as well
as serving as further model validation.

MEDUSA2.0 predicts pollutant loads as they are generated at each surface, and therefore does not
account for pollutant changes as runoff is conveyed through the stormwater network or discharged
into the receiving waterway. Additionally, the presence of sumps (and other (pre)treatment systems),
for example, may induce settling of coarse sediment and associated metals, which are removed from
the stormwater runoff.

Within its current scope, MEDUSA2.0 allows stormwater managers to identify individual or
aggregated impermeable surfaces that can be targeted for optimized stormwater management. However,
further research is needed to incorporate multiple stormwater management options and pollutant
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transformation processes into the MEDUSA2.0 model framework so that different management
strategies can be computed within the modelled scenarios.

6.4. Data Limitations

As the available dataset for MEDUSA2.0 model calibration was limited, the entire Okeover dataset
was used for calibration instead of truncating the dataset for calibration and having a small validation
dataset (following similar approaches by hydrologic modellers, for example Shrestha et al. (2016) [44]).
Limited validation data were then provided from untreated runoff sampling in an adjacent catchment
for two of the same surface types sampled and modelled in the Okeover catchment. These showed
good model performance for the key pollutants of concern from those particular surface types. Further
validation data should now be collected from the same surface types as the model has been calibrated
for in different geographical locations to expand the conditions under which the model performance
is validated. The significant load variation observed in the modelled results for the Okeover case
study application indicate that validation data would be particularly valuable for events with rainfall
characteristics that produce high event loads (e.g., long duration rain events).

The sampling dataset (that was used to calibrate the model and apply it to the Okeover catchment)
was restricted to the four most common impermeable surface types within the catchment. Therefore,
assumptions were made by assigning model coefficient values to all the other surface types present in
the catchment (Appendix C). Further untreated runoff water quality data are needed from different
surface types, particularly carparks, unpainted galvanised roofs, and new painted Zincalume roofs
(e.g., Colorsteel) to enable the calibration of model coefficients for a wider range of surface types.

6.5. Implications of Model Predictions on Management Approaches

The variation in MEDUSA2.0 pollutant loading from individual surfaces confirms that it is
necessary to apply pollutant load models at an individual surface scale rather than a catchment or
land use scale, as surface type is a key driver of pollutant generation. The variations for each pollutant
type, for the same surface, also reinforce the need to use specific relationships for each pollutant and
rain event, rather than assuming metal loads are proportional to sediment loads as is done with many
current models. Metals in dissolved form were a major contributor to metal loads, and therefore it
is important that any pollutant model framework does incorporate dissolved metals predictions, as
understanding the proportion of metals in dissolved form influences the treatment system selection
and source reduction decisions for most effective pollution management. The predicted load variation
across multiple rain events must be considered when selecting and designing pollutant treatment
systems to ensure effective sizing and maintenance planning.

7. Conclusions

The improvements made to develop MEDUSA2.0 have resulted in a model that performs well
in predicting TSS, total and dissolved copper, and total and dissolved zinc loads generated from
individual impermeable urban surfaces, with common rainfall parameters being used as the predictor
variables. Moderate to strong NSE goodness of fit values were achieved in most instances.

Quantifying the amount of pollutants contributed by each surface during rain events is necessary
for the development and implementation of effective and efficient stormwater management options.
Furthermore, adopting a modelling approach to predict pollutant loads derived from different
impermeable surfaces offers a more cost-effective and reliable tool for understanding pollutant
“hotspots” than can be achieved through water quality sampling alone.
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Appendix A

Total and Dissolved Metal Relationships from Untreated Runoff Sampling Data

Comparison of observed dissolved loads against total loads for copper and zinc show a strong
linear relationship, particularly for the surfaces with the highest loads (Figure A1). This provides
a sound basis for the MEDUSA2.0 framework to use a proportional relationship in calculating dissolved
metals from total metal loads.Water 2020, 12, x FOR PEER REVIEW 15 of 19 
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Figure A1. Relationship between observed dissolved loads and observed total loads for (a) copper and
(b) zinc.

Appendix B

Summary of Sampled Rainfall Event Characteristics

Table A1. Okeover sampled event characteristics, used for calibration.

Event Date Rainfall pH
Average Event

Intensity
(mm/h)

Antecedent
Dry Days

(days)

Event
Duration (h)

Total
Rainfall

Depth (mm)

1 8 December 2013 5.90 2.82 10.8 3.6 10.1

2 17 December 2014 7.86 1.27 4.1 3.4 4.4

3 20 January 2014 7.78 0.68 13.5 14.3 9.7

4 26 January2014 5.78 0.46 3.1 6.4 2.9

5 5 February 2014 6.46 0.80 9.3 0.3 0.2

6 12 February 2014 6.35 3.41 3.6 4.0 13.6

7 14 February 2014 6.33 0.20 1.1 5.1 1.0

8 4 March 2014 6.35 4.61 0.6 31.3 144.2

9 16 March 2014 6.38 3.00 10.5 16.3 41.2

10 25 March 2014 5.58 0.20 6.1 0.1 0.2
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Table A1. Cont.

Event Date Rainfall pH
Average Event

Intensity
(mm/h)

Antecedent
Dry Days

(days)

Event
Duration (h)

Total
Rainfall

Depth (mm)

11 25 March 2014 5.58 3.20 0.2 2.9 9.2

12 5 April 2014 5.98 1.47 10.7 3.6 2.2

13 5 May 2014 6.01 1.60 5.6 0.3 0.4

14 26 May 2014 5.86 2.40 0.6 4.9 5.2

15 6 June 2014 6.26 0.30 0.3 1.3 0.4

16 9 June 2014 5.82 1.37 0.2 31.4 43.0

17 16 June 2014 5.46 2.40 3.9 0.3 0.8

18 25 June 2014 5.81 1.48 7.3 1.1 1.6

19 3 October 2014 5.74 2.03 5.4 1.1 2.2

20 18 October 2014 5.10 0.56 5.4 3.6 2.0

21 22 November 2014 5.67 0.53 2.8 2.4 1.3

22 10 December 2014 5.93 0.80 0.2 1.3 1.0

23 9 February 2015 6.31 0.90 3.6 0.7 0.6

24 6 March 2015 6.05 1.41 3.2 4.3 6.0

Table A2. Heathcote sampled event characteristics, used for validation.

Event Date Rainfall pH
Average Event

Intensity
(mm/h)

Antecedent
Dry Days

(days)

Event
Duration (h)

Total
Rainfall

Depth (mm)

1 8 July 2016 6.29 0.81 9.66 4.0 3.2

2 3 August 2016 6.60 0.16 3.23 8.8 1.4

3 4 August 2016 6.02 0.43 0.71 6.8 2.9

4 13 August 2016 6.64 0.49 4.24 18.0 8.8

5 26 August 2016 6.79 1.76 1.29 8.0 14.0

6 7 September 2016 6.53 0.79 1.45 24.8 19.5

7 14 October 2016 6.74 0.47 2.01 5.8 2.7

8 20 October 2016 6.17 1.70 5.60 22.3 37.8

9 11 November 2016 – 1 0.40 2.22 17.5 7.0
1 Rainfall pH not recorded for Event 9.

Appendix C

Notes:
Calibration data were available for four different surface types: a concrete tile roof (Cr), a copper

roof (Cu), a galvanized roof (Gv), and an asphalt road (Rd). Validation data were available for Gv
and Rd.

Table A3. Category allocation for Okeover surface types on the basis of calibrated model coefficients
(see Appendix D).

Surface Type Modelled Category

Galvanised roofs (all age and conditions)
GvZincalume and Colorsteel roofs (all age and conditions)

Decramastic tile roofs (all age and conditions)

Copper roofs (all age and conditions) Cu

Concrete roofs
Cr

Butynol, glass, fiberglass roofs, and other non-metallic roof materials

Roads (all traffic intensities and surface materials)
Rd

Carparks (all usage types and condition)
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Appendix D

Notes:
For Tables A4–A8: Cr = concrete tile roof; Cu = copper roof; Gv = galvanized roof; Rd =

asphalt road.
See Equations (1) to (11) for coefficient relationships to model variables.

Table A4. Optimized MEDUSA2.0 model coefficient values and goodness of fit statistics for TZn.

Surface
TZn Coefficients (Equations (6), (7), and (9)) NSE PBIAS

b1 b2 b3 b4 b5 b6 b7 b8 Z c1

Cr 50 2600 0.1 0.01 1 −3.1 −0.007 0.056 0.75 0.632 −1.71

Cu −0.1 2 0.1 0.01 0.8 −1.3 −0.007 0.056 0.75 0.679 −7.02

Gv 910 4 0.2 0.09 1.5 −2 −0.23 1.990 0.75 0.657 3.97

Rd 1.96 0.731 1.14

Table A5. Optimized MEDUSA2.0 model coefficient values and goodness of fit statistics for DZn.

Surface
DZn Coefficient
(Equation (11)) NSE PBIAS

d1

Cr 0.67 0.69 −5.2

Cu 0.72 0.68 −10.6

Gv 0.43 0.68 1

Rd 0.43 0.69 −3.26

Table A6. Optimized MEDUSA2.0 model coefficient values and goodness of fit statistics for TCu.

Surface
TCu Coefficients (Equations (4), (5), and (8)) NSE PBIAS

b1 b2 b3 b4 b5 b6 b7 b8 Z c1

Cr 2 −2.8 0.5 0.217 3.57 −0.09 7 −3.73 0.75 0.55 1.67

Cu 100 −2.8 1.372 0.217 3.57 −1 275 −3.3 0.75 0.68 −5.09

Gv 2 −2.8 0.5 0.217 3.57 −0.09 7 −3.73 0.75 0.58 11.47

Rd 0.441 0.69 −0.05

Table A7. Optimized MEDUSA2.0 model coefficient values and goodness of fit statistics for DCu.

Surface
DCu Coefficient
(Equation (10)) NSE PBIAS

d1

Cr 0.46 0.47 9.4

Cu 0.77 0.69 −5.8

Gv 0.28 0.59 37

Rd 0.28 0.68 4.9
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Table A8. Optimized MEDUSA2.0 model coefficient values and goodness of fit statistics for TSS.

Surface
TSS Coefficients (Equation (1))

NSE PBIAS
a1 a2 a3

Cr 0.6 0.25 9.33 × 10−3 0.503 0.2

Cu 2.5 0.95 9.33 × 10−3 0.487 −3.2

Gv 0.6 0.5 9.33 × 10−3 0.430 −4.5

Rd 2.9 0.16 8.0 × 10−4 0.736 0.1

Appendix E

Table A9. Summarized rainfall event characteristics for the year 2012.

Rainfall Parameter Median Value (Range)

Number of rain events 88

Rainfall pH 6.01 (5.19–7.15)

Average intensity (mm/h) 0.53 (0.12–4.00)

Antecedent dry days (days) 3.0 (0.2–19.0)

Event duration (hours) 5.0 (1.0–41.0)

References

1. Egodawatta, P.; Thomas, E.; Goonetilleke, A. Understanding the physical processes of pollutant build-up
and wash-off on roof surfaces. Sci. Total. Environ. 2009, 407, 1834–1841. [CrossRef] [PubMed]

2. Wicke, D.; Cochrane, T.; O’Sullivan, A. Build-up dynamics of heavy metals deposited on impermeable urban
surfaces. J. Environ. Manag. 2012, 113, 347–354. [CrossRef] [PubMed]

3. Zanders, J. Road sediment: Characterization and implications for the performance of vegetated strips for
treating road run-off. Sci. Total. Environ. 2005, 339, 41–47. [CrossRef] [PubMed]

4. Sabin, L.D.; Lim, J.H.; Stolzenbach, K.D.; Schiff, K.C. Contribution of trace metals from atmospheric deposition
to stormwater runoff in a small impervious urban catchment. Water Res. 2005, 39, 3929–3937. [CrossRef]
[PubMed]

5. Quek, U. Trace metals in roof runoff. Water, Air, Soil Pollut. 1993, 68, 373–389. [CrossRef]
6. Wicke, D.; Cochrane, T.; O’Sullivan, A.D.; Cave, S.; Derksen, M. Effect of age and rainfall pH on contaminant

yields from metal roofs. Water Sci. Technol. 2014, 69, 2166–2173. [CrossRef]
7. Barrett, M.; Irish, L.B., Jr.; Malina, J.F., Jr.; Charbeneau, R.J. Characterization of Highway Runoff in Austin,

Texas, Area. J. Environ. Eng. 1998, 124, 131–137. [CrossRef]
8. He, W.; Wallinder, I.O.; Leygraf, C. A laboratory study of copper and zinc runoff during first flush and

steady-state conditions. Corros. Sci. 2001, 43, 127–146. [CrossRef]
9. Brezonik, P.L.; Stadelmann, T.H. Analysis and predictive models of stormwater runoff volumes, loads, and

pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water Res.
2002, 36, 1743–1757. [CrossRef]

10. Vaze, J.; Chiew, F.H.S. Study of pollutant washoff from small impervious experimental plots. Water Resour.
Res. 2003, 39. [CrossRef]

11. Gnecco, I.; Berretta, C.; Lanza, L.G.; La Barbera, P. Storm water pollution in the urban environment of Genoa,
Italy. Atmos. Res. 2005, 77, 60–73. [CrossRef]

12. Crabtree, B.; Moy, F.; Whitehead, M.; Roe, A. Monitoring pollutants in highway runoff. Water Environ. J.
2006, 20, 287–294. [CrossRef]

13. Desta, M.B.; Bruen, M.; Higgins, N.; Johnston, P. Highway runoff quality in Ireland. J. Environ. Monit. 2007,
9, 366. [CrossRef] [PubMed]

14. Wicke, D.; Cochrane, T.; O’Sullivan, A.; Hutchinson, J.; Funnell, E. Developing a Rainfall Contaminant
Relationship Model for Christchurch Urban Catchments. In Proceedings of the Water New Zealand’s 6th
South Pacific Stormwater Conference, Auckland, New Zealand, April 2009.

http://dx.doi.org/10.1016/j.scitotenv.2008.12.027
http://www.ncbi.nlm.nih.gov/pubmed/19157516
http://dx.doi.org/10.1016/j.jenvman.2012.09.005
http://www.ncbi.nlm.nih.gov/pubmed/23044158
http://dx.doi.org/10.1016/j.scitotenv.2004.07.023
http://www.ncbi.nlm.nih.gov/pubmed/15740756
http://dx.doi.org/10.1016/j.watres.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16112162
http://dx.doi.org/10.1007/BF00478464
http://dx.doi.org/10.2166/wst.2014.124
http://dx.doi.org/10.1061/(ASCE)0733-9372(1998)124:2(131)
http://dx.doi.org/10.1016/S0010-938X(00)00066-4
http://dx.doi.org/10.1016/S0043-1354(01)00375-X
http://dx.doi.org/10.1029/2002WR001786
http://dx.doi.org/10.1016/j.atmosres.2004.10.017
http://dx.doi.org/10.1111/j.1747-6593.2006.00033.x
http://dx.doi.org/10.1039/b702327h
http://www.ncbi.nlm.nih.gov/pubmed/17410311


Water 2020, 12, 969 18 of 19

15. Brodie, I.; Dunn, P.K. Commonality of rainfall variables influencing suspended solids concentrations in
storm runoff from three different urban impervious surfaces. J. Hydrol. 2010, 387, 202–211. [CrossRef]

16. Brodie, I.; Egodawatta, P. Relationships between rainfall intensity, duration and suspended particle washoff

from an urban road surface. Hydrol. Res. 2011, 42, 239–249. [CrossRef]
17. Gunawardena, J.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Atmospheric deposition as a source of heavy

metals in urban stormwater. Atmos. Environ. 2013, 68, 235–242. [CrossRef]
18. Murphy, L.U.; Cochrane, T.; O’Sullivan, A. Build-up and wash-off dynamics of atmospherically derived Cu,

Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics. Sci. Total. Environ. 2015,
508, 206–213. [CrossRef]

19. Cheema, P.P.S.; Reddy, A.S.; Kaur, S. Characterization and prediction of stormwater runoff quality in
sub-tropical rural catchments. Water Resour. 2017, 44, 331–341. [CrossRef]

20. Salim, I.; Paule-Mercado, M.C.; Sajjad, R.U.; Memon, S.A.; Lee, B.-Y.; Sukhbaatar, C. Trend analysis of rainfall
characteristics and its impact on stormwater runoff quality from urban and agricultural catchment. Membr.
Water Treat. 2019, 10, 45–55.
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