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Abstract: Plastic debris presents a serious hazard to marine ecosystems worldwide. In this study, we
developed a method to evaluate high-resolution maps of plastic emissions from the land into the sea
offshore of Japan without using mismanaged plastic waste. Plastics were divided into microplastics
(MicPs) and macroplastics (MacPs), and correlations between the observed MicP concentrations
in rivers and basin characteristics, such as the urban area ratio and population density, were used
to evaluate nationwide MicP concentration maps. A simple water balance analysis was used to
calculate the annual outflow for each 1 km mesh to obtain the final MicP emissions, and the MacP
input was evaluated based on the MicP emissions and the ratio of MacP/MicP obtained according to
previous studies. Concentration data revealed that the MicP concentrations and basin characteristics
were significantly and positively correlated. Water balance analyses demonstrated that our methods
performed well for evaluating the annual flow rate, while reducing the computational load. The total
plastic input (MicP + MacP) was widely distributed from 210–4776 t/yr and a map showed that plastic
emissions were high for densely populated and highly urbanized areas in the Tokyo metropolitan area,
as well as other large urban areas, especially Nagoya and Osaka. These results provide important
insights that may be used to develop countermeasures against plastic pollution and the methods
employed herein can also be used to evaluate plastic emissions in other regions.
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1. Introduction

The use of plastic has spread worldwide since the 1950s, with plastic production reaching 322 million
tons by 2015 [1]. Plastic has become an indispensable part of our lives owing to its many advantages,
including its light weight, robustness, and relative insolubility in water [2,3]. However, these advantages
become disadvantageous when plastic is released into the environment, where it can be transported over
large distances, does not decompose naturally, and is likely to persist [2,4]. Consequently, plastic is a very
environmentally troublesome substance. For many years, plastic pollution in the ocean has been regarded
as a global environmental issue [4–9]. Derrack [7] summarized previous studies and noted that plastics
account for the majority of marine litter. Marine waste was originally thought to be derived from fishing
and recreational activities [10]; however, studies have determined that much of the marine debris comes
from land-based waste, primarily waste transported via rivers [4,5,11,12].

Plastic waste is roughly classified as either microplastic (MicP) that is <5 mm in size or macroplastic
(MacP) that is ≥5 mm in size [13]. MicP is further divided into two classes: (1) primary microplastics
that were ≤ 5 mm in size at their time of production (e.g., resin pellets,) and (2) secondary microplastics
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that were originally MacP and have been decomposed and/or fragmented (e.g., by ultraviolet rays, heat
from sunlight, physical and biological fragmentation). In recent years, extensive attention has been
paid to contamination by MicP. Microplastic contamination in the oceans was already being measured
in the 1960s and 1970s [14,15]. Considering the increases in plastic production since the 1950s, plastic
pollution in the ocean has also increased overall. According to Eriksen et al. [16], it has recently been
estimated that at least 5.25 trillion plastic particles (0.27 million tons) are floating in the world’s oceans.
Meanwhile, MicP can absorb harmful chemical substances, such as polychlorinated biphenyls (PCBs)
and dichlorodiphenyltrichloroethane (DDT) [17–19], and when the particles do not sink in the water
column, they may act as carriers for dispersing these chemicals over a wide area. Due to the small size
of MicP, it can also be ingested by organisms of various sizes, thus raising concerns about its serious
impact on ecosystems worldwide [20–23].

When MicP flows into the ocean, it is difficult to recover. It is therefore necessary to take measures
to prevent the occurrence of MicP in rivers and on land before it can enter the ocean. To that end, it is
necessary to understand the reality of MicP pollution in rivers and on land, as well as to evaluate the
MicP and MacP inputs from the land to the ocean. Since plastic pollution has become a problem in the
oceans, many surveys of marine MicP have been conducted [24–29]. Following the studies on MicP in
the oceans, the number of studies on MicP in rivers and lakes has also increased [30–40]. For example,
Yonkos et al. [34] measured the MicP concentrations in four rivers that flow into the Chesapeake Bay in
Virginia, USA, and showed that MicP contamination in rivers was related to population density and
urbanization. Similar trends have been confirmed by other studies [32,33]. In a previous study [40],
we found a significant correlation between the MicP contamination in rivers and basin characteristics
(here, the population density and the urban area ratio, i.e., the ratio of urbanized to all areas), based on
survey results from 29 rivers and 35 locations in Japan. A significant correlation between the MicP
contamination in rivers and water quality (biochemical oxygen demand, BOD) was also indicated.

Several evaluations of plastic inflow from land to the ocean on a global scale have been
conducted [12,41–43]. Jambeck et al. [12] calculated the inflow of terrestrial plastics from 192 countries
worldwide within 50 km of a coastline and found a global annual input of 4.8 × 106 to 12.7 × 106 t/yr.
They assumed that plastic waste flowing into the ocean was proportional to the amount of mismanaged
plastic waste (MMPW). However, sources of plastic waste are not limited to areas near the coast; the
waste from inland areas should also be considered. Other problems in their studies are that plastic
waste is not generally evaluated by its size class, and verifying the input of plastics into the ocean
based on measured data is insufficient.

Lebreton et al. [41] created an empirical formula linking MMPW, hydrological (rainfall), and
plastic inflow observations. Based on this relationship, the global plastic input was found to range
from 1.15 × 106 to 2.41 × 106 t/yr. This calculation also involved dividing plastics by size into MicP and
MacP fractions. Schmidt et al. [42] also used this concept, but increased the amount of observational
plastic inflow data used. They calculated a global plastic input of 0.47 × 106 to 2.75 × 106 t/yr. As all of
these results included MMPW, their accuracies depend on how well the calculated MMPW matches
the actual amount. In general, MMPW is evaluated at a country level, but since it differs depending
upon the waste management in each country, it has been challenging to evaluate precisely the amount
of MMPW for each country. Additionally, both Lebreton et al. [41] and Schmidt et al. [42] evaluated
plastic emissions from large river basins only, without including medium-sized or smaller basins.
An evaluation using gridding of the entire land area is desirable.

In this study, we propose a new method of evaluating high-resolution maps of plastic emissions
without using MMPW and attempt to evaluate the Japanese plastic input from the land to the sea.
Here, as in the studies of Lebreton et al. [41] and Schmidt et al. [42], plastics were divided into MicP
and MacP fractions. Using this approach, we examined the relationships between the observed MicP
concentrations in 70 Japanese rivers and land area data, such as the urban area ratio and population
density. Numerical concentrations (particles/m3) and mass concentrations (mg/m3) of the MicP fraction
were analyzed as the target MicP concentrations in this study. We then prepared a countrywide MicP
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concentration map using a 1 km mesh-size based on the land area data. In accordance with a simple
water balance analysis model, we calculated the annual flow rate across each 1 km mesh to obtain
the final MicP emissions from the product of the MicP concentrations and flow rate, and calculated
the annual MicP number and mass inputs from the land to the sea. We also estimated the MacP mass
concentrations from the MicP mass concentrations and the ratio of MacP/MicP determined by previous
studies [41,42] that collected the observed MacP and MicP concentrations. We then calculated the MacP
mass emissions from the product of the MacP concentrations and the flow rate and then calculated
plastic input, which was taken as the sum of MicP and MacP. From these results, we were able to
estimate not only the total mass of plastic inputs, but also their regional properties (by river basin or
administrative district). Our goals in this research were to generate new insights that may be used
to draft countermeasures against plastic emissions, thereby reducing marine pollution outflow from
Japan, and to introduce methods that may also be applied to evaluate plastic inputs in other regions of
the world.

2. Materials and Methods

2.1. Conceptual Foundation for Evaluating Plastic input

The conceptual framework used in this study to evaluate plastic input from land to the sea
is shown schematically in Figure 1. Step 1 involves evaluating the MicP and MacP concentrations
in a land area and Step 2 includes calculating the outflow, Q, in a simple water balance analysis.
In Step 1, we analyzed the correlation between the observed MicP concentrations and the basin
characteristics from rivers. The MicP data were obtained from 70 rivers and 90 sites across Japan,
thus representing a much larger survey than those used by Lebreton et al. [41] and Schmidt et al. [42].
The population density and urban area ratio in the upstream basin area of each measurement site were
evaluated as the basin characteristics. Geographic information system (GIS) software was used to
analyze the basin information across Japan with a 1 km grid. We substituted this information into the
aforementioned correlation and calculated the MicP concentration of each 1 km grid for all of Japan.
Previous studies [41,42] have shown a linear relationship between the mass concentrations of MicP
and MacP based on measured data. Using this relationship, the MacP concentrations in this study
were calculated according to the obtained MicP concentrations.
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Figure 1. Schematic of the conceptual framework used to evaluate plastic inputs from the land to the
sea in this study.

In Step 2, a simple water balance analysis was performed on each 1 km grid. The measured
precipitation used as input data was distributed into evapotranspiration, surface runoff, and
underground infiltration. In calculating these migration pathways, land use and meteorological data
were also utilized. Our goal in this stage was to obtain the annual amount of Japanese plastic emissions.
As underground infiltration is thought to be expelled from the ground annually, the outflow, Q, from
each grid was considered to be equal to the sum of the surface runoff and underground infiltration.

The product of the MicP and MacP concentrations and outflow, Q, obtained in Steps 1 and 2
yielded grid-based MicP and MacP emissions. By summing these emissions, we could evaluate the
overall plastic input from the land to the sea offshore of Japan (Step 3). Furthermore, the sum of all
plastic inputs could be calculated by river basin and administrative district (e.g., prefectures, cities,
towns). Employing this method, since MMPW was not used, more detailed spatial distributions of
plastic emissions could be calculated. Accordingly, we were able to identify the critical areas where
countermeasures should be focused. Since the gridded plastic emissions were calculated, it was also
possible to obtain an overview of the entire range of plastic emissions nationwide.

The foundation of our method is the correlation between the observed MicP data and land area
data in Step 1. The coefficient for Japan in this correlation is likely to be different from that of other
countries. If a large amount of observational MicP concentration data can be collected and a highly
reliable correlation is obtained, the same method should be applicable to other countries, thereby
allowing plastic inputs to be readily calculated. Thus, our method offers both high applicability
and versatility.

2.2. Evaluating Riverine MicP and MacP Concentrations

2.2.1. Field Sites

Here, we describe the observational and analytical methods used to measure MicP concentrations
in rivers in order to derive correlations with land area data (Step 1). Our methods related to determining
MicP concentrations were essentially the same as those of Kataoka et al. [40]. As shown in Figure 2, the
observation sites included 70 rivers and 90 sites across Japan. In contrast, the survey sites used by
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Figure 2. Measurement sites and measured MicP numerical concentrations in rivers.

Table A1 summarizes the river and site names, as well as the basin characteristics at each observation
site. Our observational results from each point are also included in this table. At many locations, only one
observation was made. However, at 19 out of 90 sites, observations were made two or more times on
different days. The observed values shown in Table A1 are the mean values. For the basin characteristics,
the population density and land use (urban area ratio) were recorded in the area upstream of each
observation site. Land use was classified as mountain forest, urban area, farmland, or others (water area,
etc.). The surveyed sites included basins of various sizes (minimum: 1.1 km2, maximum: 1.3 × 104 km2,
mean: 1.5 × 103 km2) including the Tone River, which has the largest basin area in Japan. The population
density at our observation sites ranged from 0 to 7.1 × 103 persons/km2 (mean: 9.7 × 102 persons/km2),
and the urbanization rate ranged from 0 to 100% (mean: 17.7%). The overall composition varied widely,
from urban areas to regions where people do not live. The field surveys in the rivers were conducted for
both the unidirectional flow area, where the flow direction is only downstream, and for the tidal area,
where both downstream and upstream flow occur. However, we have excluded data from the tidal area
from our analyses. Because MicPs in the tidal reach are transported by upstream flow from the sea to
upstream areas due to tides, these observational results were therefore affected by the seas. This work
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aims to show the MicP transport from land to the sea; thus, the data in tidal reach were beyond the scope
of this study.

Field observations were performed for nearly five years, from July 2015 to May 2019, over different
seasons. For each observation day, normal water levels at each site were observed, showing that each
observation day was under low-flow conditions with little influence of flood conditions. It has been
noted that MicP concentrations fluctuate over time, even at the same location, and change with the
water flow rate [31,44]. The same observation has also been confirmed for MacP [45]. Consequently,
MicP and MacP are transported in large quantities to the sea during periods of flooding; however, these
observations are very difficult to make and will be an important issue to address in future research.

2.2.2. Measuring MicP in Rivers

A plankton net (No. 5512-C; RIGO Co. Ltd., Saitama, Japan), which is commonly used in marine
surveys, was employed to collect MicP in rivers. The net was 30 cm in diameter and 75 cm in length.
The size of the netting was 0.335 mm and the flow rate was measured by attaching a low-flow-rate
drainage meter (5571B, RIGO Co. Ltd., Saitama, Japan) to the opening of the net.

The field observation procedures to collect MicP from the river were as follows:

1. From the top of a bridge, the plankton net was deployed onto the surface of the river using a rope.
The net position was located at the center of each stream in cross-section;

2. The length of the rope was adjusted so that the net was generally fixed near the water surface and
set for 5–10 min;

3. After a predetermined installation time, the plankton net was raised to the bridge.

When the flow rate was low, the plankton net was placed in the river again and the same operation
was repeated with the same plankton net. If the plankton net was used many times, it became
easily bent and there was the possibility of contact with the drainage blades during observation.
Therefore, the plankton net was fixed to inner and outer stainless-steel frames to prevent it from
bending. Microplastics were expected to flow well near the water surface. In order to capture MicP at
the surface, we set the height of the plankton net to where the top of the opening protruded from the
water’s surface by several centimeters. When this was converted into an area, 5–10% of the opening
area was above the surface. Therefore, the amount of water filtered was underestimated [40]. Since it
was not easy to completely control the installation height from the bridge, these errors were ignored in
our calculations. Further details of the other observational methods are provided in Kataoka et al. [40].

2.2.3. Laboratory Analyses of MicP Concentrations

We covered the opening of the plankton net used during field sampling with a cloth and transported
it to a laboratory. The suspended matter caught in the net was washed with tap water, the cap at the tip
of the net was opened, and the suspended matter was transferred into a stainless-steel bottle. At this
time, to avoid a reagent blank, tap water was filtered through a 0.1 mm net. It is notable that MicP
was not found from the tap water in the analyses. The method used to analyze MicP from the bottled
samples was essentially the same as that used by Kataoka et al. [40], and proceeded as follows:

1. The sample was filtered using a 0.1 mm net and the sample remaining on the filter was dried;
2. The dried sample was immersed in a 30% hydrogen peroxide solution for approximately one

week to decompose any organic matter, such as plant debris;
3. The sample was filtered again through a 0.1 mm net and the residue was dried for 24 h in a

60 ◦C incubator;
4. The dried sample was spread in a petri dish containing the tap water, and MicP candidate particles

were extracted manually one-by-one;
5. The masses of the MicP candidate particles were measured using an ultra-micro balance (XPR2UV,

Mettler Toledo, Columbus, OH, USA);
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6. The sizes of the candidate particles > ~0.1 mm were measured. Here, MicP was photographed
using an electron microscope (SZX7, Olympus Corp., Tokyo, Japan) with a charge-coupled device
(CCD) camera (HDCE-20C, AS ONE Corp., Osaka, Japan). The ImageJ v.1.52t software package
(https://imagej.nih.gov/ij/notes.html) was then used to calculate the MicP sizes (maximum length,
etc.) from the captured images;

7. A Fourier transform infrared spectrophotometer (FTIR, IRAffinity-1S, Shimadzu Corp., Kyoto,
Japan) was used to identify the material compositions of the MicP candidate particles to determine
whether or not they were indeed plastic.

The 0.1-mm net used in the laboratory analyses was the same as the plankton net used to collect
the MicP from the rivers. The measurement resolution of the ultra-micro balance was 0.1 µg. If there
were many suspended particles, in the interest of streamlining, the dried sample was put into an
aqueous solution of sodium iodide (specific gravity: 1.6, 500 mL) and specific gravity separation was
performed before Step 4. For specific gravity separation, we stirred the sample for ~15 min and let it
stand for 3 h to collect 100 mL of supernatant. This was repeated three times to collect a total of 300 mL.

During laboratory analyses, blank tests were performed in parallel with each sample analysis.
An empty petri dish was used to assess whether or not MicP was present in the petri dish. We confirmed
that there was no MicP contamination during our analyses. We obtained the total numbers and masses
of the MicP fractions identified via FTIR. The numerical and mass concentrations of MicP were
calculated by dividing the total number and mass of the MicP by the drainage from the plankton net.

2.2.4. Evaluating Basin Characteristics

To examine the correlation between the MicP numerical (mass) concentration and basin
characteristics, we evaluated the basin area, population density, and land use characteristics in
the upstream area of each observation site. For the basin area, we obtained elevation and tertiary
gradient mesh data from the Ministry of Land, Infrastructure, Transport and Tourism’s “National
Land Numerical Information Download Service” (http://nlftp.mlit.go.jp/ksj/). The spatial resolution of
these data was 100 m as of 2011. From this, the boundaries of each basin and their upstream areas
were calculated for each observation site. For land use, we obtained mesh data from the same site.
The spatial resolution of these data was 100 m as of 2014. In this dataset, land use characteristics
were classified into 12 categories. Of these, buildings, roads, railways, and other land types were all
considered to be “urban areas,” paddy fields and other agricultural lands were considered “farmlands,”
forests and bushes were considered “mountain forests,” and rivers, lakes, beaches, and golf courses
were reclassified as “other.” We obtained population data (from 2015) at a 250 m resolution from the
governmental “Japan in Statistics” site, E-Stat (https://www.e-stat.go.jp/).

When the boundary of a basin divided a population density grid (or land use situation grid),
we assumed that population density or land use was uniform and the portion of the area after being
divided was added as basin data. In order to calculate the plastic input in Japan, we recalculated these
land use, population density, and elevation data using a 1 km mesh. The data were also used for the
nationwide water balance analysis detailed in Section 2.3 with the same 1 km resolution.

We applied this land information to the relationship between the MicP numerical (mass)
concentration and basin characteristics and calculated the MicP numerical (mass) concentration
for a 1 km grid. We selected the population density and urban area ratio as land information indices to
evaluate the MicP emissions here because the other indices such as basin area and agricultural area
ratio do not have a good correlation with the MicP concentration [40]. The MacP mass concentration
was calculated from the product of the obtained MicP mass concentration and the ratio of the MacP
concentration to the MicP concentration. To calculate MacP/MicP, we used the observational data for
MacP and MicP concentrations at the same sites used by Lebreton et al. [41] and Schmidt et al. [42].
The detailed data are shown in Section 3.4.

https://imagej.nih.gov/ij/notes.html
http://nlftp.mlit.go.jp/ksj/
https://www.e-stat.go.jp/
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2.3. Water Balance Analysis at a 1 km Mesh Resolution

2.3.1. Outline of Water Balance Analysis

We divided the entire area of Japan into a 1 km mesh and performed water balance analyses,
in which it was assumed that the annual precipitation was equal to the sum of the annual
evapotranspiration, surface runoff, and underground infiltration, and that the water volume was
balanced within each grid. For this reason, surface runoff between grids and advection of underground
seepage were not considered. It is conceivable to use a runoff analysis model with high temporal
and spatial resolutions and high accuracy, based on an elaborate, distributed hydrological model
(e.g., [46,47]). However, the computational load for such a model is too large for performing analyses
over a very large area, such as Japan. For this reason, it was unrealistic to perform annual wide-area
calculations to determine the annual values of plastic inputs in this study. Instead, only a water
balance analysis, in which each grid was considered closed, was performed; thus, the calculation
load was remarkably light and the surface runoff and underground infiltration required for material
transport could be calculated. Moreover, as the spatial resolution could be set to a relatively fine scale
of 1 km, it could be applied to calculate plastic inputs over a wide area and could also be applied at an
administrative level that could effectively introduce countermeasures against plastic waste.

2.3.2. Precipitation

In Japan, meteorological data are released as mesh-normal climate data (https://www.data.jma.go.
jp/obd/stats/etrn/view/atlas.html), which are interpolated with the measured values from meteorological
stations (Amedas, etc.) by the Japan Meteorological Agency (JMA). From this dataset, we also used
the temperature and humidity values necessary for calculating evapotranspiration. Spatial changes
in precipitation were large and easily affected by the measurement altitude of the observation site.
The mesh-normal climate data were therefore unsuitable for our purposes, as they were affected by the
spatial density of the observation site. Instead of the mesh-normal climate data, we used rainfall data
generated by the JMA (https://www.jma.go.jp/jma/kishou/know/kurashi/kaiseki.html). This analytical
rainfall is a precipitation distribution output with a resolution of 1 km produced by combining data
from radar rain gauges and ground rain gauges. Here, the annual normal value of each grid was
calculated from a monthly analysis of rainfall data from 2011 to 2015. In this analysis, rainfall and
snowfall were judged using temperature [48]. The amount of monthly snowmelt for each grid was then
evaluated using the degree-day method [49], which can account for snow accumulation and snowmelt.

2.3.3. Evapotranspiration

There are no national observational data for evapotranspiration available; thus, empirical formulae
proposed in previous studies were used to estimate evapotranspiration. Since evapotranspiration
depends strongly on land use, an evaluation was conducted for each land use type classified in Table 1.
Equations (1–4) express the evapotranspiration, E (mm/month), based on the modified equations of
Priestley and Taylor [48], Suzuki and Fukushima [50], an evapotranspiration research group [51], and
Kondo [52], respectively:

Forest E : E = Et + Ei = α
∆

∆ + γ
Rn −G
λ

+ βP (1)

Paddy field in non− irrigated period E : E = 0.54
∆

∆ + γ
S
λ

(2)

Paddy field during irrigation E : E = 0.82S∗Md (3)

Water area E : E =
(
−0.9888l2 + 41.629l + 561.97

) Md
365

(4)

https://www.data.jma.go.jp/obd/stats/etrn/view/atlas.html
https://www.data.jma.go.jp/obd/stats/etrn/view/atlas.html
https://www.jma.go.jp/jma/kishou/know/kurashi/kaiseki.html
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where α is the Priestley–Taylor constant, ∆ is the slope of the saturated water vapor curve, γ is the
moisture meter constant (hPa/◦C), Rn is the net radiation (=0.8S, MJ/m2), G is the ground heat flow
(MJ/m2), λ is the latent heat of vaporization (J/g), β is the canopy interception rate, P is precipitation
(mm/month), S is the total solar radiation (MJ/m2), S* = 10Rn/λ, Md is days of month, and l is the
latitude of the center of gravity of the mesh.

Table 1. Evaluation for evapotranspiration, E, surface runoff, Qs, and underground infiltration, Qi, in
the present study.

Land Use
E

Qs Qi
Major Details Coefficient f

Forest
Forests Equation (1)

0.5 (Quaternary
volcanic rock)

0.8(Other)
Equation (6)

Bushes Equation (2) 0.3 Equation (6)
Mountainous bushes P − Qs 0.95 0

Agriculture area Paddy fields Irrigation Equation (3) 0.8 Equation (6)
No irrigation Equation (2) 0.3 Equation (6)

Other Equation (2) 0.3 Equation (6)

Urban area
Building

sites
Infiltration area Equation (2) 0.3 Equation (6)
No-infiltration

area P − Qs 0.95 0

Road, railways, and others P − Qs 0.95 0

Other
Golf courses Equation (2) 0.3 Equation (6)

Rivers and lakes Equation (4) P − E 0

2.3.4. Surface Runoff and Underground Infiltration

For the surface runoff, Qs, a rational expression [53] that is a centralized conceptual model was
used for each grid, such that:

Qs = f × P (5)

where f is the runoff coefficient and P is precipitation. The general rational formula includes the basin
area and numerical values converted into units (=1/3.6). In this model, the evapotranspiration, surface
runoff, and underground infiltration are calculated as quantities per unit area, and the mesh area
(=1 km2) is then multiplied. The coefficient of the surface runoff, f, is given according to the land use, as
shown in Table 1. The difference between the precipitation, P, and the sum of the evapotranspiration,
E, and the surface runoff, Qs, was obtained, and the underground infiltration, Qi, was calculated as:

Qi = P− E−Qs (6)

The sum of the surface runoff, Qs, and underground infiltration, Qi, was used as the outflow, Q,
from each grid (Qs + Qi), and the product of Q and the MicP (MacP) concentration were calculated as
the MicP (MacP) emissions from each grid.

2.3.5. Validating the Water Balance Model

In order to validate the numerical accuracy of the outflow, Q, determined in our water balance
model, validation data were collected. The annual flow rate at the most downstream discharge
observation point in 109 first-class water systems were obtained from the Hydrological Water Quality
Database of the Ministry of Land, Infrastructure, Transport and Tourism (http://www1.river.go.jp/).
The total of the relevant basin areas covered 64% of Japan. Flow data from 2011–2015 were collected in
the same manner as the rainfall, and the mean value for these five years (hereafter, the “observed flow
rate”) was calculated. For the outflow, Q, the total value of the outflows of all grids included in the

http://www1.river.go.jp/


Water 2020, 12, 951 10 of 26

upstream area of the target observation site (hereafter, the “calculated flow rate”) was determined.
If the grid included a basin boundary, the area included in the basin was used.

3. Results

3.1. Characteristics of MicP Concentrations in Japanese Rivers

Figure 2 and Table A1 show the MicP numerical and mass concentration data from 70 rivers and
90 sites across Japan. Although Kataoka et al. [40] focused on only three types of MicP materials (PE,
polyethylene; PP, polypropylene; PS, polystyrene), all plastic types were included in this study. As a
result, the MicP numerical concentration was widely distributed over four orders of magnitude, from
0.03 to 63.89 (particles/m3), with mean and median values of 4.34 and 1.51 (particles/m3), respectively.
The MicP mass concentration changed over a wide range, from 0.00008 to 16.15 (mg/m3), with mean
and median values of 0.79 and 0.12 (mg/m3), respectively. The coefficient of variation was 1.85 for the
MicP numerical concentration and 2.40 for the MicP mass concentration, indicating that variation of the
mass concentration was larger than that of the numerical concentration. The mean MicP size obtained
in this study was 1–2 mm. PE, PP, and PS were the dominant plastic types in the MicPs collected.

Figure 3 shows the percentiles of the numerical concentration of MicP, Cn, and mass concentration,
Cm. The mean values of both Cn and Cm are larger than their respective median values. The percentage
of sites above the mean value was 30% for Cn and 23% for Cm. Moreover, a number of sites with
values less than 1/10 of the mean value were also observed, as much as 21% and 46% for Cn and Cm,
respectively. From these values, it is apparent that high MicP concentrations at relatively few sites
skewed the means.
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Figure 3. Percentiles of MicP numerical concentration (a) and mass concentration (b) for all data.
The x-axis is displayed on a logarithmic scale.

The correlation between Cn and Cm are shown in Figure 4. The results from all 90 sites are displayed.
Although some variation was observed between the behaviors of Cn and Cm, the approximately straight
line that fits the data has a positive slope. The Pearson’s correlation coefficient, R2, of this line was
0.748, with a p-value < 0.05, indicating a significant correlation between these two concentrations.



Water 2020, 12, 951 11 of 26

Water 2020, 12, 951 11 of 25 

R2, of this line was 0.748, with a p-value < 0.05, indicating a significant correlation between these two 
concentrations. 

Figure 4. Relationship between the MicP numerical concentration Cn and mass concentrations Cm for 
all data. The solid line represents a linear approximation of the data and the regression coefficient (= 
0.201 (mg/particle)) corresponds to the mean mass (mg) per MicP particle. 

3.2. Relationship between MicP Concentrations and Basin Characteristics 

We examined the relationship between the MicP concentrations and basin characteristics 
utilizing extensive MicP concentration data. The mean values of the urban area ratio at sites above 
and below the mean MicP mass concentration were 40% and 10%, respectively. However, the mean 
value of the farmland fraction was 17% both above and below the mean value. A similar trend was 
observed for the MicP numerical concentration. The MicP concentrations tended to be higher in rivers 
with larger urban area ratios. Reflecting this, and similar to Kataoka et al. [40], we plotted the 
correlation between the MicP concentrations and basin characteristics (population density and urban 
area ratio, Figure 5). This figure indicates that the relationship between these concentrations and 
basin characteristics may be linearly approximated at a 95% confidence interval. The y-axis at a 
certain value of x (Figure 5a, left) is given by the following equations [54]: 

( )2

0.05
12

xx

x x
y t s

n S
−

Δ = +  (7)

2
−

=
−

yy xyS aS
s

n
, (8)

where n is the number of samples (90), t0.05 is the t-value (1.987) corresponding to a probability of 5% 
on both sides of n = 90 (degrees of freedom: 89), s is the expected value of the regression residual, Sxx 
and Syy are the sums of squares of the deviations from the mean values ( x  and y ) for x and y, 
respectively, and Sxy is the sum of the product of the deviations from x  and y .When these values 
are divided by n − 1, Sxx and Syy become the variances of x and y, respectively, and Sxy becomes the 
covariance of x and y. 

 

C m
 (m

g/
m

3 )

0 10 20 30 40 50 60 700
2
4
6
8

10
12
14
16
18

Cn (particles/m3)

Figure 4. Relationship between the MicP numerical concentration Cn and mass concentrations Cm for
all data. The solid line represents a linear approximation of the data and the regression coefficient
(=0.201 (mg/particle)) corresponds to the mean mass (mg) per MicP particle.

3.2. Relationship between MicP Concentrations and Basin Characteristics

We examined the relationship between the MicP concentrations and basin characteristics utilizing
extensive MicP concentration data. The mean values of the urban area ratio at sites above and below
the mean MicP mass concentration were 40% and 10%, respectively. However, the mean value of the
farmland fraction was 17% both above and below the mean value. A similar trend was observed for
the MicP numerical concentration. The MicP concentrations tended to be higher in rivers with larger
urban area ratios. Reflecting this, and similar to Kataoka et al. [40], we plotted the correlation between
the MicP concentrations and basin characteristics (population density and urban area ratio, Figure 5).
This figure indicates that the relationship between these concentrations and basin characteristics may
be linearly approximated at a 95% confidence interval. The y-axis at a certain value of x (Figure 5a, left)
is given by the following equations [54]:

∆y = 2t0.05s

√
1
n
+

(x− x)2

Sxx
(7)

s =

√
Syy − aSxy

n− 2
(8)

where n is the number of samples (90), t0.05 is the t-value (1.987) corresponding to a probability of 5% on
both sides of n = 90 (degrees of freedom: 89), s is the expected value of the regression residual, Sxx and
Syy are the sums of squares of the deviations from the mean values (x and y) for x and y, respectively,
and Sxy is the sum of the product of the deviations from x and y.When these values are divided by n −
1, Sxx and Syy become the variances of x and y, respectively, and Sxy becomes the covariance of x and y.
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Figure 5. Correlation between MicP concentrations and population density, Wp, (a) and urban ratio,
Wu, (b) for raw and moving average data. The stippled line represents the 95% confidence interval
around the linear approximation.

By inspecting the relationship between Cn and Cm, as well as the population density, Wp, and
urban area ratio, Wu, we confirmed that all four values were positively correlated. The following linear
approximations were obtained for the respective values:

Cn = 0.0016Wp + 2.7648
(
R2 = 0.135, P = 3.65× 10−4

)
(9)

Cm = 0.0003Wp + 0.4686
(
R2 = 0.102, P = 2.20× 10−3

)
(10)

Cn = 0.181Wu + 1.235
(
R2 = 0.217, P = 3.65× 10−6

)
(11)

Cm = 0.0396Wu + 0.1144
(
R2 = 0.184, P = 2.46× 10−5

)
(12)

The correlation coefficient and p-value for each approximation formula are provided above. From
these results, it is clear that p < 0.05 for all equations, demonstrating that there was a significant positive
correlation between the MicP concentrations and basin characteristics at a 5% confidence interval.
The correlation coefficients were greater with Wu than with Wp.

It is important to note that, as shown in Figure 5, the observed raw data exhibited some variations,
mainly due to the uncertainties in field sampling of the MicPs and the behavior of MicP in rivers (i.e.,
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settling on the riverbed). To reduce some of the variation in MicP, moving average values for the
observed raw data are also displayed in Figure 5. Here, the data were rearranged in order of population
density (or urban area ratio), and the 20 adjacent data points were averaged to determine the moving
average. The raw population density and urban area ratio data were non-uniform. In other words, the
raw data were concentrated within a relatively small population density and urban area ratio, thereby
affecting the linear approximation. In order to avoid the problems associated with such a skewed
distribution, a moving average was used. As a result of this operation, the moving average of Cn and
Cm revealed an increasing trend with both population density and urban area ratio. However, the
trend was not linear, instead forming a convex curve. This relationship was observed more distinctly
with population density.

We tested several functions to find the approximate curve for the moving average. As a result, the
following two piecewise equations were obtained for the population density:

Cn = 0.0004Wp + 1.7192, Wp < Wpth

Cn = 2.8239 ln
(
Wp

)
− 12.577, Wp ≥Wpth

(13)

Cm = 0.0022Wp + 0.0026, Wp < Wpth

Cm = 0.5651 ln
(
Wp

)
− 2.5082, Wp ≥Wpth

(14)

Although a logarithmic function was the most suitable for predicting the moving average of the
MicP concentration shown in Figure 5a, it became negative as the x-axis approached zero. Thus, it was
not appropriate to use this function for the entire range. For this reason, a logarithmic function was
used here for the range above a certain threshold value, Wpth, and a linear function was used for the
range below Wpth. We selected 181 (persons/km2) as Wpth so that the intercept of the linear function
was non-negative and the difference between the two functions at the threshold value was minimized.
The correlation coefficients (R2) for Equations (13–14) were 0.004, 0.912, 0.652, and 0.849 (from top to
bottom). Only one low coefficient was observed, but the other approximate curves had favorable R2

values, thus indicating their goodness of fit.
The y-intercept of the approximate curve for the moving average was smaller than that of the

approximately straight line for the raw data, suggesting that the approximate curve represents more
appropriate values. We selected a quadratic function as an approximate curve for the moving average
values for the urban area ratio and obtained the following equations:

Cn = −0.00109Wu
2 + 0.26382Wu + 0.5116 (15)

Cm = −0.000217Wu
2 + 0.056424Wu (16)

In the expression of the MicP mass concentration obtained using the least-squares method, the
intercept became negative; thus, we manually set the intercept to 0. Meanwhile, the correlation
coefficients for Equations (15) and (16) had values of 0.966 and 0.980, respectively, indicating a better
correlation than that of the population density. This improvement over the population density was
similar to the results of the linear approximation shown in Equations (9)–(12).

3.3. Calculated Results for Water Balance Analysis

Our water balance model allowed us to determine Japanese plastic emissions, as well as the MicP
concentration. Appendix A Figure A1 shows a nationwide map of the annual values of precipitation,
P, evapotranspiration, E, surface runoff, Qs, and underground infiltration, Qi, obtained via the water
balance analysis. Here, the quantity in each grid was divided by the area (1 km2) and converted to the
quantity per year. Figure A1 shows that precipitation was high in southern Kyushu, Shikoku, the Kii
Peninsula, and the Shizuoka prefecture on the Pacific coast. This is because rainfall due to typhoons
or similar weather patterns during spring, summer, and autumn is quite abundant in these areas.
Meanwhile, on the coast of the Sea of Japan, precipitation was high from Hokuriku to the southern



Water 2020, 12, 951 14 of 26

part of the Tohoku region due to snowfall in winter. Precipitation in Hokkaido was generally low,
especially in the northeast, which receives less than 1000 mm/yr. Evapotranspiration also changes
in conjunction with the magnitude of precipitation. However, evapotranspiration is lower in the
north and higher in the south, indicating that it is also affected by latitudinal temperature gradients.
The surface runoff map also shows a pattern that is generally similar to that of the precipitation map,
but sometimes shows clear differences (for example, between the Hokuriku and Tohoku regions on the
coast of the Sea of Japan and southern Kyushu). This reflects the fact that surface runoff and infiltration
differ with land use type, suggesting that underground infiltration increases in the areas where surface
runoff is low. The annual means of each quantity were: 2161 mm/yr for precipitation, 753 mm/yr for
evapotranspiration, 1031 mm/yr for surface runoff, and 377 mm/yr for underground infiltration.

In order to validate the results of the water balance analysis, Figure 6 shows a correlation between
the calculated flow rate, Qcal, which is the sum of surface runoff and underground infiltration, and the
observed flow rate, Qobs. Here, we focused on the results from flow rate observation sites across all
109 primary water systems in Japan. Figure 6 also shows that Qcal and Qobs are positively correlated;
the slope of the linear approximation between Qcal and Qobs is 0.963, the correlation coefficient, R2, is
0.925, and the p-value is < 0.05. These results demonstrate that the calculated flow rate, Qcal, obtained
from this model is almost coincident with the observed flow rate, Qobs. It was thereby confirmed
that the total outflow of the sum of surface runoff and underground infiltration in a watershed very
closely approximates the annual river discharge. Therefore, this method of performing a simple water
balance analysis without considering the advection between grids had a high numerical accuracy and
also greatly reduced the computational load, thus proving to be a useful technique that is capable of
analyzing high-resolution (1 km) grids.
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3.4. Calculating Japanese Plastic Emissions from Land to the Sea

We calculated the MicP numerical and mass concentrations using the population densities and
urban area ratios across Japan and their approximations given in Equations (9–16). We then multiplied
these values by the outflow, Q, to estimate the numerical and mass MicP emissions for each 1 km grid
cell. By summing these results nationwide, we obtained the total number and mass of the MicP particles
released from the land to the sea, as shown in Table 2. Table 2 shows the eight calculations using
approximate curves for the moving average of the observed values in addition to the approximately
straight line (y) and the maximum (y + ∆y/2) and minimum (y – ∆y/2) values at a 95% confidence
interval (CI) for Cn and Cm. Table 2 also defines the approximate equations used. From our results, the
annual number of MicP particles emitted ranged from 0.55 to 2.54 trillion, with a median of 1.40 trillion
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particles. The minimum, median, and maximum values of the annual MicP emissions by mass were
65, 223, and 503 t/yr, respectively. The maximum and minimum values of both the number and mass
MicP emissions corresponded to the maximum and minimum values from the linear approximation
at a CI = 95%. Concerning this approximation from the raw data and from the curve of the moving
average values, the number and mass MicP emissions were 1.27–1.67 trillion particles or 204–294 t/yr,
respectively. The differences between these values are low, suggesting that the differences among the
various approximations were also minimal.

Table 2. Annual inputs of MicP numbers and masses from land to the sea in Japan, obtained using
linear approximations of y ±∆y/2 (confidence interval: 95%) obtained from raw data, and curves
approximated for moving average data.

Variables Approximation Number Mass

Equation 1012 Particles Equation Tons

Population
density, Wp

Linear y 9 1.67 10 293.6
Linear y + ∆y/2 7,8,9 2.54 7,8,10 502.8
Linear y − ∆y/2 7,8,9 0.81 7,8,10 84.5

Curve 13 1.39 14 204.1

Urban ratio, Wu

Linear y 11 1.41 12 228.1
Linear y + ∆y/2 7,8,11 2.26 7,8,12 435.7
Linear y − ∆y/2 7,8,11 0.55 7,8,12 65.1
Curve 15 1.27 16 217.9

Low 0.55 65.1
Middle 1.40 223.0
High 2.54 502.8

We examined the value of MacP/MicP, a, which is required to obtain the amount of MacP mass
concentration emitted from the MicP mass concentration. Figure 7 shows a boxplot of MicP and
MacP mass concentrations and their ratio, a, with partially corrected and organized results from
Lebreton et al. [41]. Since there were few measured data of mass concentrations of both MicP and
MacP in the data of Lebreton et al. [41], we also included data estimated from the MicP numerical
concentrations. Additionally, the results for the Yangtze River in China, whose MicP and MacP
concentrations were very large, as presented by Lebreton et al. [41], were excluded, bringing n to 29 for
each case in Figure 7. As a result, the MicP mass concentration was distributed over four orders of
magnitude, from 10−2 to 101. The median and mean values were 0.53 and 5.50 mg/m3, respectively,
which are generally higher than the data for rivers in Japan shown in this study (Figure 3b). The median
and mean values were 4.4 and 7.0 times larger than those in this study, respectively. However, the
MacP mass concentration was greater than the MicP mass concentration and was distributed from 10−1

to 101 and the median and mean MacP mass concentrations were 4.02 and 12.3 mg/m3, respectively. By
considering the mass concentration ratios of MacP and MicP shown in Figure 7b, we also found that
the order of magnitude varied widely, from 10−2 to 102. In Figure 7b, the 25%, 50% (median), and 75%
quartiles were 2.28, 8.50, and 35.2, respectively, with a mean value of 20.7.
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Figure 7. Box plots for the mass concentrations of MicP and MacP (a) and the value of MacP/MicP
mass concentrations at each measurement site (b). These figures were based on the measurement data
of Lebreton et al. [41]. The solid line represents the mean values; the tops and bottoms of the boxes
denote the 75% and 25% quartiles, respectively, and the top and bottom of the error bars show the
maximum and minimum values, excluding outliers. Crosses denote the mean data.

Table 3 summarizes the mass concentration ratio, a, based on the results obtained from the study
of Lebreton et al. [41], as well as the data of Schmidt et al. [42]. The median and mean values of
the MacP and MicP mass concentrations were calculated (Figure 7a) and their ratios are shown in
Table 3; the median and mean values of a, shown in Figure 7b, are also shown. It is worth noting that
Schmidt et al. [42] did not provide a list of MacP and MicP mass concentrations, but only showed their
means and medians. Consequently, the mean and median MacP/MicP values are not displayed here.
The range of MacP/MicP values was as wide as 0.77–20.66. The maximum value represents the mean
MacP/MicP, as this value is affected by large values of 100 or more, as shown in Figure 7b, making
the MacP/MicP conceivably inappropriate as a representation of the data. Additionally, it is generally
unlikely that MacP/MicP < 1, considering that most MicPs are secondary microplastics formed by the
fragmentation of MacPs. Therefore, we selected four cases (2.24, 3.13, 7.66, and 8.50), excluding the
minimum and maximum values in Table 3, as the mass concentration ratios, a, for obtaining the MacP
mass concentration from that of MicP. From these four cases, we obtained eight cases for MicP, 32 cases
for MacP, and their sums.

Table 3. Summary of the coefficient, a, which is the ratio of the MacP and MicP mass concentrations.

Evaluation of MacP/MicP Lebreton et al. [41] Schmidt et al. [42]

Median (MacP)/Median (MicP) 7.66 0.77
Mean (MacP)/Mean (MicP) 2.24 3.13

Median (MacP/MicP) 8.50 -
Mean (MacP/MicP) 20.66 -

Figure 8 shows the annual values of plastic input from the land to the sea in Japan. Here, the
results for MicP, MacP, and their sums are displayed as boxplots, as in Figure 7. It should be noted that
the results for MicP inputs were the same as in Table 2. From Figure 8, the minimum, median, and
maximum values of MacP inputs are 146, 946, and 4273 t/yr, respectively. These values are larger than
the MicP inputs corresponding to the MacP/MicP. Additionally, the total plastic input (MicP + MacP)
was also widely distributed, in the range of 210–4776 t/yr, but the 25%, 50% (median), and 75% quartile
values were 712, 1310, and 2074 t/yr, respectively. From this, it is conceivable that 1000–2000 tons of
plastic are flowing out of Japan into the surrounding waters in a single year.
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Figure 8. Box plots for annual inputs of MicP, MacP, and total plastics from the land to the sea in Japan.

Plastic emissions maps of Japan are shown in Figure 9 and show the regional emissions characteristics.
A linear approximation was used for calculating the MicP mass concentrations using Equations (10) and
(12), and a value of 3.13 was used as the mass concentration ratio, a. The result in this case represents
the median of 32 cases of total plastic input. From the results shown in Figure 9, it is clear that plastic
emissions were larger with higher population densities and more urbanized areas in both the Tokyo
metropolitan area and in other large cities, especially Nagoya and Osaka. Moreover, the results for
population density and urban area ratio exhibit similar patterns because they have similar distributions.
It is noteworthy that our method allows for the mapping of plastic emissions at a very high-resolution
(1 km grid). Therefore, using this method, it is also possible to calculate the plastic emissions for each
river basin and each administrative district individually. As an example, Table A2 shows the minimum,
median, and maximum values of plastic emissions by prefecture across Japan.
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evaluated via linear approximation for population density (a) and urban area ratio (b) with the same
ratio of MacP/MicP = 3.13. Warmer colors indicate higher emissions, while cooler colors indicate
lower emissions.
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4. Discussion

4.1. Total Plastic Input from the Land to the Sea

As mentioned in Section 3.4, we estimated the plastic input from the land to the sea as 210–4776 t/yr in
Japan. In previous studies, the plastic inputs estimated for Japan ranged from 21,000 to 57,000 t/yr [12] and
from 190 to 1050 t/yr [41]. Therefore, the value estimated in this study is at least one order of magnitude lower
than that of Jambeck et al. [12] and is close to the results of Lebreton et al. [41]. Lebreton et al. [41] estimated
plastic input in accordance with extensive MicP and MacP data measured in rivers, while Jambeck et al. [12]
did not compare all of these metrics. Thus, we determined that the values estimated by Lebreton et al. [41]
can be used to calculate the actual plastic input more accurately, which would suggest that the plastic input
calculated in this study was fundamentally accurate.

The plastic input estimated in this study largely depended upon the measurement of MicP
and the subsequent evaluation of MacP concentrations. The amount of MicP data was very large,
including 70 rivers and 90 sites across Japan, representing a sufficient dataset for the current scope
of research. However, the measured MicP values were mainly obtained under low-flow conditions,
wherein the influence of flooding was minor. We have also previously investigated MicP concentrations
during a period of flooding in the Edo River, which flows into Tokyo Bay, Japan, and showed that
the concentrations under flood conditions were one order of magnitude higher than under low-flow
conditions [44]. The annual MicP transport in the Edo River was calculated using the L–Q relation, in
which L is MicP transport and Q is discharge. This relationship is generally used for material transport
analyses. As a result, the contributions of number and mass MicP transports at the time of flooding
to the overall totals were quite high, at 73.5% and 84.1%, respectively. From this, we considered that
the MicP input in this study, which was based on data collected only under low-flow conditions,
corresponded to a minimum value. Therefore, it will be necessary to collect MicP concentration data
during flood periods in the future.

It is important to note that the MicP concentrations in rivers are generally affected by wastewater
treatment plants (WWTP) [38]. In this study, we did not directly incorporate the effect of WWTP in the
evaluation of MicP emissions at a 1 km grid. It is therefore necessary to calculate the MicP input from
land to sea including the influences of the WWTPs. The evaluation of plastic emission from land to sea
in this study was based on the MicP concentrations measured in rivers. Our model does not, therefore,
incorporate the plastic sources located on the shorelines, which can directly outflow plastics to the sea,
not via rivers. Sources near the shorelines such as public beaches, resort areas, and industrial sites are
important for accurately evaluating plastic input from land to sea.

Since the amount of MacP concentration data was much smaller than that of MicP, we examined
the MacP/MicP value using data from previous studies [41,42]. As a result, four values (2.24, 3.13, 7.66,
and 8.50) were used as MacP/MicP. It is known that MacP concentrations increase during flooding, as
do MicP concentrations [45], and it is essential to estimate the MacP input considering data at the time
of flooding. However, the methods of observing MacPs has not yet been sufficiently studied, even
when compared with those of MicPs. In particular, a method of measuring MacP during flooding,
when various types of suspended matter flow downstream, has not been established. In order to solve
such problems, Kataoka and Nihei [55] have proposed a MacP survey method that combines video
image captures and image analyses of the river water surfaces, along with safety considerations. In the
future, it will be essential to collect MacP concentration data using these methods to improve the
accuracy of plastic emissions evaluations.

4.2. Map of Plastic Emissions

An important result obtained in this study is the creation of a high-resolution map of plastic
emissions across Japan, as shown in Figure 9. Since this map was based on the correlation between
the MicP mass concentration and land area data, such as urban area ratio and population density, it
was possible to create high-resolution maps. This technique is expected to be useful for planning
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plastic waste countermeasures and selecting priority areas for such activities more precisely, unlike
conventional plastic emissions maps organized by country. If the same correlation can be obtained by
collecting MicP data in other countries, it may be possible to create similar high-resolution maps of
plastic emissions worldwide. Therefore, the method of estimating plastic emissions introduced in this
study is highly versatile.

As the same formula was used for the MicP concentrations and land area data across Japan, the
calculated plastic emissions depend only on the land area data. Even with the same urban area ratio
(or population density), it is possible that regional differences will occur. Specifically, the status of
sewerage development in a basin has a large effect on the emission of MicPs, as plastic emissions vary
with the sewerage area for the same urban area ratio. Additionally, it is expected that the amount of
littering will change depending on the consciousness of the residents in the basin. In that case, even at
the same population density, there may be a large difference in MacP emissions (and thus, secondary
MicP emissions). To consider such regional differences in estimating plastic emissions, it is necessary to
collect more observational data on MicP and MacP concentrations and refine our calculations for each
region. In addition, it is necessary to determine the sources of MicP and MacP in each land area. To this
end, the accumulation of measured MicP and MacP concentrations in rivers will be indispensable in
the future.
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Table A1. MicP numerical concentration Cn (particles/m3) and mass concentration Cm (mg/m3), and
basin characteristics for the 70 rivers and 90 sites used in this study. For the basin characteristics,
population density Wp (persons/km2) and urban area ratio Wu (%) in the upstream area of each
observation site are shown.

No. River Survey Site Cn Cm Wp Wu

1 Koetoi R. Komatsu 0.19 0.00 4 1

2 Shimoebekorobetsu R. Toyotomi 1.81 0.19 6 1

3 Ishikari R. Tachihu-oohashi 4.11 0.69 38 2

4 Toyohira R. Nijunijo-oohashi 1.24 0.06 126 3

5 Kitakami R. Meiji 0.14 0.00 141 5

6a Mogami R. Shonai-oohashi 0.36 0.08 130 6

6b Mogami R. Kurotaki 0.49 0.12 182 8

6d Mogami R. Konoki 1.48 0.02 94 6

7 Su R. Ochiai 8.12 1.52 362 15

8 Abukuma R. Tenjin 0.39 0.01 216 10

9 Kuji R. Tomioka 0.03 0.00 59 3

10 Naka R. Nakagawa 0.70 0.03 145 8

11 Sakura R. Sakaeri 2.46 0.74 265 17

12 Kinu R. Toyomizu 0.40 0.01 54 11

13 Watarase R. Nowatari 1.53 0.07 429 15

14a Tone R. Sakae 0.37 0.07 475 17

14b Tone R. Tonegawa 8.68 2.36 329 14

14c Tone R. Bando 0.17 0.03 414 14

15a Ohori R. Kisaki 4.40 3.31 7161 85

15b Ohori R. Kachi 12.88 1.08 6066 82

16 Edo R. Noda 3.32 0.58 2366 57

17a Naka R. Yoshikoshi 2.31 1.78 1784 45

17b Naka R. Shinkai 5.98 1.74 1000 37

18a Ara R. Hanekura 4.57 0.97 636 17

18b Ara R. Kaihei 7.40 1.37 403 12

18c Ara R. Onari 8.35 0.32 219 8

18d Ara R. Kumagaya 4.59 0.05 157 7

18e Ara R. Tamayodo 0.44 0.02 128 5

18f Ara R. Kyu-titibu 1.15 0.16 78 3

19 Ichino R. Matsunaga 2.09 0.43 1002 42

20 Musashi Channel Gese 1.31 0.04 330 12

21 Yoshino R. Mannen 17.27 0.59 445 26

22 Yoro R. Kasumi 0.71 0.00 208 10

23 Obitsu R. Nakagawa 3.29 0.15 110 6

24 Koito R. Rokusan 1.43 0.12 116 5

25 Tama R. Maruko 1.11 0.24 2931 31
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Table A1. Cont.

No. River Survey Site Cn Cm Wp Wu

26a Tsurumi R. Shinyokohama 14.24 3.33 6619 72

26b Tsurumi R. Kamoike 13.81 3.62 6877 73

26c Tsurumi R. Kawawakitahassaku 30.67 1.52 5759 67

26d Tsurumi R. Ochiai 6.15 1.16 6752 72

26e Tsurumi R. Onmawari 10.52 2.11 5230 66

26f Tsurumi R. Sumiyoshi 2.59 0.32 5768 23

27 Sagami R. Sagami-oohashi 0.30 0.04 446 12

28 Toneunga R. Fureai 12.66 2.81 1333 50

29 Hayakido R. Shibasawa 3.51 0.13 35 2

30 Saka R. Midori 0.60 0.46 600 26

31 Shonai R. Shin-meisei 63.89 16.15 2045 44

32 Kiso R. Kawashima-oohashi 0.55 0.04 79 2

33 Nagara R. Nagara-oohashi 1.79 0.04 110 6

34 Ibi R. Ibi-oohashi 1.01 0.01 72 3

35 Kuzuryu R. Nakakado 2.01 0.06 72 4

36 Asuwa R. Kujuku 7.35 1.70 144 5

37 Kamo R. Kyoukawa 4.93 0.77 2378 30

38 Katsura R. Miyamae 9.57 3.61 924 14

39 Uji R. Gokou 1.83 1.20 333 11

40 Yodo R. Hijikata 2.01 0.11 491 12

41 Ina R. Minamizono 6.39 0.68 1261 22

42a Yamato R. Taisho 6.94 0.37 1266 30

42b Yamato R. Gokou-oohashi 11.09 2.52 1192 31

43 Toga R. Shimokawara 1.38 0.03 4276 28

44 Ikuta R. Nunohiki 0.22 0.01 303 3

45 Sendai R. Sendai-oohashi 0.99 0.01 83 4

46 Tenjin R. Tenjin 1.95 0.04 86 4

47 Hino R. Shin-hino 0.45 0.04 25 2

48 Hii R. Mizuho-oohashi 0.28 0.01 53 4

49 Goemon R. Hinode 3.98 0.45 643 29

50 Asahi R. Okakita-oohashi 0.90 0.04 70 4

51 Nishiki R. Gosho-oohashi 0.11 0.00 21 2

52 Saba R. Okinohara 0.12 0.00 19 1

53 Fushino R. Takada 0.65 0.02 339 13

54a Mononobe R. Mononobe 1.07 0.12 26 1

54b Mononobe R. Matchida 1.48 0.18 21 1

55 Niyodo R. Niyodo-oohashi 3.76 0.03 43 2

56a Shimanto R. Rivermouth 1.35 0.04 37 2

56b Shimanto R. Downstream 0.39 0.00 37 2
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Table A1. Cont.

No. River Survey Site Cn Cm Wp Wu

57 Shigenobu R. Deai 0.64 0.06 658 12

58 Yaoshi.R Seisei 0.26 0.00 218 8

59 Hiji R. Hatanomae 0.42 0.03 93 8

60 Onga R. Kanroku 1.27 0.07 508 19

61 Hikosan R. Okamori 5.24 3.04 406 17

62 Kagetsu R. Kagetsugawa 1.37 0.05 100 4

63 Kikuchi R. Yamagaseibu-oohashi 2.28 3.11 181 11

64 Kuro R. Kurumagaeri 0.21 0.01 125 9

65 Shira R. Yotsugi 5.51 0.01 334 12

66 Midori R. Medomachi 8.25 0.43 67 5

67 Kuma R. Seibu-oohashi 0.84 0.11 50 3

68 Sendai R. Miyanojo 1.21 0.68 68 6

69 Fukido R. South side 0.23 0.02 0 0

70a Miyara R. Kainan 12.77 0.62 12 2

70b Miyara R. Kawara 0.97 0.31 11 2

Table A2. Minimum, median, and maximum values of plastic emissions by prefecture (Unit: t/yr).

Prefecture Low Middle High Prefecture Low Middle High

Hokkaido 5.2 91.6 594.1 Shiga 2.1 14.1 47.2

Aomori 1.5 26.3 101.5 Kyoto 2.6 16.3 59.3

Iwate 0.5 33.6 158.1 Osaka 7.8 24.0 60.5

Miyagi 3.8 21.8 74.0 Hyogo 6.3 28.8 100.7

Akita 0.8 38.1 175.3 Nara 2.2 12.8 49.2

Yamagata 1.2 32.7 137.9 Wakayama 1.4 18.7 73.9

Fukushima 2.2 35.3 136.4 Tottori 1.1 13.3 49.7

Ibaraki 3.7 23.5 76.9 Shimane 0.6 18.9 80.2

Tochigi 3.9 21.6 73.2 Okayama 2.7 17.2 61.3

Gunma 3.5 18.4 62.7 Hiroshima 3.2 24.0 87.9

Saitama 7.0 28.5 81.9 Yamaguchi 2.0 20.8 74.6

Chiba 6.7 31.2 94.9 Tokushima 1.3 14.0 56.6

Tokyo 12.7 36.0 103.4 Kagawa 1.1 5.9 20.0

Kanagawa 10.0 31.6 83.0 Ehime 1.6 18.0 67.5

Yamanashi 1.5 12.9 47.6 Kochi 1.2 23.1 121.6

Nagano 2.0 36.2 138.7 Fukuoka 7.6 35.1 107.2

Niigata 7.2 70.6 257.8 Saga 2.1 12.1 38.5

Toyama 3.9 24.1 82.7 Nagasaki 2.2 16.0 55.3

Ishikawa 3.3 22.2 77.5 Kumamoto 4.0 33.9 122.8

Fukui 2.4 19.8 72.0 Oita 1.7 21.2 78.9

Gifu 5.5 43.2 162.9 Miyazaki 2.5 35.5 136.0

Shizuoka 9.0 45.0 146.1 Kagoshima 3.2 40.4 149.3

Aichi 8.7 40.4 117.3 Okinawa 2.6 11.2 36.7

Mie 5.0 26.5 91.2
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