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Abstract: The complex terrain, seasonality, and cold region hydrology of the Nelson Churchill River
Basin (NCRB) presents a formidable challenge for hydrological modeling, which complicates the
calibration of model parameters. Seasonality leads to different hydrological processes dominating at
different times of the year, which translates to time variant sensitivity in model parameters. In this
study, Hydrological Predictions for the Environment model (HYPE) is set up in the NCRB to analyze
the time variant sensitivity analysis (TVSA) of model parameters using a Global Sensitivity Analysis
technique known as Variogram Analysis of Response Surfaces (VARS). TVSA can identify parameters
that are highly influential in a short period but relatively uninfluential over the whole simulation
period. TVSA is generally effective in identifying model’s sensitivity to event-based parameters
related to cold region processes such as snowmelt and frozen soil. This can guide event-based
calibration, useful for operational flood forecasting. In contrast to residual based metrics, flow
signatures, specifically the slope of the mid-segment of the flow duration curve, allows VARS to
detect the influential parameters throughout the timescale of analysis. The results are beneficial
for the calibration process in complex and multi-dimensional models by targeting the informative
parameters, which are associated with the cold region hydrological processes.

Keywords: hydrological modeling; cold region processes; non-stationarity; variogram analysis of
response surfaces; time variant sensitivity analysis

1. Introduction

Hydrological models are imprecise representations of real-world hydrological processes governed
by mathematical equations and assumptions. Such imperfect representation of real-world hydrological
processes often leads to uncertainty in model outputs, which are attributed to different sources of
error including measurement error, model structural error and the model parameter uncertainty [1,2].
The model parameter uncertainty is attributed to a general lack of understanding required to accurately
determine model parameters, and the fact that parameters compensate for errors in input data and
model structure [1–3]. Hydrological models often have a large set of parameters linked to specific
processes that dominate at different times of the year, leading to an increase in parameter uncertainty
and an inherent seasonality effect of parameter sensitivity and uncertainty [4]. In general, most of the
parameters associated with the hydrological processes are unknown and often require calibration to
match the model output with the measured dataset(s).

Sensitivity analysis (SA) can assist the modeler in identifying the relative influence each model
parameter has on the variation in model output. This information is typically used by the modeler
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to limit the number of parameters in calibration, thereby increasing the efficiency and computation
speed of the calibration process [5,6]. In practice, SA is useful for determining the most informative
parameters prior to model calibration. The least influential parameters can be set to their default
values and thus will not require calibration; therefore, SA is recommended before the calibration of a
hydrological model is initiated [7].

SA can be broadly classified into two types: (i) Local Sensitivity Analysis (LSA), and (ii) Global
Sensitivity Analysis (GSA) [8]. LSA measures the parameter sensitivity at a particular location in the
parameter space. However, for complex hydrological models, GSA methods such as Sobol [9] and
Morris [10] are recommended because they measure the parameter sensitivity over the entire parameter
space, making them robust and reliable [11,12]. These methods, especially the Sobol method, require a
large computational budget to reach convergence [13]. Alternatively, response surface or surrogate
models can be used to reduce the computational burden of complex models, while maintaining the
reliability and robustness of a GSA technique [14–17].

Variogram Analysis of Response Surfaces (VARS) is a recently developed GSA technique [13]
that claims to be more computationally efficient and reliable than classical GSA approaches, for
continental-scale hydrological modeling. Some recent studies have applied VARS for a detailed SA of
model parameters in complex models. For example, Lilhare et al. [18] chose Kling Gupta Efficiency
(KGE), Nash Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS) criterion in VARS to identify the
most important parameters for the Variable Infiltration Capacity (VIC) model [19] applied to the
Lower Nelson River Basin (LNRB). Sensitivity of the model to such parameters is generally dependent
upon the evaluation criterion used, and hence the aforementioned study strongly recommends the
use of multiple criteria for SA to gain a better understanding of the dynamics among and between
model processes.

There are several studies in the cold region catchments within Canada to identify the sensitivity
of the cold region processes. The catchments under study are diverse as the studies are conducted
from the mountainous region of Yukon [20] to the Prairies of Saskatchewan [21]. These studies identify
snowmelt runoff and frozen soil infiltration to be highly sensitive to warming temperature and rainfall
intensity. Most previous SA studies, including those studies in the cold region, do not account for time
varying sensitivity factor in the model parameters [13,22–24]. There are few recent studies in which
SA has been implemented by dividing the entire time period into different time slices or window
periods [5,25]. The studies that currently exist are based on single, conventional metrics such as NSE or
Root Mean Square Error (RMSE). Recently, Razavi and Gupta [26] applied a time varying GSA approach
based on VARS using different indices of simulated streamflow, evapotranspiration (ET) and soil
moisture storage. They recommend the use of TVSA to better control the calibration of the parameters
and uncertainty that might arise during the model prediction. In addition to conventional performance
evaluation metrics, flow signatures can inform model calibration and uncertainty analysis [27–30].
The use of flow signatures provides feedback to the calibration on different aspects of a hydrograph
(e.g., rising or recession limbs versus peak flow), and the overall variability of flow characteristics [27].
Nonetheless, the application of flow signatures has been mostly limited to calibration of hydrological
models and has not been presented simultaneously with SA.

Our study employs flow signatures, in addition to conventional error metrics, as evaluation criteria
to analyze the seasonal and time variant sensitivity of model parameters for a cold region catchment
(NCRB) using Hydrological Predictions for the Environment (HYPE). HYPE is a process-based
semi-distributed hydrological model developed by the Swedish Meteorological and Hydrological
Institute (SMHI) [31]. Our research addresses two specific objectives: (1) analyze the effect of time
resolution on determining the sensitivity of the model parameters, and (2) application of TVSA and
flow signatures to identify event-based sensitivity of model parameters in a cold region. Our goal is to
determine parameter prioritization during the calibration process for the purposes of reducing the
dimensionality of the optimization problem for hydrological modeling in high-latitude, seasonal and
cold region environment.
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2. Materials and Methods

2.1. Study Area

NCRB is the third largest catchment in North America [32] with an approximate drainage area
of 1.4 million km2 (Figure 1). It extends from the Rocky Mountains in the west to Lake Superior in
the east, with elevation ranging from the sea level (at the outlets draining to Hudson Bay) to 3548 m
above mean sea level in the Rocky Mountains. The Nelson and Churchill Rivers are the two major
river systems in the basin, with respective catchment areas of 1.07 million km2 and 0.28 million km2,
draining the entire catchment into Hudson Bay. The NCRB region can be broadly classified into six
freshwater basins: (i) Nelson River, (ii) Churchill River, (iii) Saskatchewan River, (iv) Red River, (v)
Assiniboine River, and (vi) Winnipeg River.
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Figure 1. Map of the Nelson Churchill River Basin with major sub-basins, rivers, lakes and evaluation
gauges used for sensitivity analysis.

The Prairie region extending across the southern region of Alberta, Saskatchewan, and Manitoba
is the driest part of NCRB, with an average annual precipitation of less than 320 mm. The Rocky
Mountains and a small region in Ontario near Lake Superior are the wettest regions of the basin,
receiving average annual precipitation of more than 750 mm. The annual average temperature of the
catchment varies from +6 ◦C in the South to −6 ◦C in the North. During winter, the temperature varies
from −4 ◦C in the South to −22 ◦C in the North, depending on the latitude. According to climate
norms, the winter typically lasts from November to March in the southern latitude. The winter season
is longer in the northern latitude of the basin, which generally lasts from October to May.

Precipitation is in the form of snowfall during winter ranging from 29 mm to 120 mm and is stored
in the snowpack, which contributes to snowmelt during spring [33]. The water supply within NCRB
varies greatly depending on the season, climatic conditions, latitude and topography. According to
Manitoba Hydro [33], the Assiniboine River contributes the least to the NCRB water supply with an
annual average streamflow of about ~45 m3/s between 1981 and 2010. Nelson River is the largest
contributor with an annual average streamflow of ~3200 m3/s at the Hudson Bay. Lake Winnipeg, the
largest lake system within NCRB, contributes an annual average streamflow of ~2180 m3/s through its
outlet into the Nelson River. The Winnipeg River System, which drains into Lake Winnipeg, contributes
an annual average streamflow of ~950 m3/s to NCRB. The Red river originating from the northern
states, draining into Lake Winnipeg, averages the annual streamflow of ~250 m3/s.
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NCRB is characterized by numerous small and large lakes. The land cover of the region is
mostly forest and wetland, accounting for nearly 70% of the catchment [32]. Great Plains and Prairies
distinguish the southern region, whereas the northern region is predominately Boreal Shield. Cold
region processes such as snowmelt, frozen soil and permafrost play an integral role in influencing the
hydrology of the NCRB. The snowmelt from this region contributes to runoff supplying snowmelt
water to lakes, reservoirs, rivers and wetlands [34]. The northern region of the catchment is mostly
dominated by permafrost and frozen soil, which greatly influences the runoff with the formation of
wetland due to continuous ponding [35–37]. Frozen soil has low infiltration capacity, which allows
for the retention of snowmelt water on the surface. However, during the thawing period, the water
rapidly infiltrates the unfrozen soil [38].

2.2. Hydrological Modeling

The HYPE model of NCRB is adapted from the Hudson Bay HYPE (H-HYPE) configuration
described by Tefs et al. [39]. The HYPE model for the entire Arctic region (A-HYPE) is also available in
Macdonald et al. [40]. NCRB is discretized into 2693 sub-basins with an average area of 535 km2 and
median area of 330 km2 (Figure S1). Sub-basins are further classified into homogeneous units called
CLASSES in HYPE, which are formed by a unique combination of land cover, soil type and elevation.
From the data source (Table 1), eight land cover types (crops, forest, open vegetation, bare soil, open
water, glacier, wetland and urban) and seven soil types (coarse, medium, fine, organic, shallow/rock,
glacial and urban) are identified for use in HYPE.

Table 1. Type of Data used for Hydrological modeling in Hydrological Predictions for the Environment
(HYPE) and their sources.

Characteristic/Data Type Information/Product Source

Topography (routing and
watershed delineation) Hydro1K United States Geological Survey (USGS)

Soil characteristics Harmonized World Soil Database
(HWSD) V1.2 Food and Agricultural Organization (FAO) [32]

Land use characteristics ESA CCI Land Cover 2010 V1.4 ESA Climate Change Initiative—Land cover
project 2014

Lakes and wetlands Global Lakes and Wetlands
Database

WWF and the Center for Environmental Systems
Research

Reservoirs Global reservoir and Dam
database (GRanD) V1.1

Socioeconomic Data and Applications Center
(SEDAC) [33]

Discharge
(i) HYDAT (i) Environment Canada
(ii) USGS (ii) https://waterdata.usgs.gov/nwis

(iii) Dery et al [41] (iii) Nelson and Churchill Outlets only

Precipitation and near-surface air
temperature

(i) ERA-Interim (i)European Centre for Medium Range Weather
Forecasts (ECMWF) [34]

(ii) NARR (ii) National Centers for Environmental
Prediction (NCEP) [35]

(iii) Hydro-GFD (iii) Swedish Meteorological and Hydrological
Institute (SMHI) [36]

Snow GlobSnow Finnish Meteorological Institute (FMI)
Glacier fluctuations Fluctuations of Glaciers (FoG) World Glacier Monitoring Service (WGMS) [37]
Evapotranspiration FLUXNET fluxnet.ornl.gov

There are two types of lakes used in HYPE, referred to as ilake (local or inlet lakes) and olake
(outlet lakes). The water level and threshold used in ilake and olake control the runoff in the local
streams and the main river, respectively. HYPE uses ilake and olake parameters to control the outflow
response of lakes, which is parameterized using rating curves. For the Hudson Bay Drainage Basin
embedding the NCRB, Macdonald et al. [40] grouped ilake and olake in HYPE into four and three
clusters respectively, based on physiographic characteristics using a k-means cluster analysis combined
with a silhouette analysis for the selection of the optimal number of clusters.

Table 1 documents the data products used for setting up HYPE for NCRB. Spatial maps such as
the Digital Elevation Model (DEM) from United States Geological Survey (USGS), the land use map

https://waterdata.usgs.gov/nwis
fluxnet.ornl.gov
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from the European Space Agency (ESA), and the soil map from the Harmonized World Soil Database
(HWSD) are used to define the spatial characteristics of the NCRB in HYPE. The model is set up with
an ensemble of three meteorological reanalysis products: (i) ECMWF Re-Analysis-Interim (ERA-I) (ii)
North American Regional Reanalysis (NARR) and (iii) Hydro-GFD. The ensemble dataset is created
by taking average of input variables from the three reanalysis products for individual sub-basins.
Reanalysis data are the results of data assimilation from different sources such as ground observations,
radar and satellite products into a numerical weather prediction model [42].

2.3. Evaluation Criteria

The sensitivity of the model parameters in VARS is determined by the model response values
associated with all the sampled points. Streamflow generated by the HYPE model using ensemble
precipitation and temperature input is evaluated against measured streamflow at multiple gauging
stations across the NCRB using three standard error metrics: NSE [43], PBIAS [44], and Normalized
Root Mean Square Error (NRMSE).

NSE (Equation (1)) represents the model performance in estimating the timing and magnitude of
peak flow periods, because it is more sensitive to large simulation errors that usually occur during
these periods. NSE can range from negative infinity (the worst model performance) to a maximum
value of one (the perfect fit between simulated and measured values). A naïve model that results in the
long-term average of the measured data has NSE = 0; therefore, a positive value for NSE is expected
for a model that is adequately simulating the system performance.

NSE = 1−

∑T
t=1 (Qm

t −Qs
t)

2∑T
t=1 (Qm

t −Qm)
2 (1)

where, Qm
t and Qs

t are, respectively, the measured and simulated streamflow (m3/s) at time step t, and
Qm is the average of the measured streamflow over the time period T.

PBIAS measures the percentage difference between the simulated and measured data, putting an
emphasis on the volumetric error in streamflow simulation (Equation (2)). An ideal model would have
PBIAS of zero as both the simulated and measured streamflow would have the same mean values.
However, a PBIAS value of zero does not necessary imply that the model is perfect because it is a
measure of the volumetric error only. The absolute value of PBIAS increases as the difference between
the simulated (Qs

t) and measured (Qm
t ) streamflow widens:

PBIAS =

∑T
t=1

(
Qm

t −Qs
t

)
∑T

t=1 Qm
t

× 100 (2)

The NRMSE is normalized with respect to the difference between the maximum (Qm
max) and

minimum (Qm
min) values of the measured streamflow (Equation (3)). This promotes fair comparison

between different time series dataset with varying magnitude:

NRMSE =

√∑T
t=1

(
Qm

t −Qs
t

)2

T
(
Qm

max −Qm
min

) (3)

In addition to the aforementioned model evaluation criteria, we have chosen three flow signatures
to analyze the influence of the choice of error metrics on the sensitivity of the model parameters.
The model performance in simulating the high flows is represented by the percentage difference between
the measured and simulated 3-day averaged Q5 (the value of daily streamflow with a 5% exceedance
probability) (Equation (4)). The 3-day averaged Q95 (the value of daily discharge with a 95% exceedance
probability) is used to evaluate the model performance in estimating low flows (Equation (5)). The 3-day
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averaged streamflow and 7-day averaged streamflow are selected to characterize the low flows and
high flows in order to reduce the impact of measured flow uncertainty [45,46]:

(3day avg Q5)measured − (3day avg Q5)simulated

(3day avg Q5)measured
× 100 (4)

(3day avg Q95)measured − (3day avg Q95)simulated

(3day avg Q5)measured
× 100 (5)

Finally, we have used the Slope of the Flow duration Curve (SFDC) to evaluate the response
of the rising and falling limb of the hydrograph (indicated by the central part of the flow duration
curve) to major hydrological events, compared to the real watershed system. SFDC is obtained
as in Equation (6) [27] for the region bounded by the 30% and 70% probabilities of exceedance, as
represented by the two center dotted lines in Figure 2. It is calculated for both the measured and
simulated streamflow and their difference is used as an evaluation metric:

SFDC = 100×
Q30 −Q70

40×Qd
(6)

where, Q30 is the value of daily discharge with a 30% exceedance probability; Q70 is the value of daily

discharge with a 70% exceedance probability; Qd =
∑T

t=1 Q (t)
T is the mean of daily streamflow (m3/s);

T is the length of the streamflow data record (days); Q (t) is the streamflow (m3/s) at time t.
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Figure 2. Flow duration curves of simulated streamflow simulated by HYPE using ensemble input
data, and measured daily streamflow over 1981–2010 for the major rivers within the Nelson Churchill
River Basin (NCRB).

2.4. Sensitivity Analysis Using VARS

In this study, the sensitivity of 34 HYPE parameters is identified using a GSA technique called
VARS (Table 2). The parameter range used for SA has been set based on recommendations by
Macdonald et al. [40] and other studies related to the HYPE model [47–49]. VARS is based on the
directional variogram and covariogram of pairs of points in the response surface. The variogram is a



Water 2020, 12, 961 7 of 24

function quantifying the variance of change in the response surface as a function of distance between
samples in the parameter space. The covariogram function quantifies the covariance structure in the
response surface as a function of a vector h that is the distance vector between two points in the decision
space. Details on the methodology and application of VARS can be found in Razavi and Gupta [13].

Table 2. Description of parameters in HYPE used for sensitivity analysis with lower and upper
limit bounds.

S.N. Parameters Description Dependency Lower Limit Upper Limit

1 rrc_corr Correction factor for recession coefficients Soil type 0.9 1.2

2 kc_corr Correction factor for Crop Coefficient for
PET model Land use 0.9 1.4

3 fc_corr Correction factor for fraction of soil available
for ET Soil type 0.8 1.3

4 wp_corr Correction factor for wilting point Soil type 0.8 1.1

5 deprl_corr Correction factor for depth relation for soil
temperature memory Soil type 0.6 1.6

6 fpsno_corr Correction factor for snow sublimation Land use 0.8 1.2
7 kc_lake Crop coefficient factor for lake type land use Land use 0.7 1.3

8 kc_wetland Crop coefficient factor for wetland type
land use Land use 0.4 0.9

9 kc_crops Crop coefficient factor for crop type land use Land use 0.7 1.3
10 kc_forest Crop coefficient factor for forest type land use Land use 0.4 0.9
11 kc_open Crop coefficient factor for open type land use Land use 0.7 1.3
12 wcfc_coarse Fraction of soil (coarse) available for ET Soil type 0.05 0.25
13 wcfc_medium Fraction of soil (medium) available for ET Soil type 0.1 0.3
14 wcfc_fine Fraction of soil (fine) available for ET Soil type 0.1 0.3
15 wcfc_organic Fraction of soil (organic) available for ET Soil type 0.3 0.5
16 wcfc_shallow Fraction of soil (shallow) available for ET Soil type 0.05 0.15

17 ilrratp(3) Parameter of rating curve for ilake (cluster 3)
outflow (exponent) Ilake region 1 2

18 ilrratk(1) Parameter of rating curve for ilake (cluster 1)
outflow (rate) Ilake region 50 70

19 ilrratk(3) Parameter of rating curve for ilake (cluster 3)
outflow (rate) Ilake region 2 30

20 olrratp(1) Parameter of rating curve for outlet lake
(cluster 1) outflow (exponent) Olake region 3 4

21 olrratp(4) Parameter of rating curve for outlet lake
(cluster 4) outflow (exponent) Olake region 1 2

22 olrratk(3) Parameter of rating curve for outlet lake
(cluster 3) outflow (rate) Olake region 60 100

23 damp Fraction of delay in the watercourse Routing 0.4 0.7
24 rivvel Celerity of flood in watercourse Routing 0.5 1.5

25–29 bfrozn_(Soil-Type) Soil dependent infiltration parameter Frozen soil 1 4

30–34 bcosby_(Soil-Type) Shape coefficient of soil water potential
moisture curve Frozen soil 2 15

The HYPE model of the NCRB is run externally for all sample solutions generated by VARS based
on STAR sampling. Ranking of the sensitivity parameters and indices are based on the Integrated
VARS (IVARS). STAR sampling is carried out for each star center defined at certain interval along each
dimensions of the parameter space. IVARS is the integration of the directional variogram with different
parameter perturbation sizes ranging from 0.1 to 0.5, with an incremental value of 0.1. For example,
IVARS10 refers to the integrated variogram with a small perturbation size of 10% of the parameter range,
while IVARS50 is based on perturbation size equal to 50% of the range of each parameter. Although the
investigation of the sensitivity is recommended with different factor ranges, Razavi and Gupta [50]
recommend the use of IVARS50 as a global sensitivity metric if only a single metric is to be chosen.
Furthermore, our study also shows that the rankings of parameters are not significantly influenced
when comparing parameter rankings amongst IVARS10, IVARS30 and IVARS50 across six evaluation
metrics (Table 3). Therefore, we have opted to use IVARS50 as the sensitivity metric for all our analysis.

In this study, SA is performed using three approaches corresponding to different time scale
resolution: (i) long-term SA, (ii) monthly SA, and (iii) TVSA using a moving window analysis (Figure 3).
The long-term SA is based on sensitivity indices calculated from the error metrics computed from
simulated and measured streamflow over the entire time period of analysis. In the case of monthly SA,
sensitivity indices are determined separately for individual months, to identify the sensitivity based
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on seasonality. Compared to the previous two approaches, the TVSA calculates sensitivity indices
for each parameter across each window period. For example, for a 30-day window, the sensitivity of
the parameters is analyzed based on a moving window of every 30 days using the times series from
model simulation. It should be noted that the majority of previous studies applying SA used method
(i) [23,51,52], and in this study we compare the more traditional approach to methods (ii) and (iii) in a
high-latitude, seasonal, and cold region environment.
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For all three SA approaches, we have used four sets of parameters (34 parameters) among which
land use and soil type dependent parameters comprise the majority of parameters. Two other sets
represent lake discharge and routing parameters. For the application of VARS for HYPE, we have used
20 STAR samples (m) with a resolution of 0.1 (h) on the 34 parameters space of the response surface.
The STAR samples are selected using the Latin Hypercube sampling technique. For each star sample
(m), a cross-section is generated at equal spacing of resolution specified (h). This results in m × [n ×
((1/h) − 1) + 1] = 6140 model runs, where n is the number of parameters subjected to SA.

2.4.1. Long-Term SA

The long-term SA is based on aggregation of sensitivity information from the entire time-period
of analysis. Here, we have analyzed the long-term SA for a period of 30 years from 1981–2010 to
coincide with the Canadian climate normal period. The aggregated model response values in the
form of evaluation metrics are calculated between simulated and measured streamflow for each set of
parameters sampled. Parameter rankings are determined based on the ratio of factor sensitivity (RFS)
of the parameters. RFS of a parameter is computed as the ratio of the IVARS for that parameter to
the sum of IVARS over all parameters considered for SA. The parameter with the largest RFS value is
assigned the highest rank (highly dominant), whereas the parameter with the smallest RFS values is
assigned the lowest rank (least dominant). The reliability of the ranking of parameters for different
evaluation metrics are also computed by VARS. Reliability is generally defined as “the ability of a
system or components to function under stated condition for a specified period of time” [53]. In VARS,
reliability is the probability of success to determine the true ranking of the parameters based on
specific sensitivity indices (IVARS). The reliabilities of parameter rankings are higher in simple models,
whereas complex models with a large number of parameters require a large number of STAR samples
to attain the state of true ranking [54].
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2.4.2. Monthly SA

The monthly SA is implemented for a period of 30 years similar to the long-term SA, except that
the sensitivity information is aggregated at a monthly timescale. The evaluation metrics are calculated
between measured and simulated streamflow for each aggregated month separately. The monthly
SA has advantage over long-term SA because it is expected to identify parameters that are strongly
influential during particular seasons but less influential during other seasons (e.g., snowmelt parameters
in the summer). The importance of some parameters, if not all, during model calibration may therefore
change based on the seasonality in the study region and the time-period of analysis. In such cases,
calibration should include parameters that are more influential in particular seasons but do not have
a high sensitivity index over the whole simulation period. Zhao et al. [55] calibrated a hydrological
model for an alpine basin using the stratified calibration approach (SCA). In the SCA method, the
calibration of model parameters is implemented by stratifying seasons, which refers to dividing the
entire period into dry and wet seasons. Calibration of a hydrological model based on seasonality
improves simulation of ET and surface flow during rainy periods [55].

2.4.3. Time Variant Sensitivity Analysis

Compared to the previous two methods in which the aggregation of sensitivity information is
over a month or long term, the TVSA method is implemented using a certain window period of fixed
duration to minimize the loss of sensitivity information. Sensitivity metrics are calculated using VARS
for different moving window periods (30, 60, 90, 180 and 360 days) to account for the inter-annual
dry and wet cycles in the basin (Figure 4) across a six year time period spanning from 2000 to 2005.
The selection of window size is dependent on factors such as quality of data, time period of analysis,
and smoothness of the plot desired [56]. Hui et al. [25] used TVSA with window sizes of up to 4 days
for hydrologic and sediment parameters. Smaller window sizes are recommended as it reduces the
effect of time series aggregation and is therefore able to capture the temporal dynamics of the influential
parameters [25,57]. Although some hydrologic processes could occur at shorter durations (<30 days),
this analysis is restricted to a minimum 30-day window period to enable the calculation of quantiles
for the flow duration curves. The restriction is further compounded by the computational demand of
smaller window size for a continental scale catchment. The use of 30 days and 60 days for window
size is useful in exploring the seasonal sensitivity, whereas the window size larger than 90 days helps
to explore the sensitivity of the model to different parameters at a coarser time scale. The time period
of analysis is restricted to only six years due to the very large computational demand required to
implement TVSA for every moving window period over a long term for such a large basin. The runtime
for a 180-day moving-window is ~3 days for a single evaluation metric (i7-6700 processor, 2.60 GHz).
It has increased to 12 days for a single evaluation metric when the window size is reduced to 30 days,
and 72 cumulative days for all six-evaluation metrics (for method (iii) only).
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The pcolor function of MATLAB is utilized to interpolate the color transition between consecutive
time periods and different window sizes for each sensitivity metric. The color transition obtained
from interpolation can be jagged, particularly for larger window sizes. Smooth transitions can be
achieved by using smaller window sizes [25], which are not implemented in this study due to their
large computational demand.

3. Results and Discussion

3.1. Long-Term SA

We first analyze the ranking and reliability of HYPE model parameters from the long-term SA
based on the sensitivity metrics obtained from IVAR50 for the six evaluation criteria used in this
study (Figure 5). Results show that the parameter rankings and their reliability change as the model
evaluation metric changes. For all evaluation metrics, the parameters related to land use and soil
characteristics are most influential followed by the ilake and olake parameters.

In terms of relative ranking of the parameters, the crop coefficient correction factor (kc_corr)
associated with the calculation of ET is the most influential parameter. This is an obvious result,
because the kc_corr parameter is applied as a correction factor to all land use types. The rankings of
the kc parameters associated with individual land use type is closely followed by that of the global
kc_corr parameter. However, these rankings are not stable across all evaluation metrics. The crop
coefficient associated with forest (kc_forest) is more influential than the crop coefficient associated
with open vegetation (kc_open) such as grassland and open shrub land. Several studies have found
that ET losses from forested areas are higher than those from cropland and open vegetation [58,59].
Most of the frozen soil parameters do not exhibit significant sensitivity and are considered among the
least influential parameters. The model shows strong sensitivity to the frozen soil parameter related
with medium soil type (bfrozn_medium). Therefore, it is ranked among the top ten most influential
parameters. The medium soil type alone covers approximately 49% within NRCB, which is almost
equal to the coverage of all the other soil types combined. In terms of reliability of the rankings, for
NSE, the reliability varies from 26% to 100%, with a median reliability of 69%. The median reliability
values of the parameter rankings for both PBIAS and NRMSE criteria remains at 70%. For the 3-day
averaged Q5, Q95, and SFDC, the median reliability values degrade to 64%, 65% and 44% respectively.
The higher reliability values are more reliable and accurate, and the chances of reproducing the same
result is higher under the same condition [60]. Therefore, measurements with higher reliability are
preferred to the one with the lower reliability.
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In general, the conventional approach for long-term SA is informative in ranking the parameters
based on the sensitivity metrics, and the screening of the important parameters is essential for further
calibration of hydrological models. For conventional error metrics such as NSE, the least influential
parameters which have negligible RFS (e.g., frozen soil parameters related to certain soil types, and
some lake parameters) can be eliminated from model calibration, thus reducing the parameter space
from the 34 initially selected parameters to a total of 23 parameters (i.e., ~32% reduction). Nevertheless,
in this method, the ranking of parameters is based on the sensitivity information aggregated over the
entire time period of analysis and is therefore unable to detect the seasonal sensitivity of the parameters,
or the time varying nature of the parameters and subsequent hydrologic processes they are controlling.
The accumulation of model residuals across the entire period of analysis causes a loss of information
content for the model calibration. The model residuals are even larger if the residuals are squared prior
to aggregation as in RMSE and NSE metrics [5]. To address this issue, it is important to disaggregate
the time series before calculating the sensitivity metrics.

3.2. Monthly SA

The seasonal nature of some hydrological processes makes the corresponding parameters more
influential in particular seasons. For example, the ET parameters (kc group) are expected to be more
influential in warmer seasons (Figures 6 and 7). Moreover, the monthly SA gives insight into the
model’s sensitivity to seasonal parameters, which appears to be uninfluential from long-term SA results.
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The model is least sensitive to the field capacity parameters that are related to organic (wcfc_organic)
and fine (wcfc_fine) soil types irrespective of the seasonality. With finer textures, clay soils and wetland
peats have a high water retention capacity and significantly low horizontal and vertical hydraulic
conductivity [61]. Therefore, wcfc_organic and wcfc_fine likely have an inherent time lag (greater than
one month) associated with the hydrologic response time and result in a low sensitivity at a monthly
scale. In contrast, across all evaluation metrics the field capacity parameter associated with medium
soil textures (wcfc_medium) is highly influential and reveals varying sensitivity on a seasonal basis.
The variation in the sensitivity of wcfc_medium parameter depends on the error metrics used but
in general, the sensitivity is higher during the summer and spring seasons compared to the winter
season. Since the sensitivity of the soil parameter is not only reflected in the spring season when the
snowmelt process is activated, the sensitivity is a reflection of the rainfall runoff process more than the
snowmelt seasonality.

A comparison between Figures 6 and 7 shows that signature-based metrics better identify
parameters that are influential in a particular season (month). For example, the wp_corr parameter
related to the wilting point is highly influential only during the months of February and March while
using Q95 as an error metric. This suggests the wp_corr parameter is strongly affected by the snowmelt
process, which is not necessarily intuitive. Likewise, the rivvel parameter controlling the velocity
in river reaches and discharge is most influential during spring when snowmelt generates a sharp
increase, and high variability, in streamflow. Therefore, rivvel based on NSE (Figure 6a) and 3-day
averaged Q5 (Figure 7a) shows maximum sensitivity during spring compared to the other metrics.
Snowmelt and frozen soil parameters, snow sublimation (fpsno_corr) and frozen soil (brozn_medium),
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are most influential during the spring freshet period. Frozen soil parameters are dependent on soil type
and strongly influenced by the soil infiltration capacity. The infiltration capacity of a soil is significantly
reduced during the frozen state. During spring, the voids between the soil particles occupied by frozen
water start thawing, resulting in an acceleration of the infiltration rate in the soil [62,63].
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The monthly SA implemented on 34 hydrological parameters shows variation in the sensitivity
indices based on seasonality, unlike the long-term SA in which the sensitivity indices are aggregated
over the entire time period. Due to the aggregation of sensitivity indices, the sensitivity values of
the parameters in the long-term SA are assumed constant over the entire time period of analysis.
In contrast, the monthly SA demonstrates that some parameters such as rivvel and fpsno_corr are
highly influential during a particular season, which corresponds to the snowmelt period (Figure 6).
However, their sensitivity remains undetectable during other seasons. The ranking of the parameters
also changes seasonally, and neglecting such parameters (and parameter sensitivity changes) can lead
to an unrealistic representation of the model processes. Though the monthly SA is able to address the
seasonality effect of the parameters, this method is still insufficient to address the issue of temporal
aggregation. The conclusion drawn from the monthly SA relative to the long-term SA warrants further
investigation of the model’s sensitivity to influential parameters at a finer time scale (i.e. TVSA) to
investigate parameters that may not exhibit seasonality but are important for a more realistic, physically
representative model and simulation.
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3.3. Time Variant Sensitivity Analysis

Figures 8 and 9 show the graphical representation of 11 of the most influential parameters, using
conventional metrics (NSE and PBIAS) as evaluation criteria. In these figures, the x-axis represents
the time period in days (e.g., 01/01/2000 to 31/12/2005), and the y-axis represents the window period
(days) in the logarithmic scale. The RFS varies from a minimum value of zero to a maximum of 0.6,
depending upon the parameter, window size, time period and evaluation metric used. TVSA confirms
that kc_corr is the most influential parameter throughout all six years of analysis. The NSE-based
sensitivity factor for kc_corr (Figure 8a) is lower relative to those obtained using PBIAS (Figure 9a) and
NRMSE (Figure S2a), indicating that the crop coefficient parameter associated with ET process is more
sensitive to changes in the overall flow volume compared to changes in peak flow.
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These findings agree with the results from the previous two methods, however additional
information regarding the relative sensitivity of the parameters is provided by the TVSA. For instance,
as opposed to its normal seasonal sensitivity behavior demonstrated in monthly SA, the TVSA identifies
the kc parameters to be the most influential during the winter season in some dry years (2000 and
2001/2002) as well as (Figure 8). One possible explanation for this seemingly contradictory finding is the
relative insensitivity of soil moisture parameters prior to freeze up and over winter during drier years.
During drier years, the model is relatively insensitive to wcfc and wp parameters that are related to the
water holding capacity of soils at different depths, which is a function of soil properties. During smaller
precipitation events and longer dry periods, only the upper-layer (shallow) soil moisture contents
are affected [64]. As precipitation ceases (or is minimal) for longer durations, the soil moisture of the
other (lower) layers becomes uninfluential for the water balance, and hence the kc parameters become
relatively more influential during the driest period of the year compared with other parameters.
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Likewise, though rivvel identifies as an influential parameter by monthly SA, TVSA shows that
the sensitivity of the model to this parameter varies from one year to another depending on the error
metric used for evaluation. For instance, as compared to monthly SA using the NSE error metric,
which identifies the rivvel parameter to be influential during only spring and peak flow seasons, TVSA
identifies it to be influential only in certain years (2001, 2002 and 2005). The results are consistent with
the highest peak flows in the measured streamflow record for the Nelson and Churchill River outlets.
For instance, the measured streamflow at the Nelson outlet is observed to be maximum during the years
of 2001 and 2005 with the values of 5631 m3/s and 7346 m3/s respectively. Likewise, maximum peak
streamflow is observed at the Churchill outlet during the year 2005 (2990 m3/s) (Figure S3). Moreover,
the model’s sensitivity to the routing parameter (rivvel) is identifiable only during the smaller moving
window period (less than 90 days) (Figure 8k). The use of larger window sizes (greater than 90 days)
suppresses the sensitivity of this parameter, as the high flow condition tends not to persist for long
durations. Freshet events contributing to increasing discharge, and subsequent water velocity, typically
occur within a maximum window period of four months (120 days approximately) [65].

These results demonstrate that TVSA is effective in identifying process- and event-based sensitivity
of the parameters, which are inherent limitations of the previous SA approaches. In addition, TVSA is
able to detect the sensitivity of some parameters not considered influential when using a long-term
or monthly SA approach. For instance, by evaluating the aggregated monthly sensitivity based on
3day-Q95 in Figure 7b, it suggests that this metric is insensitive to routing parameter (rivvel) and lake
parameter (olrratp1). Such parameters particularly bear high significance in terms of event-based
calibration such as is done for flood forecasting. The runoff process in cold regions such as NCRB is
governed by snowmelt during spring season, as the snowmelt alone accounts for more than 80% of
annual local runoff in this region [66]. Hydrological models used for flood forecasting requires reliable
simulation of high flows and runoff generated from snowmelt [67]. Therefore, it is essential to consider
event based parameters contributing to high flows and snowmelt such as rivvel and fpsno parameters
in model calibration.

3.4. Impact of the Choice of Evaluation Metrics

The results from long-term SA show a reduction in the parameter space ranging from 25% to 32%
across all evaluation metrics (Table 3), with NSE having the largest reduction (32%), and SFDC having
the lowest (25%). To analyze the percentage reduction in parameter range for monthly SA and TVSA,
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we have taken the maximum RFS values of each parameter from the time scale of analysis (Table 4).
Our comparison shows reduction in the parameter space for monthly SA varying from 14% to 26%,
with SFDC also showing associated with the smallest reduction. The conventional error metrics based
SA have larger percentage reductions varying from 20% to 26%. Table S1 shows the six most influential
parameters at the monthly analysis timescale based on different evaluation metrics. The overall crop
coefficient factor (kc) associated with ET remains dominant across all evaluation metrics, regardless
of the SA method used. Conversely, the model is most sensitive to parameters associated with lake
discharge (olrratp1) and routing (rivvel) during the high flow months of May and June when using
NSE, which emphasizes peak flows (Figure 6a).

In contrast to long-term SA and monthly SA, the reduction in parameter space for TVSA varies from
one window period to another for all evaluation criteria. Our results show a decrease in the parameter
space ranging from 14% to 32%, with SFDC associated with the lowest reduction. This demonstrates
the capability of SFDC to detect additional sensitivity among parameters, which is overlooked by the
conventional error metrics and the larger reductions in parameter space (commonly 23% to 26% here).
In contrast to conventional peak flow or volume-based metrics, the sensitivity of all 11 most influential
parameters are identifiable throughout the six-year analysis period when using SFDC as evaluation
criteria and the TVSA approach (Figure 10). The sensitivities of the kc parameters based on SFDC
are less dominant compared to the results obtained from the other residual based metrics; but the
sensitivities of parameters related to frozen soil, lakes and routing are more recognizable throughout
different seasons and time period.

The RFS based on NSE for kc_corr varies from 0.04 to 0.44 with a median value of 0.34 (Figure 8a).
The frozen soil parameter (bfrozn_medium) (Figure 8i) and the snow sublimation parameter (fpsno_corr)
(Figure 8e) are detectable only during the snowmelt period of 2002 and 2005 with median RFS values of
0.002 and 0.00018 respectively. When the SFDC evaluation metric is used, however, the kc_corr shows a
variation of RFS ranging from 0.06 to 0.44 with a median value of 0.21 (Figure 10a). This is significantly
lower than the NSE based RFS value. In contrast, the fpsno_corr (Figure 10e) and bfrozn_medium
(Figure 10i) parameters are detectable during every snowmelt period with comparatively high RFS
median values of 0.008 and 0.02 respectively.

Regardless of the sensitivity method implemented, SFDC has low reliability compared to the
conventional metrics. Therefore, for long-term SA we suggest that conventional metrics with high
reliability such as NSE and PBIAS should be used since SFDC does not contribute significantly to
the detection of additionally influential parameters. However, for the monthly SA and TVSA, SFDC
is recommended despite its comparatively low reliability because it can detect the sensitivity of
additional parameters that are overlooked while using the conventional error metrics. The application
of SFDC as an evaluation metric for SA reduces the uncertainty range of streamflow, as the slope of the
mid-segment of the FDC between 30% and 70% is milder compared to the high flow and low flow
segments (Figure 2). This results in the detection of the sensitivity of additional parameters based on
the changes in the rising and falling limb responses, which are not recognized by other evaluation
metrics. Furthermore, since different parameters dominate at different times of the year, hydrographs
in this region are non-uniform. This is precisely why we need to incorporate flow signatures such
as SFDC into time varying SA. In comparison to SFDC, the application of flow signatures based on
low (i.e., 3day-Q95) and high flows (i.e., 3day-Q5) are not as effective in representing the variation
in sensitivity of some of the most influential parameters such as fpsno-corr (Figure 11e, Figure S4e),
rivvel (Figure 11k, Figure S4k) and olratp1 (Figure 11g, Figure S4g). This could be because SFDC is
calculated as the slope of the mid-segment of the flow duration curve, whereas 3day-Q95 and 3day-Q5

are taken as the average of only three measured streamflow data sets corresponding to their respective
percentage of exceedance from the flow duration curve. Not surprisingly, the 3day-Q5 yields a variation
in parameter sensitivity similar to that obtained using NSE, as both metrics emphasize peak flow [68].
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Table 3. Ranking of HYPE model parameters based on ratio of factor sensitivity from most influential (green) to least influential (red) IVARS10, IVARS30 and IVARS50

for different evaluation metrics determined using a long-term sensitivity analysis (SA).

Parameters
NSE PBIAS Q95 SFDC

IVARS10 IVARS30 IVARS50 IVARS10 IVARS30 IVARS50 IVARS10 IVARS30 IVARS50 IVARS10 IVARS30 IVARS50

kc_corr 34 34 34 34 34 34 34 34 34 34 34 34
wcfc_medium 33 33 33 30 31 31 29 29 29 28 28 28
kc_crops 32 31 31 31 32 32 28 30 30 30 30 30
kc_forest 31 32 32 33 33 33 33 33 33 33 33 32
kc_open 30 30 30 28 29 29 24 26 26 26 27 27
olrratp(4) 29 29 29 32 28 28 30 28 28 32 31 31
fc_corr 28 27 27 27 27 27 25 27 27 25 24 23
kc_lake 27 28 28 29 30 30 32 32 32 31 32 33
bfrozn_medium 26 26 26 26 26 26 22 23 25 21 23 26
fpsno_corr 25 25 25 22 24 24 18 18 19 19 19 19
rrc_corr 24 24 24 18 18 18 20 20 23 18 18 20
wp_cor 23 23 23 24 23 23 31 31 31 29 29 29
olrratp(1) 22 22 22 23 22 22 21 22 24 24 25 25
wcfc_coarse 21 21 21 25 25 25 14 15 15 23 22 22
ilrratk(1) 20 20 20 17 17 15 23 21 20 20 20 18
rivvel 19 19 19 21 20 19 27 25 22 22 21 21
deprl_corr 18 18 18 19 19 21 19 19 18 17 17 17
damp 17 17 17 20 21 20 26 24 21 16 16 16
ilrratk(3) 16 16 16 13 13 13 11 11 11 11 12 13
wcfc_fine 15 14 14 16 14 14 15 13 13 13 11 11
wcfc_shallow 14 13 13 14 16 17 10 10 10 15 15 15
wcfc_organic 13 15 15 12 12 12 17 17 16 12 13 12
kc_wetland 12 12 12 15 15 16 13 14 14 14 14 14
olrratk(3) 11 11 10 11 11 11 16 16 17 27 26 24
ilrratp(3) 10 10 11 7 8 9 9 9 9 6 7 9
bfrozn_coarse 9 9 9 9 10 10 8 7 7 7 8 8
bfrozn_organic 8 8 8 10 9 8 12 12 12 10 10 10
bfrozn_shallow 7 6 6 8 6 6 6 6 6 9 6 6
bfrozn_fine 6 7 7 6 7 7 7 8 8 8 9 7
bcosby_organic 5 5 4 4 4 5 3 3 3 4 2 4
bcosby_shallow 4 4 5 5 5 4 5 5 5 2 1 1
bcosby_medium 3 3 3 1 2 2 4 4 4 1 3 2
bcosby_coarse 2 2 2 3 1 1 1 1 1 3 4 3
bcosby_fine 1 1 1 2 3 3 2 2 2 5 5 5
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Table 4. Comparison of the ranking of model parameters based on maximum ratio of factor sensitivity (RFS), from most influential (green) to least influential parameter
(red) determined from time variant sensitivity analysis (TVSA) on 30-day window period (IVARS50), and monthly SA using different evaluation metrics.

Parameters
TVSA for a 30-Day Window Period Monthly SA

NSE PBIAS NRMSE Q5 Q95 SFDC NSE PBIAS NRMSE Q5 Q95 SFDC
kc_corr 31 34 33 34 34 33 33 34 34 34 34 34
wcfc-medium 28 30 27 30 30 25 29 29 29 30 27 29
kc_forest 34 33 34 32 32 29 34 33 33 32 32 32
kc_crops 33 28 28 28 28 27 31 31 30 31 30 28
kc_open 32 24 25 23 24 20 28 28 27 27 25 25
olrratp(4) 30 27 30 26 25 31 30 26 31 29 24 27
kc_lake 26 29 29 27 29 26 26 30 28 24 31 33
fc_corr 19 26 23 25 26 22 23 24 24 25 23 24
bfrozn_medium 29 32 32 33 27 28 32 32 32 33 28 30
fpsno_corr 24 25 24 24 20 16 22 22 21 21 21 23
rrc_corr 22 21 20 21 23 23 25 23 23 23 26 21
wp_cor 27 31 31 29 33 32 21 27 22 26 33 31
olrratp(1) 25 20 26 22 21 24 27 21 26 22 20 20
wcfc_coarse 17 19 21 18 18 21 20 20 20 20 19 22
ilrratk(1) 21 22 19 19 31 19 19 19 19 17 29 18
rivvel 20 23 22 31 22 34 24 25 25 28 22 26
deprl_corr 15 17 15 17 17 18 18 18 18 19 18 16
damp 14 16 16 15 19 14 16 14 16 16 14 17
ilrratk(3) 13 9 11 9 10 10 14 10 13 11 9 10
wcfc_organic 11 13 13 12 12 13 11 12 11 12 11 13
wcfc_fine 12 10 10 11 11 11 12 9 10 13 17 11
wcfc_shallow 23 18 14 20 15 30 17 17 15 18 13 19
kc_wetland 16 14 17 13 16 17 13 15 14 14 16 14
ilrratp(3) 8 8 8 8 6 7 10 8 8 8 8 6
olrratk(3) 18 15 18 16 14 12 15 16 17 15 12 15
bfrozn_coarse 7 11 9 10 9 9 8 11 9 10 7 8
bfrozn_organic 9 12 12 14 13 15 9 13 12 9 10 12
bfrozn_fine 6 7 7 7 8 8 6 7 7 7 15 9
bfrozn_shallow 10 6 6 6 7 6 7 6 6 6 6 7
bcosby_shallow 4 5 5 5 3 5 5 5 5 4 5 4
bcosby_organic 5 4 4 4 5 4 4 3 4 5 4 2
bcosby_medium 2 3 3 3 2 3 3 2 3 2 3 5
bcosby_coarse 3 1 1 1 4 1 1 1 1 1 1 1
bcosby_fine 1 2 2 2 1 2 2 4 2 3 2 3
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4. Conclusions

We have applied three different SA methods (long-term SA, monthly SA and TVSA) based on
differing levels of temporal aggregation and different error metrics to analyze the sensitivity of the
model parameters in HYPE for cold region catchment (NCRB). When applied to a set of 34 model
parameters, long-term SA results suggest that up to ~32% of model parameters are uninfluential,
and therefore can be eliminated from model calibration. However, in addition to exclusion of some
(seasonally) influential parameters, it provides limited information regarding the relative sensitivity
of individual model parameters due to the information loss that occurs during data aggregation
over a longer time period. In contrast, monthly SA can reveal shorter-term, seasonal variations in
the sensitivity of the model parameters associated with seasonally variant hydrological processes.
Parameters related to cold region processes such as frozen soil and snow sublimation are found to
be highly influential during snowmelt seasons as revealed by the monthly SA. The snow and ice
accumulated during the winter season melts during the spring season, which contributes to high
volume runoff and flooding in cold region catchments [69,70]. Intuitively, snowmelt runoff in the
cold regions of the northern hemisphere is very sensitive to any alternation in parameters related to
temperature [71]. The application of flood forecasting plays an integral role in foreseeing such events
to minimize the extent of damage caused by heavy runoff [72]. Therefore, such parameters should
not be discarded from model calibration, despite their low influence in long-term simulation, because
of the high flows and volumes associated with spring freshet in nival-dominated regimes. Robust
calibration of parameters associated with cold regions is essential to reliably simulate the snowmelt
runoff peak [62,73,74]. Furthermore, the monthly SA approach to model calibration actually makes the
model parameter choice more physically relevant too. This is because the texture of soils is accounted
for explicitly by breaking up the seasons and making the calibration better informed. The calibrated
parameters then reflect the physical environment (and changes in it) more realistically.

Although a monthly SA can detect the sensitivity of additional parameters with a comparative
parameter space reduction (14% to 28%), the level of data aggregation to a monthly time step is still
an issue as the monthly sensitivity of the parameters are considered the same throughout the time
period of analysis. To address this issue, we have carried out a TVSA at various window periods to
account for the event-based sensitivity of the parameters. TVSA is able to detect strong sensitivity
signals for seasonal parameters, which would have been screened out when sensitivity information is
aggregated over a longer time period. Despite the larger computational demand, implementation of
TVSA can be useful in model calibration by identifying event-based hydrological processes. This is
particularly important for event-based calibration useful for flood forecasting in cold regions dominated
by snowmelt runoff [67,75]. Furthermore, the choice of error metric has significant influence on the
rankings and selection of parameter sensitivity. The application of SFDC is found to be most effective
for TVSA and monthly SA, as the retention of influential parameters are higher compared to the
long-term SA, despite having comparatively low reliability. We also found that SFDC consistently
represented the parameter sensitivity throughout all time period, and across the dry, wet, and normal
climate conditions.

In conclusion, TVSA is essential for complex, multi-dimensional models applied in seasonal and
cold region environment to assist with the identification of highly influential parameters and parameter
interactions prior to model calibration. Since the sensitivity of the parameters is strongly influenced
by climate forcing such as air temperature and precipitation, we recommend the mix of wet and dry
periods [55] while implementing a TVSA of hydrological model parameters. Regardless of the purpose
of the model use, event based calibration is recommended for improved simulation of cold region
hydrological processes. Finally, we also recommend the use of SFDC as an objective function for event
based model calibration due to its capability to capture variation in the sensitivity of the parameters
throughout the time period of analysis.
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