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Abstract: The prediction and advanced warning of landslide hazards in large-scale areas must deal
with a large amount of uncertainty, therefore a growing number of studies are using stochastic models
to analyze the probability of landslide occurrences. In this study, we used a modified Thiessen’s
polygon method to divide the research area into several rain gauge control areas, and divided the
control areas into slope units reflecting the topographic characteristics to enhance the spatial resolution
of a landslide probability model. We used a 2000–2015 long-term landslide inventory, daily rainfall,
and effective accumulated rainfall to estimate the rainfall threshold that can trigger landslides. We
then employed a Poisson probability model and historical rainfall data from 1987 to 2016 to calculate
the exceedance probability that rainfall events will exceed the threshold value. We calculated the
number of landslides occurring from the events when rainfall exceeds the threshold value in the slope
units to estimate the probability that a landslide will occur in this situation. Lastly, we employed the
concept of conditional probability by multiplying this probability with the exceedance probability
of rainfall events exceeding the threshold value, which yielded the probability that a landslide will
occur in each slope unit for one year. The results indicated the slope units with high probability that
at least one rainfall event will exceed the threshold value at the same time that one landslide will
occur within any one year are largely located in the southwestern part of the Taipei Water Source
Domain, and the highest probability is 0.26. These slope units are located in parts of the study area
with relatively weak lithology, high elevations, and steep slopes. Compared with probability models
based solely on landslide inventories, our proposed landslide probability model, combined with a
long-term landslide inventory and rainfall factors, can avoid problems resulting from an incomplete
landslide inventory, and can also be used to estimate landslide occurrence probability based on future
potential changes in rainfall.

Keywords: landslide; rainfall threshold; landslide probability model; Taiwan

1. Introduction

Taiwan is a relatively new island formed by plate movements. Due to its high mountains, steep
slopes, and relatively unstable geological conditions, as well as frequent typhoons and torrential
rains, slopeland disasters are common in mountainous areas. Thus, slopeland hazard prevention
and mitigation projects are necessary. In slopeland hazard prevention work, landslides have a high
level of unpredictability. In particular, estimating the likelihood of landslides in large watersheds
using deterministic models is difficult when no detailed geomorphological and hydrological data
have been collected for the whole area. Therefore, the use of a stochastic model to assess landslide
probability is more feasible. According to the definition, landslide hazard involves both spatial and
temporal probability [1]. The analysis of landslide spatial probability is generally seen as a landslide
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susceptibility analysis in the research [2–12]. The landslide temporal probability, normally expressed in
terms of frequency, return period, or exceedance probability [13], was analyzed in the research [14–21].

Methods of performing landslide temporal probability analysis can be classified as hydrological
models and approaches based on exceedance probability [22]. The hydrological models employ
infiltration models to determine the critical rainfall triggering landslides, which requires the estimation
and validation of soil parameters over large areas, and therefore makes these models impractical for
regional-scale applications. The approaches based on exceedance probability can be further subdivided
into two types, where the first type employs a landslide inventory induced by a single rainfall event
and rainfall data for that event to analyze the return period of the landslide event [8,23,24], and the
second type employs a long-term landslide inventory to calculate the exceedance probability for the
occurrence of landslides. Concerning the latter type, the Poisson probability model [17,25–29], binomial
probability model, and empirical model [20] are commonly used to analyze the recurrence probability
of landslide events. As a consequence, when a research area has a long-term landslide inventory,
the Poisson probability model can be employed to estimate the temporal probability of landslides
under the assumption that the frequency of future landslides occurring is the same as in the past.
However, due to the constraints of this assumption, the Poisson probability model cannot separate
the effect of geomorphological and hydrological factors on landslides, and therefore cannot be used
to infer how landslide probability will change when climate change causes changes in the frequency
of torrential rain and in the rainfall patterns. If the effects of geomorphological and hydrological
factors can be considered separately and the occurrence probability of torrential rain events can be
estimated independently, then the landslide temporal probability can be estimated correctly based
on the change trends of the estimated torrential rain occurrence probability [30]. One approach to
separate the effects of geomorphological and hydrological factors in landslide probability models is to
employ the concept of conditional probability to separately estimate rainfall probability and landslide
probability under these rainfall conditions. In this approach, a Poisson probability model is first used
to calculate the exceedance probability of rainfall events that may trigger landslides, the landslide
probability under these rainfall conditions is then calculated, and the two are multiplied to obtain the
temporal probability of landslides [26,28,29].

Before calculating the probability of rainfall events that may trigger landslides, the scale of rainfall
events that trigger landslides or the threshold rainfall events that must be exceeded to trigger landslides
must first be understood. The minimum amount of rainfall needed to trigger landslides was first
considered by Endo [31], and the rainfall thresholds triggering landslide events were quantified by
Onodera et al. [32]. Campbell [33] suggested that the combined effect of both antecedent rainfall
and rainfall intensity on the landslides needed to be considered, and a warning system could be
based on the relationship between antecedent rainfall and critical rainfall [34]. Caine [35] used rainfall
intensity and rainfall duration to establish global shallow landslide rainfall thresholds. Methods of
establishing rainfall thresholds were classified as physical models and empirical models [36], where
physical models employ detailed spatial information on hydrological, lithological, morphological, and
soil characteristics as a basis for modeling the relationship between rainfall, infiltration, and landslide
events. However, the information is hard to collect accurately over large areas. Empirical models
can be grouped as thresholds combining rainfall duration, total event rainfall, or rainfall intensity
parameters, thresholds considering antecedent rainfall, and thresholds combining other parameters,
where the first two groups can be further subdivided into the following three categories based on
the parameters used for determining rainfall thresholds [21]: the first category consists of intensity
and duration parameters [18,20,29,34,35,37–39], the second category consists of antecedent rainfall
conditions [26,28,29,40], and the third category consists of accumulative event rainfall and duration
parameters [41]. Although rainfall intensity–duration models have been most commonly used in
recent years [21], thresholds for rainfall-induced landslides may define the rainfall, soil moisture, or
hydrological conditions that, when reached or exceeded, are likely to trigger landslides [36]. Some
research has also suggested that groundwater and soil moisture are factors influencing the initiation of
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landslides [42,43], and antecedent rainfall can affect both of these factors. Accordingly, antecedent
rainfall can be used to determine when landslides may occur [36]. In research on rainfall thresholds
incorporating the antecedent rainfall conditions, large differences exist in the number of days of
antecedent rainfall that were employed in each study. For example, daily rainfall was employed
in conjunction with 15-day antecedent rainfall [39], both daily and 3-day cumulative rainfall were
used [44], and 3-day and 30-day antecedent rainfall were employed [45]. Guzzetti et al. [36] suggested
that the large variability in the antecedent rainfall may be attributed to three types of factors concerning
the research area: diversity in lithological, morphological, vegetation, and soil conditions; differences
in climatic regimes and meteorological circumstances; and the heterogeneity and incompleteness in
the rainfall and landslide data used to establish the rainfall thresholds. As a consequence, the local
conditions and availability of data in the research area must be assessed when choosing the number of
days of antecedent rainfall.

Since the rainfall threshold determined using a single rain gauge for a large area constitutes one
value for the entire area, as soon as rainfall reaches or exceeds the threshold, landslides may occur
anywhere in that area, and knowing their precise locations is impossible. As a consequence, a denser
array of rain gauges can be employed to acquire rainfall data with finer spatial resolution [21], and the
research areas can be subdivided into analytical units with a smaller area, which can better account for
the spatial variability of rainfall patterns in the analytical units and the spatial resolution of landslide
prediction. However, 19.1% of recent studies on this subject failed to subdivide their research areas,
and those studies that did subdivide their research areas had resulting analytical units with an average
area of 302.0 km2 [21]. For instance, a research area of 4660 km2 was subdivided into 12 analytical units
with an average area of 388.3 km2 [39], but excessively large analytical units make it impossible to
identify the precise possible locations of landslides. In addition, the subdivision approaches employed
in some studies run into the problem of incomplete coverage. For instance, although a 25 km2 research
area was subdivided into eight analytical units, the landslide prediction results only represented the
paths of roads in the subdivisions and not the entire subdivisions because most landslides (94%) in
the study occurred on roadside slopes [26]. Althuwaynee et al. [28] divided the research area into six
circular analytical units with their centers at rain gauges, but the analytical units did not cover the
entire research area and also overlapped. Although these studies subdivided their research areas into
different analytical units, the units could not provide a landslide probability distribution with a finer
spatial resolution because they were excessively large, or experienced problems such as incomplete
coverage and overlap. If the method of subdividing a research area into analytical units is improved
so that the units are smaller in area, the spatial resolution of the landslide probability estimation
results could be improved. There are seven types of analytical units subdivided in research areas: grid
cell, terrain unit, unique condition unit, slope unit, geo-hydrological unit, topographical unit, and
administrative unit [46,47]. The slope units are suitable for landslide probability analysis because they
express topographic features and slope characteristics. In this study, we consequently selected slope
units as our analytical unit.

2. Research Area and Materials

2.1. Environmental Setting of Taipei Water Source Domain

Taipei Water Source Domain is located in the northeast part of Taiwan and supplies tap water
for five million people in the greater Taipei area. The area is characterized by hilly and mountainous
topography, as well as the Xueshan Range extending to the northeast and a subrange of Mt. Qilan
extending to the northwest, both of which account for the area’s high terrain in the south and low
terrain in the north. Elevations in the area range from 12 to 2130 m (Figure 1).
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Figure 1. Distribution of elevation, lithology, and rain gauges in the Taipei Water Source Domain.

Concerning the distribution of lithology, we followed the classification approach proposed by
Lin et al. [48] by dividing the Taipei Water Source Domain into areas underlain by alluvium, loose
sandstone and shale, hard sandstone and shale, and slate. Whereas alluvium found at the confluence
of rivers and in downstream areas covers only a small part of the research area, hard sandstone and
shale as well as slate underlay most of the research area. Of these types of lithology, areas underlain by
slate had the highest number of landslides and the greatest landslide area. Wu et al. [49] indicated that
the areas underlain by hard sandstone and shale as well as slate in the Kaoping River Watershed had
the highest landslide ratios in 2008 and 2009. This indicates that the lithology condition of most areas
is fragile. Typhoons and torrential rain events can readily wash away unconsolidated sand and gravel
as well as trigger landslides, which deposit large loads of sediment in rivers and reservoirs.

2.2. Rainfall Data

The rain gauges employed in this study were located as shown in Figure 1, and rainfall data
between 1987 to 2016 from these rain gauges were used. Average daily rainfall for the entire area
during the same period as the 2000–2015 landslide inventory is shown in Figure 2. Figure 2 shows
that apart from the eight typhoon events causing the corresponding landslide inventory, other events
of high daily rainfall occurred without a significant increase in landslides. As a consequence, apart
from calculating the exceedance probability that rainfall events will exceed the rainfall threshold, we
also calculated the probability of landslides when rainfall events exceed the threshold. In addition,
Figure 3 shows the average daily rainfall and standard deviation of the eight typhoon events during
the 2000–2015 period in each control area of a rain gauge divided by a modified Thiessen polygon
method, considering the morphology of the area, proposed by Salvaticic et al. [19].

2.3. Landslide Inventory

After selecting eight major typhoon events occurring in the research area during the 2000–2015
period—typhoons Xangsane (2000), Nari (2001), Aere (2004), Sinlaku (2008), Morakot (2009), Parma
(2009), Megi (2010), and Soudelor (2015)—we collected satellite images before and after each typhoon
event, calculated and classified the normalized difference vegetation index (NDVI) to find the possible
locations of landslide sites, and eliminated and revised unlikely landslide sites according to the slope,
drainage, and land use maps in the study area. In the process of mapping the source areas of landslides
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from the satellite images, we often found that human mapping errors affected interpretation quality.
We followed the recommended procedures proposed by Liu et al. [50] to map landslides in the research
area. Table 1 shows the dates of the eight landslide events and landslide statistical data. The size of
landslides ranged from 16 to 118,108 m2 and the average area was 2474 m2. The resulting distribution
of landslides caused by the eight typhoon events was shown in Figure 4, which revealed that landslide
sites were concentrated in the southwestern portion of the research area.Water 2020, 12, x FOR PEER REVIEW 5 of 17 
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Table 1. Landslide inventory for the eight typhoon events.

Typhoon Event Date
(MM/DD/YYYY)

Average Rainfall at
the Date (mm)

Number of New
Landslide Sites

Smallest Landslide
Area (m2)

Largest Landslide
Area (m2)

Total Area of
Landslides (m2)

Average Area of
Landslides (m2)

Xangsane 11/01/2000 326.67 42 326 19,619 131,148 3123
Nari 09/16/2001 538.05 92 107 68,032 261,650 2844
Aere 08/24/2004 465.57 97 140 27,270 239,856 2473

Sinlaku 09/13/2008 348.18 32 475 21,101 71,111 2222
Morakot 08/07/2009 219.83 173 16 118,108 1,016,448 5875
Parma 10/05/2009 221.79 302 47 49,369 484,785 1605
Megi 10/21/2010 262.35 47 407 27,318 118,874 2529

Soudelor 08/08/2015 478.99 589 257 48,041 1,075,263 1826
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2.4. Analytical Units and Rain Gauge Control Areas

We employed slope units as analytical units due to their relatively well-defined topographic
boundaries, as well as topographic and geological meaning. We employed the subdivision method
used by Xie et al. [51] to divide the watershed into slope units. The original topography could be
divided into sub-watersheds, and the combination of sub-watershed units before and after reversal
yielded the slope units. We ensured that the smallest area of slope units was larger than the average
area of landslides [47], which minimized the chance that any specific landslide site would be a part of
different slope units, and thereby confuse the analysis results. We also divided the research area into
rain gauge control areas (Figure 3) based on rain gauge locations and using the modified Thiessen
polygon method. The rainfall measured by each rain gauge was taken as representative of the control
area in which that gauge was located, and we expected this approach to reflect the different rainfall
distribution characteristics within the research area.

3. Methods

3.1. Analysis of Discrete Rainfall Groups

The two rainfall parameters considered in this study consisted of daily rainfall (I) and effective
accumulated rainfall (Rt). After selecting rain gauges near the research area with rainfall data for recent
years, we obtained daily rainfall data for the 1987–2016 period from the Water Resources Agency and
Central Weather Bureau. This study calculated the effective accumulated rainfall based on rainfall for
that day and rainfall during the previous 7 days using the method proposed by Jan [52]; this calculation
was performed using Equation (1):

Rt = R0 +
7∑

i=1

αiRi =
7∑

i=0

αiRi (1)

where R0 is the rainfall amount on that day, R1 is the rainfall amount on the day before that day, and so
on, and the weighting coefficient α = 0.7 proposed by Jan [52].

Adopting the concept proposed by Tsai [53], after using daily rainfall data to calculate effective
accumulated rainfall (Rt), we obtained a group of daily rainfall and effective accumulated rainfall (I,
Rt) for each day. The daily rainfall and effective accumulated rainfall were continuous variables and
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would not facilitate subsequent calculation of a joint cumulative distribution function, therefore we
rounded off the daily rainfall and effective accumulated rainfall values to the 10th place and made
them discrete variables. The group of daily rainfall and effective accumulated rainfall (I, Rt) for each
day was termed as “discrete rainfall group” in this study.

We defined different rainfall events by the continuity of daily rainfall. Consecutive days of
non-zero daily rainfall were considered to be the same rainfall event, and the number of the consecutive
days varied from event to event. We then calculated the distance (d) from each discrete rainfall group
to the origin (0, 0), and assumed that the greater the value of d, the greater the likelihood of landslides.
The discrete rainfall group with the greatest d in each rainfall event was used to represent that rainfall
event in subsequent analysis.

3.2. Joint Cumulative Distribution Function

The joint cumulative distribution function was obtained from the joint probability mass function
of the foregoing discrete rainfall groups. The probability (PI,Rt (Ii, Rtj)) of each discrete rainfall group
(Ii, Rtj) was defined [54] as shown in Equation (2):

PI, Rt

(
Ii, Rt j

)
= P

(
I = Ii ∩ Rt = Rt j

)
(2)

where i = 0, 10, 20, 30, . . . ; j = 0, 10, 20, 30, . . . ; the joint probability mass function has a probability
value only when I and Rt are multiples of 10 and the probability values in other places are 0.

The foregoing joint probability mass function yielded a joint cumulative distribution function using:

FI, Rt

(
Ii, Rt j

)
=

i∑
0

j∑
0

PI, Rt

(
Ii, Rt j

)
. (3)

The joint cumulative distribution function was a monotonic increasing function with a range
between 0 and 1, and had the form of a three-dimensional curved surface when plotted on coordinate
axes. The farther the point (Ii, Rtj) from the origin, the greater its probability value. The probability of
a discrete rainfall group on the curved surface expressed the cumulative probability of all discrete
rainfall groups, which were nearer to the origin than this discrete rainfall group (Ii, Rtj).

3.3. Selection of a Rainfall Probability Threshold

After establishing a joint cumulative distribution function, taking each 0.05 as an interval, we set
20 rainfall probability thresholds ranging from 0.05 to 1.00, and employed the error matrix concept to
calculate the true positive rate (TPR), true negative rate (TNR), and positive predictive value (PPV) for
each rainfall probability threshold at each rain gauge control area. The rainfall probability threshold
was treated as the threshold of cumulative probability of the discrete rainfall groups which was used
to predict whether rainfall events could trigger landslides. Here, TPR expresses the ratio of discrete
rainfall groups that correctly predicted landslide occurrence to discrete rainfall groups triggering
landslides actually, TNR expresses the ratio of discrete rainfall groups that correctly predicted no
landslide occurrence to discrete rainfall groups triggering no landslides actually, and PPV expresses
the ratio of discrete rainfall groups that correctly predicted landslide occurrence to discrete rainfall
groups predicting landslides. To capture the performance of each threshold, PPV and Youden’s index
were used for comprehensive consideration. The higher the PPV and Youden’s index values, the more
accurate the rainfall probability threshold at classifying landslide occurrence and landslide occurrence
for discrete rainfall groups. The TPR, TNR, PPV, and Youden’s index calculations were performed
employing Equations (4)–(7).

TPR (%) =
Number of discrete rainfall groups predicting landslides when landslides actually occurred

Number of all discrete rainfall groups triggering landslides actually (4)
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TRN (%) =
Number of discrete rainfall groups predicting no landslides when no landslides occurred

Number of all discrete rainfall groups triggering no landslides actually (5)

PPV (%) =
Number of discrete rainfall groups predicting landslides when landslides actually occurred

Number of all discrete rainfall groups predicting landslides (6)

Youden′s index = TPR + TNR− 1 (7)

3.4. Poisson Probability Model

A Poisson probability model relies on the past frequency of events to predict their occurrence
probability in the future. The basic assumption underlying this type of model is that future events
will occur with the same frequency as past events. In this model, the probability of at least one event
occurring in the time interval (t) is given by Equation (8):

P(N(t) ≥ 1) = 1− e−λt (8)

where P(N(t) ≥ 1) indicates the probability of at least one event occurring within a period of t years;
this probability is known as the exceedance probability.

We calculated the number of discrete rainfall groups exceeding the threshold at each rain gauge
in the past using the optimal rainfall probability thresholds and then divided by the years of the
rainfall data to obtain the occurrence frequency (λ), which was used to calculate the exceedance
probability. The exceedance probability indicated the probability of at least one rainfall event exceeding
the threshold of discrete rainfall groups within any one year.

3.5. Conditional Probability

We employed the concept of conditional probability in the analysis. We first used the Poisson
probability model to calculate the exceedance probability of at least one rainfall event exceeding the
threshold of discrete rainfall groups within any one year at each rain gauge control area. We divided
the number of landslides occurring in each slope unit by the number of rainfall events exceeding
the threshold of discrete rainfall groups to estimate the probability that a landslide would occur in
that slope unit when the rainfall exceeded the threshold. Lastly, we multiplied the two probabilities
together to obtain the probability that a rainfall event would exceed the threshold of discrete rainfall
groups and at least one landslide would also occur in each slope unit within any one year, as shown in
Equation (9):

P(R ≥ RT ∩ L) = P (R ≥ RT) × P(L|R ≥ RT) (9)

where R ≥ RT indicates rainfall events exceed the threshold of the discrete rainfall group and L indicates
the occurrence of a landslide.

4. Results and Discussion

4.1. Joint Cumulative Distribution Functions of the Rain Gauges

In this study, we collected multi-year daily rainfall data from each rain gauge and calculated the
effective accumulated rainfall (Rt) by employing Equation (1), which yielded rainfall and effective
accumulated rainfall for each day. We then rounded off the daily rainfall and effective accumulated
rainfall values to the 10th place, which yielded discrete rainfall groups including both daily rainfall
and effective accumulated rainfall. The next step was establishing frequency tables for different
discrete rainfall groups, which we used to show the frequency of the discrete rainfall groups. Figure 5
shows the frequency of discrete rainfall groups at the Bihu rain gauge with daily rainfall and effective
accumulated rainfall (Rt) ranging from 0 to 100 mm. The depth axis represents daily rainfall, the
horizontal axis represents the effective accumulated rainfall (Rt), and the vertical axis represents the
frequency of a discrete rainfall group. We then calculated the cumulative frequency of each discrete
rainfall group on this basis, and this represented the frequency of all discrete rainfall groups with
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values lower than that of any designated discrete rainfall group. The cumulative frequency was then
divided by the total frequency of all discrete rainfall groups, which yielded the cumulative probability
of each discrete rainfall group.
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The joint cumulative distribution function of each rain gauge was then obtained from the
cumulative probability of the discrete rainfall groups, and this function was used to plot a joint
cumulative distribution chart. Figures 6 and 7 are joint cumulative distribution functions for the
Bihu and Fushan (3) rain gauges, and daily rainfall and effective accumulated rainfall (Rt) are shown
within a 0–300 mm range. The joint cumulative distribution functions have areas with gentler slopes
indicating fewer and more dispersed discrete rainfall groups within a certain interval, and areas with
steeper slopes indicating more and more concentrated discrete rainfall groups within a certain interval.
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4.2. Selection of Rainfall Probability Thresholds of the Rain Gauges

Following the analysis results of the joint cumulative distribution functions of the rain gauges,
we used rainfall data from the rain gauges during the eight rainfall events triggering landslides to
select rainfall probability thresholds. The rainfall probability threshold was treated as the threshold
of cumulative probability of the discrete rainfall groups which was used to predict whether rainfall
events could trigger landslides. Starting with a rainfall probability threshold value of 0.05, we set
a rainfall probability threshold at each interval of 0.05 until a value of 1.00 was reached, and then
calculated the TPR, TNR, PPV, and Youden’s index of each rainfall probability threshold. Here, the
number of landslide events predicted correctly divided by the number of rainfall events triggering
landslides actually equaled TPR, the number of no landslide events predicted correctly divided by the
number of rainfall events triggering no landslides actually equaled TNR, and the number of landslide
events predicted correctly divided by the number of rainfall events predicting landslides equaled PPV.
Table 2 shows the results of these calculations for the Bihu rain gauge. In the analysis results for the
individual rain gauges, the rainfall probability thresholds with the highest Youden’s index were within
the probability interval of 0.85–0.95, and the rainfall probability thresholds with the highest PPV were
at the probability of 0.95 in all cases. We consequently opted to use a rainfall probability threshold
value of 0.95 for the whole area. The TPR, TNR, PPV, and Youden’s index for all rain gauges when the
rainfall probability threshold was 0.95 are shown in Table 3.

Table 2. True positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), and
Youden’s index for Bihu rain gauge at different rainfall probability thresholds.

Rainfall Probability Threshold 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Number of landslide events predicted correctly 8 8 8 8 8 8 8 8 8 8
Number of rainfall events triggering landslides actually 8 8 8 8 8 8 8 8 8 8

TPR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Number of no landslide events predicted correctly 0 0 92 92 173 237 237 292 332 361

Number of rainfall events triggering no landslides actually 608 608 608 608 608 608 608 608 608 608
TNR 0% 0% 15% 15% 28% 39% 39% 48% 55% 59%
PPV 1.3% 1.3% 1.5% 1.5% 1.8% 2.1% 2.1% 2.5% 2.8% 3.1%

Youden’s index 0% 0% 15% 15% 28% 39% 39% 48% 55% 59%

Rainfall Probability Threshold 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Number of landslide events predicted correctly 8 8 8 8 8 8 8 8 7 0
Number of rainfall events triggering landslides actually 8 8 8 8 8 8 8 8 8 8

TPR 100% 100% 100% 100% 100% 100% 100% 100% 88% 0%
Number of no landslide events predicted correctly 407 431 469 494 526 549 575 588 602 608

Number of rainfall events triggering no landslides actually 608 608 608 608 608 608 608 608 608 608
TNR 67% 71% 77% 81% 87% 90% 95% 97% 99% 100%
PPV 3.8% 4.3% 5.4% 6.6% 8.9% 11.9% 19.5% 28.6% 53.8% -

Youden’s index 67% 71% 77% 81% 87% 90% 95% 97% 87% 0%

Table 3. TPR, TNR, PPV, and Youden’s index for all rain gauges at a rainfall probability threshold of 0.95.

Rainfall Gauge Bihu Fushan (3) Tatungshan Pinglin (4) Sihdu Taiping Quchi

Number of landslide events predicted correctly 7 4 8 5 8 7 7
Number of rainfall events triggering landslides actually 8 8 8 8 8 8 8

TPR 88% 50% 100% 63% 100% 88% 88%
Number of no landslide events predicted correctly 602 586 652 598 563 549 610

Number of rainfall events triggering no landslides actually 608 599 662 605 583 565 629
TNR 99% 98% 98% 99% 97% 97% 97%
PPV 53.8% 23.5% 44.4% 41.7% 28.6% 30.4% 26.9%

Youden’s index 87% 48% 98% 61% 97% 85% 84%

4.3. Landslide Probability Analysis Employing a Rainfall Probability Threshold and a Long-Term
Landslide Inventory

After determining a rainfall probability threshold for the rain gauges, we calculated the number
of discrete rainfall groups exceeding this threshold at each rain gauge during the 1987–2016 period.
We then divided these values by the years of statistics at each gauge, which yielded the λ values in
Equation (8). Substituting t = 1 year into Equation (8) allowed us to calculate the probability of at
least one rainfall event exceeding the threshold of discrete rainfall group within any one year (i.e., P(R
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≥ RT) in Equation (9)) under the assumption that future rainfall conditions will be the same as past
conditions. Figure 8 shows the exceedance probability value calculated for each rain gauge overlaid on
each rain gauge control area. The Quchi rain gauge control area had the highest probability of 0.76502
that at least one rainfall event will exceed the threshold of the discrete rainfall group within any one
year, whereas the Bihu rain gauge control area had the lowest probability of 0.43886.

Water 2020, 12, x FOR PEER REVIEW 12 of 17 

 

overlaid on each rain gauge control area. The Quchi rain gauge control area had the highest 
probability of 0.76502 that at least one rainfall event will exceed the threshold of the discrete rainfall 
group within any one year, whereas the Bihu rain gauge control area had the lowest probability of 
0.43886. 

 
Figure 8. The exceedance probability that at least one rainfall event will exceed the threshold of 
discrete rainfall group within any one year in each rain gauge control area. 

In this study, we also divided the number of landslides occurring in each slope unit during the 
2000–2015 period by the number of rainfall events exceeding the threshold of discrete rainfall group 
at the rain gauges to which the slope units were assigned during the same period to estimate the 
landslide probability in the slope units when the rainfall exceeded the threshold, which is P(L│R ≥ 
RT) in Equation (9). The resulting probability distribution is shown in Figure 9. Figure 9 shows that 
the different slope units within a single rain gauge control area have different landslide 
probabilities, and these differences should be attributed to different geomorphological conditions in 
the slope units. 

Lastly, employing Equation (9), we multiplied the probability P(R ≥ RT) that at least one rainfall 
event will exceed the threshold of discrete rainfall group within any one year in each rain gauge 
control area by the landslide probability P(L│R ≥ RT) in each slope unit when rainfall exceeds the 
threshold, which yielded the probability that at least one rainfall event exceeds the threshold of 
discrete rainfall group at the same time that one landslide will occur in each slope unit during the 
future one-year period (Figure 10). The two probability maps shown in Figures 9 and 10 were 
validated by the landslide inventory data respectively. The landslides were mainly distributed in the 
slope units where the landslide probability values were greater than 0.01. The top 2% of slope units 
ranked with landslide probabilities included 50.40% of slope units where landslides occurred while 
the top 6% of slope units ranked with landslide probabilities included 100.00% of slope units where 
landslides occurred in Figure 10. The results indicated these maps had reasonable landslide 
probability distributions. Figure 10 reveals that the Fushan (3) rain gauge control area, which is 
located in the southwest part of the research area, contained relatively many slope units with high 
landslide probability, and the highest probability value was 0.26. Apart from having fragile lithology 
consisting of hard sandstone and shale as well as slate, this area has a higher elevation and steeper 
slopes than other control areas, which suggests that elevation and slope have a definite correlation 
with landslide occurrence. 

Figure 8. The exceedance probability that at least one rainfall event will exceed the threshold of discrete
rainfall group within any one year in each rain gauge control area.

In this study, we also divided the number of landslides occurring in each slope unit during the
2000–2015 period by the number of rainfall events exceeding the threshold of discrete rainfall group
at the rain gauges to which the slope units were assigned during the same period to estimate the
landslide probability in the slope units when the rainfall exceeded the threshold, which is P(L|R ≥
RT) in Equation (9). The resulting probability distribution is shown in Figure 9. Figure 9 shows that
the different slope units within a single rain gauge control area have different landslide probabilities,
and these differences should be attributed to different geomorphological conditions in the slope units.

Lastly, employing Equation (9), we multiplied the probability P(R ≥ RT) that at least one rainfall
event will exceed the threshold of discrete rainfall group within any one year in each rain gauge control
area by the landslide probability P(L|R ≥ RT) in each slope unit when rainfall exceeds the threshold,
which yielded the probability that at least one rainfall event exceeds the threshold of discrete rainfall
group at the same time that one landslide will occur in each slope unit during the future one-year
period (Figure 10). The two probability maps shown in Figures 9 and 10 were validated by the landslide
inventory data respectively. The landslides were mainly distributed in the slope units where the
landslide probability values were greater than 0.01. The top 2% of slope units ranked with landslide
probabilities included 50.40% of slope units where landslides occurred while the top 6% of slope
units ranked with landslide probabilities included 100.00% of slope units where landslides occurred
in Figure 10. The results indicated these maps had reasonable landslide probability distributions.
Figure 10 reveals that the Fushan (3) rain gauge control area, which is located in the southwest part
of the research area, contained relatively many slope units with high landslide probability, and the
highest probability value was 0.26. Apart from having fragile lithology consisting of hard sandstone
and shale as well as slate, this area has a higher elevation and steeper slopes than other control areas,
which suggests that elevation and slope have a definite correlation with landslide occurrence.
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4.4. Discussion

In comparison with a landslide probability model based solely on the use of landslide inventories,
our landslide probability model based on the use of landslide inventories and rainfall factors reflect
different basic assumed conditions. The assumption of the landslide probability model incorporating
rainfall factors is that the frequency of future rainfall events exceeding the threshold and the frequency
of landslides occurring when the threshold has been exceeded are the same as in the past. In contrast,
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the assumption of a landslide probability model based solely on the use of landslide inventories is that
the frequency of future landslides occurring is the same as in the past. As a consequence, landslide
probability models incorporating rainfall factors possess the following advantages: (1) This model
can reflect the differences in landslide probability between the rain gauge control areas that have
different rainfall conditions. (2) When rainfall data were added in the analysis, the probability model
we obtained yielded more reliable results because the rainfall data were collected from a longer period
(29–45 years) than the landslide inventory (16 years). (3) If we know how the probability of at least one
rainfall event exceeding the threshold will change in the future, the incorporation of rainfall factors
in the landslide probability model will allow the effect of possible rainfall changes on the landslide
probability to be assessed.

However, several aspects connected to the application of this landslide probability model still
require further investigation: (1) The method of analyzing landslide probability proposed in this study
requires a long-term landslide inventory and rainfall data, therefore attention must be paid to the
completeness of rainfall data for the research area and handling methods when data are incomplete. (2)
Whereas the rainfall factors used in this study reflect daily rainfall and effective accumulated rainfall,
the use of different rainfall factors will yield different analysis results, which may be explored further
in future research. (3) Apart from the modified Thiessen polygon method, the division of rain gauge
control areas can be performed using other methods, such as the height–balance polygon method.
A finer division method should yield more precise results of a landslide probability distribution,
therefore future research can also compare the applicability of different methods of division into rain
gauge control areas. (4) We obtained a long-term landslide inventory consisting of only eight events,
therefore all events collected were used in the process of building the model. The landslide inventory
covering the period of other events may be collected to verify the predictive ability of this landslide
probability model.

5. Conclusions

In this study, we employed joint cumulative distribution functions to calculate the TPR, TNR, PPV,
and Youden’s index for different rainfall probability thresholds, selected a threshold of 0.95 as suitable
for the research area, and used this rainfall probability threshold to calculate the Poisson probability
of at least one rainfall event exceeding the threshold of discrete rainfall groups at each rain gauge
within the future one-year period. We then combined this probability with the landslide probability
in individual slope units when rainfall exceeded the threshold value, which allowed us to estimate
the probability that a landslide will occur in individual slope units during the future one-year period.
Many of the slope units with a high landslide probability are located in the Fushan (3) rain gauge
control area, and the highest probability is 0.26. Apart from fragile lithology, this area is characterized
by high elevations and steep slopes, which indicates that the elevation and slope have a significant
influence on the occurrence of landslides. This finding suggests that this area should be a focal area for
landslide prevention and mitigation efforts.

The landslide probability model established based on the use of a long-term landslide inventory
and rainfall factor had a finer spatial resolution and data for a longer period, which yielded more
reliable results and enabled the effect of possible rainfall changes on the landslide probability to be
assessed. The effects of the completeness of rainfall data for the research area, the use of different
rainfall factors, as well as the different methods of division into rain gauge control areas on the landslide
probability analysis results can be significant and still require further investigation.
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