
water

Article

Application of Empirical Mode Decomposition
Method to Synthesize Flow Data: A Case Study of
Hushan Reservoir in Taiwan

Tai-Yi Chu and Wen-Cheng Huang *
Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan;
20352006@email.ntou.edu.tw
* Correspondence: b0137@mail.ntou.edu.tw; Tel.: +886-2-2462-2192

Received: 7 March 2020; Accepted: 19 March 2020; Published: 25 March 2020
����������
�������

Abstract: Although empirical mode decomposition (EMD) was developed to analyze nonlinear and
non-stationary data in the beginning, the purpose of this study is to propose a new method—based
on EMD—to synthesize and generate data which be interfered with the non-stationary problems.
While using EMD to decompose flow record, the intrinsic mode functions and residue of a given
record can be re-arranged and re-combined to generate synthetic time series with the same period.
Next, the new synthetic and historical flow data will be used to simulate the water supply system of
Hushan reservoir, and explore the difference between the newly synthetic and historical flow data for
each goal in the water supply system of Hushan reservoir. Compared the historical flow with the
synthetic data generated by EMD, the synthetic data is similar to the historical flow distribution overall.
The flow during dry season changes in significantly (±0.78 m3/s); however, the flow distribution
during wet season varies significantly (±0.63 m3/s). There are two analytic scenarios for demand.
For Scenario I, without supporting industrial demand, the simulation results of the generation data of
Method I and II show that both are more severe than the current condition, the shortage index of each
method is between 0.67–1.96 but are acceptable. For Scenario II, no matter in which way the synthesis
flow is simulated, supporting industrial demand will seriously affect the equity of domestic demand,
the shortage index of each method is between 1.203 and 2.12.
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1. Introduction

Water resources are necessary for human survival, and are an important part of maintaining
socio-economic development and the sustainability of the ecological environment as well. Taiwan is
located at the border of tropical and subtropical areas. The main source of water resources is rainfall.
The annual average rainfall in Taiwan is about 2500 mm, which is 2.5 times of the world’s average.
In recent years, statistics show that rainfall characteristics have become more extreme in Taiwan.
Not only the raining days gradually decreasing, but the intensity gradually is increasing. On the
whole, although Taiwan seems to be a country with abundant rainfall, the overall water resources
environment is not easy to manageme because of climate change.

The impact of climate change tends to cause non-stationary conditions in hydrological data.
Traditionally, hydrological analysis and data generation only deal with stationary data. Empirical mode
decomposition (EMD) can be applied to any type of signal decomposition. Unlike singular spectrum
analysis, Fourier transform, and Wavelet transform, EMD does not require any pre-determined basis
functions and can extract intrinsic mode function (IMF) components from the original signal in a
self-adaptive way [1]. Through the characteristics of EMD, non-stationary and nonlinear signals can be
processed, which effectively overcomes the limitations of traditional methods.
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EMD has been proposed [2] as an adaptive time-frequency data analysis method. In this study,
the EMD method and the decomposed IMFs were used for data analysis and synthesis. Many
studies use EMD to analyze different time series and decompose the implied fluctuation periods [3–6].
In recent years, there are many carefully studies of nonlinear and non-stationary for the hydrological
field: Lee and Ouarda [7,8] proposed model reproduces Nonstationary oscillation (NSO) processes
by utilizing EMD and nonparametric simulation techniques; Molla et al. [9,10] show that the EMD
successively extracts the IMFs with the highest local frequencies in a recursive way, which yields
effectively a set low-pass filters based entirely on the properties exhibited by the data. In addition, there
are many studies based on the EMD method to predict and estimate streamflow data: Huang et al. [11]
and Meng et al. [12] developed a modified EMD-based support vector machine for non-stationary
streamflow prediction; Zhang et al. [13] improved the efficiency of a prediction approach which can be
used as a general technique for non-stationary time series forecasting.

However, the mode mixing problem may occur during the EMD. To avoid mode mixing,
Wu and Huang [14] proposed a new noise-assisted data analysis method, the Ensemble EMD (EEMD),
which defines the true IMF components as the mean of an ensemble of trials, each consisting of the
signal plus a white noise of finite amplitude. Zhao and Chen [15] and Zhang et al. [16] used the
EEMD and other methods to build a hybrid model for annual runoff time series forecasting. Many of
EEMD applications in hydrology focus on the diagnostic analysis of historical data, such as features of
temperature variation trends [17], forward prediction of runoff data in data-scarce basins [18], and
forecast monthly reservoir inflow [19].

The analysis methods of water resources allocation system are mainly divided into two
categories: simulation method and optimization method. Yeh [20] and Wurbs [21] introduced
the theory development of the simulation model and optimization model in reservoir system analysis.
Chang et al. [22] present the usefulness of the neural network in deriving general operating policies
for a multi-reservoir system. An optimization-based approach is typically required for the optimal
operation of a reservoir system, in order to obtain the optimal solutions to support the decision-making
process [23]. In this study, we use the simulation method for the analysis of water resources systems.
Lee and Huang [24] evaluated the impact of climate change on the water supply of the reservoir in
central Taiwan.

The Hushan reservoir is a new water supply resource system in central Taiwan (Figure 1). Since
some problems exist in the water supply system of the Zhuoshui river, such as its high concentration
of sediment, and low efficiency for the Hushan reservoir while it considers a joint operation with
Jiji weir [25]. Therefore, Chu and Huang [26] recommends the Hushan reservoir should operate
independently. Under the assumption that simulation results show that the Hushan reservoir is capable
of supplying more than 100,000 m3 per day (up to 380,000 m3/day) and the reservoir utilization rate
can reach 2.41 from 1.18 while Shortage Index (SI) = 1.

This study proposes a novel procedure, which is based on EEMD and its derivation (IMF and
residue) as an implement for synthesizing non-stationary data, which will be applied in reservoir
inflow and impact assessment for water supply. This study will continue the research results of Huang
et al. [27]. Huang et al. [27] proposed a surface temperature and rainfall synthesis method base on EMD.
The method utilizes the recombination of the IMF of the segmented data, as well as the characteristics
of the residuals to generate the data. There is a plan to use the IMFs and residues obtained, after EMD
decomposition to permutation and combination, to generate new flow data. There is also a plan to try
to apply the newly synthetic flow data to simulate the water supply system of the Hushan reservoir
(as shown in Figure 1). Finally, several evaluation indicators are used to evaluate water supply system
simulation results.
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Hushan reservoir is an off-channel reservoir. It is located between Douliu City and Gukeng 
Township, Yunlin County, 10 km southeast away from the Douliu City center (as shown in Figure 2). 
The reservoir was set up in 2016 and first reached its full water level in June 2019. The main purpose 
of the Hushan Reservoir is to reduce pumping groundwater and to slow down the problem of land 
subsidence in Yunlin county. The elevation-area-capacity relationship of Hushan Reservoir is shown 
in Table 1. The elevation of the remaining water level is 165 m, the full water level is 211.5 m, and the 
effective storage capacity of the reservoir is 53.47 × 106 m3. The elevations of the water outlets are 165 
m and 180 m respectively. The designed flow of the domestic water channel and the permanent river 
outlet are 12.27 m3/s and 1.00 m3/s, respectively. The watershed of Hushan reservoir is only 6.58 km2 
and leads to limited water resources. Therefore, the Tongtou weir, the intake of Hushan reservoir, on 
the Qingshui river needs to be guided through the diversion tunnel. 
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2. Materials and Method

2.1. Study Area

2.1.1. Hushan Reservoir

Hushan reservoir is an off-channel reservoir. It is located between Douliu City and Gukeng
Township, Yunlin County, 10 km southeast away from the Douliu City center (as shown in Figure 2).
The reservoir was set up in 2016 and first reached its full water level in June 2019. The main purpose
of the Hushan Reservoir is to reduce pumping groundwater and to slow down the problem of land
subsidence in Yunlin county. The elevation-area-capacity relationship of Hushan Reservoir is shown in
Table 1. The elevation of the remaining water level is 165 m, the full water level is 211.5 m, and the
effective storage capacity of the reservoir is 53.47 × 106 m3. The elevations of the water outlets are
165 m and 180 m respectively. The designed flow of the domestic water channel and the permanent
river outlet are 12.27 m3/s and 1.00 m3/s, respectively. The watershed of Hushan reservoir is only
6.58 km2 and leads to limited water resources. Therefore, the Tongtou weir, the intake of Hushan
reservoir, on the Qingshui river needs to be guided through the diversion tunnel.
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Table 1. Elevation-area-capacity relationship of Hushan reservoir.

Water Level (m) Area (ha) Volume (104 m3)

Dead water level: 165 12 36

170 32 147

175 76 418

180 99 857

185 107 1371

190 132 1969

195 142 2653

200 170 3432

205 181 4310

210 210 5288

Full water level: 211.5 214 5612

2.1.2. Tongtou Weir

Tongtou weir is the intake of Hushan reservoir. In order to ensure the river base flow and the
downstream water requirements—such as agriculture and domestic—of Tongtou weir will be satisfied.
The weir diversion operation will give priority to the base flow and water right; next, the intake of
Hushan reservoir from Tongtou weir on Qingshui river be considered. The plan of the Tongtou weir
diversion water accounts for about 10% of the Qingshui river during the wet season (May to October),
and about 13% during the dry season. The Tongtou weir is located 70 m downstream of the Tongtou
suspension bridge in the Qingshui river. There is a sedimentation basin before the water be taken from
Tongtou weir to Hushan reservoir. The intake channel is 2.8 km long and designed intake capacity is
20 m3/s, with a gravity type.

2.2. Research Method

2.2.1. Empirical Mode Decomposition

EMD is proposed for nonlinear and nonstationary time series analysis [2]. For the hydrological
time series, EMD divides the sequence into two parts: IMFs and residue. The IMFs represent the
implied period sequence of the data, and the residue represents the non-period sequence of the data.
Although the methods used in traditional signal analysis fields such as fast Fourier transform, harmonic
analysis, and wavelet analysis can also express the original sequence as a superposition of multiple
period functions; these Fourier basic function-based analyses usually only deal with stationary time
series. Contrary to the previous methods, EMD is intuitive, direct, a posteriori, and adaptive, with
the basis of the decomposition based on, and derived from, the data [2]. EMD is more suitable for
analyzing non-stationary hydrological time series.

EMD decomposes the original signal into different time scale of oscillation components called
IMF. Unlike singular spectrum analysis, Fourier transform, and Wavelet transform, EMD does not
require any pre-determined basis functions and can extract IMF components from the original signal
in a self-adaptive way [1]. Each IMF component should satisfy the following two conditions:

1. In the whole data series, the number of extrema and the number of zero-crossings must either
equal or differ at most by 1;

2. At any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.
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An IMF represents a simple oscillatory mode as a counterpart to the simple harmonic function,
but it is much more general. For time series data x(t) (t = 1, 2, . . . , n), the procedure of EMD can be
described as follows [16]:

1. Identify all the local maxima and minima of the original time series x(t);
2. Using the three-spline interpolation function to create the upper envelopes eup(t) and the lower

envelopes elow(t) of the time series;
3. Calculate mean value m(t) of the upper and lower envelopes

(
m(t) =

[
eup(t) + elow(t)

]
/2

)
;

4. Calculate the difference value d(t) between time series x(t) and mean value m(t),
(d(t) = x(t) −m(t));

5. Check the difference value d(t): (a) if d(t) satisfies the two IMF conditions, then d(t) is defined as
the ith IMF, the residue r(t) = x(t) − d(t) replace the x(t). The ith IMF is denoted as ci(t); (b) if
d(t) is not an IMF, then d(t) replace the x(t).

6. Repeat (1)–(5) until the residue item r(t) becomes a monotone function or the number of extrema
is less than or equal to 1, so that the IMF component cannot be decomposed again.

Finally, original time series x(t) can be denoted as sum of IMFs ci(t) and residue r(t).

x(t) =
n∑

i=1

ci(t) + r(t) (1)

where n, ci(t) and r(t) represent the number of IMF, the ith IMF and the residue, respectively. The residue
r(t) also represents the overall trend or the mean value of the original time series data. Figure 3 shows
the results of the EMD method decomposition.

The procedure is illustrated in Huang et al. [2] and Zhang et al. [16].Water 2020, 12, 927 6 of 20 
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2.2.2. Ensemble Empirical Mode Decomposition

EEMD, an improvement of EMD, was proposed by Wu and Huang [14]. Although EMD has
obvious advantages in signal analysis, there are unavoidable defects such as the boundary-effect
and mode-mixing. Mode mixing is a problem often encountered when using EMD to decompose
sequences. Mode mixing means that a certain IMF contains waves with very different periodicity,
often caused by intermittent signal interference. In particular, the mode-mixing will not only cause
the mixing of various scale vibration modes but can even lose the physical meaning of individual
IMF. To overcome this problem of the EMD method, a new noise-assisted data analysis method is
proposed—the EEMD [14]—which defines the true IMF components as the mean of an ensemble of
trials, each consisting of the signal plus a white noise of finite amplitude.

The main step of EEMD is described as follows [16]:

1. Add white noise w(t) to the original time series x(t). The new time series can be defined as:

X(t) = x(t) + w(t) (2)

2. Decompose the new time series into IMFs using EMD method;
3. Repeat steps (1) and (2) with different white noises series each time;
4. Obtain the mean of the ensemble corresponding IMFs of the decompositions as the final result.

Differently from EMD, the EEMD method first adds white noise to the original data before
decomposition and uses the statistics feature of white noise, the expectation is equal to zero, to perform
the screening process. After adding white noise many times, the effect of adding white noise will be
offset by the mean of the ensemble IMF. Therefore, the decomposition using EEMD not only keeps the
inherent feature of the original signal, but also overcomes the mode-mixing.

The effect of the added white noise should decrease using the equation [14]

εn =
ε
√

N
(3)

where N is the number of ensemble members, ε is the amplitude of the added noise and εn is the
final standard deviation of error, which is defined as the difference between the input signal and the
corresponding IMF(s). According to Equation (3), when the average number of times increases, the
error will reduce, and when n reaches a certain number of times, its error value can be ignored.

2.2.3. Zero Up-Cross Method

Statistical analysis of a IMF, a wave set, requires establishment of the definition of individual
wave heights and periods. The standard is the employment of the zero-crossing definition. The zero
line or the line of the mean wave level is set for a record of wave registration, and each wave is defined
with the reference point where the instantaneous water level crosses the zero line. When the upward
crossing point is employed as the beginning of an individual wave, the method is called the zero
up-crossing method [28]. The definition of upward crossing point is [29]

ηi × ηi+1< 0;ηi+1 >0 (4)

where ηi is the wave height in given time.
The wave period, T, of an individual wave will be defined as the time between two successive

upward crossing point, as Figure 4 showing. For any individual wave, the peak and valley are
expressed as

ηi−1< ηi ∩ ηi >ηi+1 (highest point) (5)

ηi−1 > ηi ∩ ηi < ηi+1 (lowest point) (6)
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The average value of ηmax the highest point (peak) and the lowest point (valley) of ηmin is used as
the amplitude of each wave, as shown in Equation (7)

amplitude : (ηmax + ηmin)/2 (7)

In this study, we use the IMF decomposed by the EEMD to perform a zero up cross analysis
method, analyze the periods of each IMF, and discuss it.

After finding the period in the fluctuation using the zero up cross analysis method, the sum of
squares of each IMFs is regarded as its energy, and its value can correspond to the period relationship
in the fluctuation. The total energy value of each group is added up to form the IMF percentage
of each group compared with the energy of each group. The relational expressions of the energy
percentages are

Ei =
n∑

i=1

xi
2 (8)

Wi =
Ei∑n

i=1 Ei
× 100% (9)

where xj
2 is the square value at each time point of each group of IMF; Ei is the total energy; Wi is

weight of energy.

2.2.4. Data Synthesis

The impact of climate change tends to cause non-stationary conditions in hydrological data.
Therefore, we use the EEMD [14] in this study, and proposes a new way to synthesize and generate
data that can solve the non-stationary data problems. For a given flow time series, the IMFs and
residue, the EEMD decomposed result, would be replace by corresponding component in another
period; next, the new combination of IMFs and residue are summed up according to the completeness
of EMD [2]; then, the synthetic new flow time series will be produced. Thus, if there are many EEMD
decomposed results with the same length but different period, we could synthesize a flow data set
through permutation and combination of the corresponding IMFs and residues.

In this study, the historical 60-year (1956–2015) flow data of Tongtou streamflow gauge are
segmented in groups of 10 years. Through the EEMD method divides the sequence into two parts:
IMFs represent the inherent period sequence of the data, and the residue represents the non-period
sequence of the data. We can go through the permutations and combinations of the IMFs to get ni

sequences. Where n is the number of groups of data grouping; i is the number of IMFs by the group.
After completing the permutations and combinations of IMFs as shown in Figure 5, we can get

the new synthesis data of equal length streamflow. In this study, two permutations and combinations
methods are used to synthesize new 10-year flow series data. The method is described as follows:
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1. Regression analysis is performed on the different residue of each group to fit a new residue to
represent the residue value. By adding the results of the IMFs permutation and combination
with the representative values of the residue, we can get 10-year new synthetic flow data for the
ni groups.

2. Permutation and combination of the different remainders of each group with IMFs, we can get
10-year new synthetic flow data for the ni+1 groups.Water 2020, 12, 927 8 of 20 
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2.2.5. Water Supply System Simulation of Hushan Reservoir

The simulation method is commonly used in the analysis of water resources systems.
It conceptualizes the actual operation of the system to explore the use of water resources. In this study,
we use the simulation method to simulate the water supply system and explore the difference between
the newly synthesized flow data for each goal in the water supply system of Hushan reservoir.

First of all, the historical (1956–2015) flow data of Qingshui river were used to simulate accordance
with the Hushan reservoir operation rules. Because the Hushan reservoir takes water from the Qingshui
river through a water diversion tunnel, and there is some agricultural water right downstream of the
Tongtou weir (as shown in Figure 6). Therefore, before taking water to the Hushan reservoir, Tongtou
weir has to consider and satisfy the agricultural water downstream. The remaining flow is the amount
of water that can be taken to the Hushan reservoir. The main thing of simulation is that the water taken
into the Hushan reservoir should not affect the downstream agricultural water right.
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This study will assume different scenarios to simulate the water supply system of Hushan reservoir.
The main difference of these two scenarios is the object of water supply (as shown in Table 2). The local
water supply system is shown in Figure 6, and the simulation program calculation process is shown in
Figure 7.
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Table 2. Scenario description.

Scenario I II

Water supply range Supply the domestic water Support the industrial water

The operational regulations The upper and lower rule was set at the water level of 190 and 185 m in
Hushan reservoir, respectively.
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In the past, the Linnei water purifying plant only supplied 1.2 × 105 m3 water per day, and the
deficit of demand was filled by pumping groundwater. After the completion of the Hushan reservoir,
the situation of over pumping will be improved. The Hushan reservoir was originally intended to
be used in conjunction with the Jiji weir to supply water for domestic demand in the Yunlin area.
However, the conjunction operation of Hushan reservoir and Jiji weir will result in a low reservoir
utilization rate of only 1.18 [25]. Therefore, we assume the Hushan reservoir operates independently
in this study. The domestic demand in the Yunlin area is 2.8 × 105/day, and the support demand for
industrial is 3.0 × 105/day. Based on the previous study, the operational regulations of reservoir were
added [26], and the upper and lower rule curve is set at the water level of 190 m and 185 m for Hushan
reservoir, respectively. In order to explore the situation of water resources utilization in the Yunlin area
of the Hushan reservoir under different demand scenarios, the operation of reservoir should follow
these principles:

1. Supply of the Hushan reservoir must not be less than the projected demand if the water surface
elevation exceeds the upper curve.

2. Supply of the Hushan reservoir should satisfy 100% of the projected domestic demand, 90% of
the projected industrial demand, and 50% of the projected irrigation demand if the water surface
elevation is between the upper and lower curve.

3. Supply of the Hushan reservoir should satisfy 80% of the planning domestic demand and 0%
of the projected irrigation and industrial demand if the water surface elevation is under the
lower curve.

2.2.6. Indices for Impact and Risk Assessment

To assess the impact and the risk under different scenarios, the shortage index (SI), satisfaction
and reliability of the water supply were determined. Equations (10)–(16) define these indices.
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1. Satisfaction:

Satisfaction =
Qsup

Qd
× 100% (10)

2. Reliability:

Reliability =
Nsat

N
× 100% (11)

3. Shortage Index:

SI =
100
N

N∑
t=1


∣∣∣Qd −Qsup

∣∣∣
Qd


2

(12)

where Qd and Qsup are the quantities of water demand and supply, respectively; N is the
given time scale of the simulation, and Nsat is the number of days for which the demand has
been satisfied.

4. Reservoir Efficiency:

RE =
Annual actual water supply
reservoir effective capacity

(13)

5. The average duration of water shortage events:

ln =
1
M

M∑
j=1

lj (14)

where M is the number of occurrences of water shortage events, lj is the duration of each water
shortage event, ln is the average duration of water shortage events.

6. The average water shortage in the water shortage event (106 m3):

dn =
1
M

M∑
j=1

dj (15)

where dj is the total water shortage in each event, and dn is the average water shortage in the
water shortage event.

7. The daily average water shortage in the water shortage event (106 m3/day):

dn

ln
(16)

3. Results and Discussion

3.1. 60-Year Flow Data Analysis with EEMD

We analyze the historical flow data from 1956 to 2015 in this study. Because the skewness of flow
data will affect the decomposition process, the historical flow data is taken nature log transformation
before decomposing by the EEMD. The 60-year historical data is decomposed by the EEMD method,
and the decomposed IMFs are shown in Figure 8.
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Figure 8. Decomposition of 60-year flow data by EMD.

Figure 8 shows that there are 10 IMFs and 1 residue. The termination condition of the EEMD is
according to following literatures: Wu and Huang [14] show that the number of IMFs approaching
log2 n can be obtained by EEMD decomposition of the original data; in addition, Huang et al. [27] also
explained that the IMF obtained after the data is decomposed will be between

[
log2 n

]
− 1 and log2 n.

Therefore, the result that deals with 60-year daily flow by EEMD will introduce 10 IMFs and 1 residue.
Among them, the oscillation of IMF1–IMF10 gradually decrease from ± 3 to ± 0.008, but the range of
the residue gradually increased from 1.73 to 2.09 and then decreased to 1.75, which is a monotonic
function. From the decomposition, we can find that the residue part plays an important role, which
often affects the trend of whole time series.

Historical flow data is regarded as a signal for a certain period of time. After decomposing the
flow data through EEMD, the physical meaning of IMFs will be diagnosed. The period of each IMF is
estimated according to zero up-cross analysis. However, the true energy value cannot be calculated,
the square of the IMF value only be regarded as direct proportion with the true energy. In other words,
the energy representation, the summation of square of each IMF, should be regarded as the ‘weight’ of
oscillation for IMFs.

The values of the IMFs decomposed by the EEMD are squared and the sum is taken as the
representative value of energy, as shown in Figure 9 and Table 3. After the zero up cross analysis
method is used to average the IMF period of each group, the average period represented by the IMF
can be obtained. IMF10 is NAN because the period of the sequence cannot get after the zero up cross
analysis method.
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Table 3. Results of 60-year data by EMD with energy and period.

IMF 1 2 3 4 5 6 7 8 9 10

Energy (%) 29% 22% 10% 39% 1% 0% 0% 0% 0% 0%

Period (ten-day) 3.06 6.10 12.51 36.15 68.15 122.69 219.52 506.72 1262.74 N/A

As can be seen from Figure 9, the energy value is mostly concentrated in IMF4, reaching 39% and
the energy of IMF4 is higher than that of other IMFs. Corresponding to IMF4 in Figure 10, it can be
found that the corresponding period is about 36 ten-day, which represents that the flow data has a
strong annual (36 ten-day) period characteristic. In addition, the IMF1 and IMF2 still have a certain
proportion of the energy percentage, which are 29% and 22% respectively, and their periods correspond
to about 3 and 6 ten-day, respectively. Therefore, it can be seen that seasonal characteristics exists in
the flow data.
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3.2. Analysis of 6 Groups of 10-Year Flow Data

The historical flow data (1956–2015) is divided into 6 decades, and the EEMD screening is
implement to get the IMFs and the residue. The relationship between the period, energy, and flow data
of different segment IMFs will be discussed. The period and energy percentage distribution of IMFs
for each decade are shown in Table 4 and Figures 11 and 12.
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Table 4. Results of decadal data by EMD with energy and period.

Energy and Period of
Each IMFs Title 1956–1965 1966–1975 1976–1985 1986–1995 1996–2005 2006–2015

IMF1
Energy (%) 29.21 29.80 30.01 32.27 36.61 28.63

Period (ten-day) 3.34 3.39 3.04 2.96 3.05 3.18

IMF2
Energy (%) 17.89 21.43 23.75 27.34 24.22 16.89

Period (ten-day) 5.89 6.38 6.79 6.29 6.17 5.72

IMF3
Energy (%) 7.94 7.57 11.98 8.09 17.82 9.12

Period (ten-day) 11.80 11.48 14.16 12.28 15.97 11.87

IMF4
Energy (%) 44.32 40.85 30.22 31.93 20.54 44.46

Period (ten-day) 37.03 35.97 33.00 36.98 36.78 36.90

IMF5
Energy (%) 0.60 0.31 3.47 0.28 0.72 0.59

Period (ten-day) 68.73 83.47 63.53 61.08 75.53 78.63

IMF6
Energy (%) 0.04 0.04 0.56 0.10 0.09 0.31

Period (ten-day) 93.06 155.07 95.69 114.80 129.14 173.41

IMF7
Energy (%) 0.00 0.00 0.00 0.00 0.00 0.00

Period (ten-day) - - - - - -
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Figure 12. Average period of each IMF for a 10-year flow.

The corresponding relationship between the energy percentage of each IMFs and the average
period is shown in Figures 11 and 12. We can find the energy distribution concentrates in IMF1–IMF4,
which correspond to an average period from 2.96 to 37.03 ten-days. In addition, it can be found that
the energy percentage of IMF4 for the 6 groups has the most highest weight, with an average of about
20.5–44.5% compared with total weight of all IMFs, and it corresponds to an average period around
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36 ten-days. Moreover, the minor IMFs, IMF1 and IMF2, are have around 28–36% and 18–27% energy
of the total respectively, and their corresponding periods are about 3 and 6 ten-days. These results are
similar to the 60-year flow analysis, as shown in Table 4.

3.3. Data Synthesis

This section explains the synthesis of flow data. The historical flow data (1956–2015) is divided
into six groups of 10-year segments in order. After decomposing through EEMD, multiple IMFs
and residue corresponding to them can be obtained. The decadal residues are shown in Figure 13.
Regression analysis of different residue in each group is fitted to a new residue representing the value.

This study used two methods to synthesize new decadal flow data as the basis for simulation
research. Method (I): first permutations and combinations all IMFs to get ni (67 = 279,936) new IMF
(IMF1 + IMF2 + . . .+ IMF7) set. Where n is the number of groups and i is the number of IMFs each
group. After permutations and combinations of the IMFs, add a representative value of the residue,
which is the regression of six residues. The representative value of the residue is shown in Figure 13,
the bold dashed line. Regression analysis fits the representative value of the residue, and then adds
this residue to the IMF of the 279,936 group to obtain the synthesis flow data of the 279,936 group for
10 years. Method (II): all the IMFs and the residue in each group are permutations and combinations
to obtain a total of ni + 1 (67 + 1 = 1,679,616) new synthetic flow data. In the following, the new flow
data synthesized from the two methods and historical flow data are compared with each other, and
the differences are explored. In addition, this study will apply new flow data synthesized from two
different methods to simulate Hushan reservoir water supply systems, and sequentially discuss the
simulation results of different synthetic flow data in different water supply scenarios.Water 2020, 12, 927 14 of 20 
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Result of comparing the synthetic data with historical data divided by 10 years is shown in
Table 5 and Figure 14. For the historical data, the flow in Qingshui river is significantly different
between the wet and dry season; the flow from wet season, May to October, is significantly higher than
November to April. The ratio of wet/dry is about 9:1. The highest flow occurs in August (62.09 m3/s)
and the lowest flow occurs in January (2.05 m3/s). Compared the historical with the synthetic flow,
the monthly distribution is similar between both Method I and Method II. The synthetic flow is
concentrated in May–October, and the highest flow always occurs in August, but the lowest flow
occurs in the dry season in January and February. In terms of the overall flow during the wet season,
the average synthesized by Method I is significantly less than the current situation; in contrast, the
average synthesized by Method II is much higher. In the dry season, the average synthesized by
Method I and Method II is not much different from the current.
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Table 5. Comparison of historical and synthesis flow data.

Flow (cms)
Month

1 2 3 4 5 6 7 8 9 10 11 12 Average

Observation 2.05 2.56 3.39 5.74 16.85 45.82 41.02 62.09 36.43 10.67 3.88 2.55 19.24

Synthesis (I) 1.91 1.98 2.28 3.44 12.17 33.89 27.69 41.37 25.33 8.59 3.54 2.33 13.71

Synthesis (II) 3.29 3.10 3.70 5.67 20.70 57.92 55.11 80.93 40.40 12.68 5.08 3.54 24.34Water 2020, 12, 927 15 of 20 
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and 0.27 × 106 m3, respectively. The water shortage index (SI) is only 0.002. While the water shortage 
occurring, the average daily water shortage (ADWS) is only 0.03 × 106 m3. The preceding indices show 
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reach 165.14 × 106 m3, and the annual water shortage will also increase significantly to 9.74 × 106 m3. 

Figure 14. Comparisons of 10-year flow data.

The distribution of the probability of exceedance is shown in the Figures 15 and 16. For the 10-year
synthesis, the overall time distribution is consistent with the historical one; furthermore, the synthesis
keeps the distribution of wet and dry seasons as well. Through the probability of exceedance of 0.05,
the extreme flow of Method II is greater than Method I. In contrast, while the probability of exceedance
is 0.95, the flow data of Method II is much less than Method I. This will also lead to the opposite result
of the average flow in the simulation of the water supply system.
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Although the preceding says that, there are not much variance of the distribution trend between
the 10-year flow data synthesized by these two different methods. However, the annual average
between two synthesis methods is more significant. The flow data synthesized by Method II has an
annual average flow of 24.34 m3/s, which is more than the annual average of Method I, 13.71 m3/s.
The water supply system simulation will be based on these three flow sequences, historical data,
Method I and Method II synthetic data, to simulate the water supply system of Hushan reservoir.

3.4. Application of Synthesis Data

Next, we apply the synthesized flow data to simulate the water supply system according to the
given two demand scenarios. Using the historical flow data, Method I and the Method II synthetic
flow data are used for simulation, and the simulation results are shown in the Table 6 and Figure 17.

Table 6. Indices of the water supply for present.

Simulation Results

Unit: Quantity of Water in 106 m3/yr

Present

Project
Scenario No Support

Industrial Water
Support Industrial

Water (30 × 104 CMD)
Support Industrial

Water (10 × 104 CMD)

Reservoir supply 101.93 165.14 128.30

Domestic shortage 0.27 9.74 2.18

Reservoir inflow 101.90 162.80 128.05

Domestic SI 0.002 0.309 0.10

Reservoir efficiency 1.91 3.09 2.40

Public ACDD 9.00 135.00 45.00

ADWS during water shortage events 0.03 0.06 0.05

Note: CMD, m3/day; ACDD, average consecutive dry days; ADWS, average daily water shortage.
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First, we apply the historical flow to simulate the water supply system. For the case of no
supporting industrial water in Scenario I, the annual water supply and shortage are 101.93 × 106 m3

and 0.27 × 106 m3, respectively. The water shortage index (SI) is only 0.002. While the water shortage
occurring, the average daily water shortage (ADWS) is only 0.03 × 106 m3. The preceding indices show
that if the Hushan reservoir only supplies water for domestic demand, the water supply situation
will be very stable and shortage will not be easy to occur. In the case of supporting industrial water
in Scenario II. If the daily support for industrial water is 300,000 m3, the annual water supply will
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reach 165.14 × 106 m3, and the annual water shortage will also increase significantly to 9.74 × 106 m3.
Although the SI only increases to 0.309, and the ADWS only increases to 0.06 × 106 m3 while the water
shortage occurred. The reliability of the water supply reaches 0 already at the 9th and 11th ten-day,
as depicted in Figure 17. The result show that the water supply risk in demand Scenario II is relatively
severe than Scenario I.

Because the simulation of demand Scenario II indicates severe impact on domestic, we set the
domestic SI = 0.1, and try to find the capability of industrial supporting for Hushan reservoir. We found
that Hushan reservoir can support 100,000 m3/day of industrial water, and the annual water shortage
has decreased to 2.18 × 106 m3. The number of average consecutive dry days (ACDD) for domestic
has been greatly reduced to 45 days, and the reliability of the water supply is also raised to 0.4–0.5.
In the following analyses, we recommend the daily supporting amount for industry from the Hushan
reservoir should be 100,000 m3 as basis.

We simulate the water supply system with the historical flow as applied to method I (279,936 groups)
and method II (1,679,616 groups) for newly synthesized flow data. The results are compared based on
the ensemble average (as shown in Table 7). Scenario I without considers supporting industrial water,
the current annual water supply is 101.93 × 106 m3, the annual water shortage is only 0.27 × 106 m3,
and the SI is only 0.002. While the water shortage occurring, the ADWS is only 0.03 × 106 m3.

According to the water supply simulation results of 279,936 sets of flow data in Method I,
the annual water supply slightly decreased to 98.25 × 106 m3, the annual water shortage increased
to 3.59 × 106 m3, and the SI increased significantly to 0.668. While the water shortage occurring,
the ADWS is increased slightly to 0.05 × 106 m3. However, Figure 18 shows that whether the reliability
is lower than the current simulation result, they are still above 0.5, the lowest satisfaction is 0.87, which
is generally acceptable.

According to the water supply simulation results of 1,679,616 sets of flow data in Method II.
The annual water supply decreases to 95.52 × 106 m3, the annual water shortage has increased
significantly to 6.68 × 106 m3. The SI increased significantly to 1.96 and the ADWS increased to
0.07 × 106 m3 as well. Figure 18 shows that the reliability is similar to the method I in dry season.
However, Method II’s reliability is lower than method I value in the wet season. The satisfaction is
generally lower than the current situation and the method I, but the minimum is still 0.84. The water
supply situation of Method II is still acceptable. There is something odd: why the average annual flow
of Method II is significantly more than the current situation and the average flow of Method I, but
the simulation results are worse than the other cases? The main reason is that the extreme flow of the
Method II often occurs; excessive flow cannot be used efficiently and there are many low flows during
wet season. Therefore, the simulation result of Method II is the worst.

Table 7. Comparison of historical and synthesis flow data. SI, Shortage Index.

Simulation Results

Unit: Quantity of Water in 106 m3/yr

No Support Industrial Water

Project
Scenario

Present Method I Method II

Reservoir supply 101.93 98.25 95.52

Domestic shortage 0.27 3.95 6.68

Reservoir inflow 101.90 94.72 92.07

Domestic SI 0.002 0.668 1.96

Reservoir efficiency 1.91 1.84 1.79

Domestic ACDD 9.00 51.2 59.28

ADWS during water shortage events 0.03 0.05 0.07
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Finally, we simulate the water supply system using the historical flow with Method I and Method
II’s synthesis flow data. The results are compared to the ensemble average (as shown in Table 8). Under
the condition of supporting 100,000 m3 of industrial demand daily, the current annual water supply is
128.30 × 106 m3, the annual water shortage is 2.18 × 106 m3 and the SI is 0.1. While water shortage
occurs, the average daily water shortage is 0.05 × 106 m3.

According to the simulation result of water supply in Method I, the annual water supply decreased
slightly to 116.82 × 106 m3, the annual water shortage increased to 11 × 106 m3, and the SI increased
significantly to 1.203. While the water shortage occurring, the ADWS is still maintained at 0.05 × 106 m3.
Figure 19 shows that the reliability decrease more earlier than the current situation, the lowest monthly
reliability reaches 0.24 in March, and recoveries in May. The lowest fulfillment of demand still occurs
in March (0.74). In terms of dry season, the risk of water supply shortage is much worse than the
current situation.

According to the simulation result of water supply in Method II, the annual water supply decreased
to 113.82 × 106 m3, the annual water shortage increased sharply to 13.46 × 106 m3, and the SI increased
significantly to 2.12. While occurs the water shortage event, the ADWS also increased to 0.07 × 106 m3.
Figure 19 depicts that the reliability is similar to but lower than Method I in the dry season. Compared
with the current situation, the water shortage occurs earlier, but it is lower than the Method I in the
wet season. The satisfaction is generally lower than the current situation and the Method I, but similar
to Method I. The satisfaction rises rapidly in May, which is higher than the current simulation results.
However, the satisfaction is decreasing from August to October in wet season, it seems worse than
the others.

In summary, no matter what kind of water supply scenario is applied, the current results are better
than Method I and Method II. Although the simulation result of Method I is similar to Method II, the
ensemble result of Method I is slightly better than the Method II. However, Method II synthesis annual
average flow is significantly more than the current flow and the Method I flow, but the simulation
results are worse than other cases. The main reason is that the extreme flow of the method II often
occurs. Excessive flow cannot be used efficiently and there are many low flows in wet season. Therefore,
the simulation result of Method II is the worst.
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Table 8. Comparison of historical and synthesis flow data.

Simulation Results

Unit: Quantity of Water in 106 m3/yr;

Support Industrial Water (10 × 104 m3/s)

Project
Scenario

Present Method I Method II

Reservoir supply 128.30 116.92 113.82

Public shortage 2.18 11.00 13.46

Reservoir inflow 128.05 112.37 109.43

Public SI 0.10 1.203 2.12

Reservoir efficiency 2.40 2.19 2.13

Public ACDD 45.0 111.0 113.82

ADWS during water shortage events 0.05 0.05 0.07
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4. Conclusions

The IMFs and residue of the Tongtou weir flow data can be obtained by EEMD decomposition.
This method can effectively solve the stationary or nonstationary impacts of hydrological data due
to climate change. In this study, two methods are used to synthesize new 10-year flow series data.
Method I uses the IMFs segmented data to reorganize the periodic characteristics and sums them up
with the residue representation; in contrast, Method II uses the permutation and combination of all
IMFs and residues. The new synthetic flow data will provide the input of simulation for the Hushan
Reservoir water supply system.

In the energy distribution of IMFs, most of the energy is concentrated between IMF1 and IMF4,
which IMF4 has the largest weight (39%), and the corresponding period is about 36 ten-day periods
(1 year). However, IMF1 still has a certain proportion of energy percentage, the corresponding period
is about 3 ten-day periods (1 month). This reflects that the flow of Tongtou weir is not only affected
by a 1-year periodic sequence, but influenced by the monthly rainfall event. Comparing the current
situation with the new data generated by EEMD, the generated data is similar to the current flow
distribution, but the flow distribution during the wet season is significantly different (±0.63 m3/s), and
the flow difference during the dry season is insignificant (±0.78 m3/s).

For the Scenario I without considers supporting industrial water, the simulation results of the
generation data of Method I show that compared with the current situation, the SI has increased
significantly from 0.002 to 0.668, and the number of ACDD of water shortage has also increased
significantly from 9 to 51.2 days. The simulation results of Method II show that the SI is more severe
than the current situation and Method I, it reaches 1.96. The number of ACDD increased slightly to
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59.28 days. In addition, it can be found from the reliability and satisfaction Figure that the simulation
results of the synthesis flow in this study will occur water shortages earlier than the current situation.

Scenario II considers supporting industrial water usage, the simulation results of Method I show
that the SI has increased significantly to 1.023, and the number of ACDD of water shortage has also
increased significantly to 111 days. The simulation results of Method II show that the SI is more severe
to 2.12. The number of ACDD increased slightly to 113.82 days. In addition, it can be found from
the reliability and satisfaction figure that no matter in which way the synthesis flow is simulated,
supporting industrial water will seriously affect the equity of domestic water.

In this study, the multiplication data obtained through permutation and combination after EEMD
can show the flow distribution characteristics of the Tongtou weir. In the future, the hydrological
factors, such as temperature and rainfall in the same area, can be integrated to explore the correlation
between the overall hydrological factors.

Author Contributions: T.-Y.C. analyzed the data and drafted the manuscript; W.-C.H. revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was sponsored by the Ministry of Science and Technology in Taiwan (MOST
106-2625-M-019-001).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The hilbert spectrum. Annu. Rev.
Fluid Mech. 1999, 31, 417–457. [CrossRef]

2. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H.
The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series
analysis. Proc. R. Soc. Math. Phys. 1998, 454, 903–995. [CrossRef]

3. Yang, Y.Z. The Application of Empirical Mode Decomposition on the SASW; National Cheng Kung University:
Tainan, Taiwan, 2008.

4. Huang, Y.; Schmitt, F.G.; Lu, Z.; Liu, Y. Analysis of daily river flow fluctuations using empirical mode
decomposition and arbitrary order Hilbert spectral analysis. J. Hydrol. 2009, 373, 103–111. [CrossRef]

5. Wu, Z.H.; Huang, N.E. On the filtering properties of the empirical mode decomposition. Adv. Adapt.
Data Anal. 2010, 2, 397–414. [CrossRef]

6. Lu, K.Y. Use EMD to Study the ISO in the Background Circulation of the Typhoon Morakot; National Central
University: Taoyuan, Taiwan, 2011.

7. Lee, T.; Ouarda, T. Prediction of climate nonstationary oscillation processes with empirical mode
decomposition. J. Geophys. Res. Atmos. 2011, 116, D06107. [CrossRef]

8. Lee, T.; Uarda, T. Stochastic simulation of nonstationary oscillation hydroclimatic processes using empirical
mode decomposition. Water Resour. Res. 2012, 48, W02514. [CrossRef]

9. Molla, M.K.I.; Rahman, M.S.; Sumi, A.; Banik, P. Empirical Mode Decomposition Analysis of climate changes
with Special Reference to Rainfall Data. Discret. Dyn. Nat. Soc. 2006, 2006, 1–17. [CrossRef]

10. Molla, M.K.I.; Sumi, A.; Rahman, M.S. Analysis of Temperature Change under Global Warming Impact
using Empirical Mode Decomposition. Int. J. Inf. Tecnol. 2007, 3, 131–139.

11. Huang, S.Z.; Chang, J.X.; Huang, Q.; Chen, Y.T. Monthly streamflow prediction using modified EMD-based
support vector machine. J. Hydrol. 2014, 511, 764–775. [CrossRef]

12. Meng, E.H.; Huang, S.Z.; Huang, Q.; Fang, W.; Wu, L.Z.; Wang, L. A robust method for non-stationary
streamflow prediction based on improved EMD-SVM model. J. Hydrol. 2019, 568, 462–478. [CrossRef]

13. Zhang, H.B.; Wang, B.; Lan, T.; Chen, K. A modified method for non-stationary hydrological time series
forecasting based on empirical mode decomposition. J. Hydroelectr. Eng. 2015, 34, 42–53.

14. Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.
Adv. Adapt. Data Anal. 2005, 1, 1–41. [CrossRef]

http://dx.doi.org/10.1146/annurev.fluid.31.1.417
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1016/j.jhydrol.2009.04.015
http://dx.doi.org/10.1142/S1793536910000604
http://dx.doi.org/10.1029/2010JD015142
http://dx.doi.org/10.1029/2011WR010660
http://dx.doi.org/10.1155/DDNS/2006/45348
http://dx.doi.org/10.1016/j.jhydrol.2014.01.062
http://dx.doi.org/10.1016/j.jhydrol.2018.11.015
http://dx.doi.org/10.1142/S1793536909000047


Water 2020, 12, 927 21 of 21

15. Zhao, X.H.; Chen, X. Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for
Annual Runoff Forecasting. Water Resour. Manag. 2015, 29, 2913–2926. [CrossRef]

16. Zhang, X.; Zhang, Q.W.; Zhang, G.; Nie, Z.P.; Gui, Z.F. A Hybrid Model for Annual Runoff Time Series
Forecasting Using Elman Neural Network with Ensemble Empirical Mode Decomposition. Water 2018,
10, 416. [CrossRef]

17. Bai, L.; Xu, J.H.; Chen, Z.S.; Li, W.H.; Liu, Z.H.; Zhao, B.F.; Wang, Z.J. The regional features of temperature
variation trends over Xinjiang in China by the ensemble empirical mode decomposition method. Int. J.
Climatol. 2015, 35, 3229–3237. [CrossRef]

18. Yu, Y.H.; Zhang, H.B.; Singh, V.P. Forward Prediction of Runoff Data in Data-Scarce Basins with an Improved
Ensemble Empirical Mode Decomposition (EEMD) Model. Water 2018, 10, 388. [CrossRef]

19. Bai, Y.; Wang, P.; Xie, J.J.; Li, J.T.; Li, C.A. Additive Model for Monthly Reservoir Inflow Forecast. J. Hydrol.
Eng. 2015, 20, 04014079. [CrossRef]

20. Yeh, W.W.-G. Reservoir management and operations models: A state-of-the-art review. Water Resour. Res.
1985, 21, 1797–1818. [CrossRef]

21. Wurbs, R.A. Reservoir-System Simulation and Optimization Model. J. Water Resour. Plan. Manag. 1993,
119, 455–472. [CrossRef]

22. Chang, J.X.; Wang, Y.M.; Huang, Q. Reservoir Systems Operation Model Using Simulation and Neural
Network. In Proceedings of the Second IFIP Conference on Artificial Intelligence Applications and
Innovations, Beijing, China, 7–9 September 2005.

23. Lin, N.M.; Rutten, M. Optimal Operation of a Network of Multi-purpose Reservoir: A Review. Procedia Eng.
2016, 154, 1376–1384. [CrossRef]

24. Lee, J.L.; Huang, W.C. Climate change impact assessment on Zhoshui River water supply in Taiwan.
Terr. Atmos. Ocean. Sci. 2017, 28, 463–478. [CrossRef]

25. Lee, J.L.; Huang, W.C. Impact on Water Utilization of Zhoshui River Basin by Wushe Reservoir Sediment
and Hushan Reservoir Operation. Taiwan Water Conserv. 2012, 60, 85–97.

26. Chu, T.Y.; Huang, W.C. Water-Resource Utilization of Hushan Reservoir in Taiwan. Taiwan Water Conserv.
2016, 64, 1–11.

27. Huang, W.C.; Chu, T.Y.; Jang, Y.S.; Lee, J.L. Data Synthesis Based on Empirical Mode Decomposition. J. Hydrol.
Eng. 2020. accepted.

28. Goda, Y. Effect of Wave Tilting on Zero-Crossing Wave Heights and Periods. Coast. Eng. Jpn. 1986, 29, 79–90.
[CrossRef]

29. Goda, Y. Random Seas and Design of Maritime Structures, 1st ed.; Yokohama National University: Yokohama,
Japan, 1985.

30. Tong, C.H. A Suitability Study on 2-D Irregular Wave Tests; National Taiwan Ocean University: Keelung,
Taiwan, 2013.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11269-015-0977-z
http://dx.doi.org/10.3390/w10040416
http://dx.doi.org/10.1002/joc.4202
http://dx.doi.org/10.3390/w10040388
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001101
http://dx.doi.org/10.1029/WR021i012p01797
http://dx.doi.org/10.1061/(ASCE)0733-9496(1993)119:4(455)
http://dx.doi.org/10.1016/j.proeng.2016.07.504
http://dx.doi.org/10.3319/TAO.2016.10.26.01
http://dx.doi.org/10.1080/05785634.1986.11924429
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Method 
	Study Area 
	Hushan Reservoir 
	Tongtou Weir 

	Research Method 
	Empirical Mode Decomposition 
	Ensemble Empirical Mode Decomposition 
	Zero Up-Cross Method 
	Data Synthesis 
	Water Supply System Simulation of Hushan Reservoir 
	Indices for Impact and Risk Assessment 


	Results and Discussion 
	60-Year Flow Data Analysis with EEMD 
	Analysis of 6 Groups of 10-Year Flow Data 
	Data Synthesis 
	Application of Synthesis Data 

	Conclusions 
	References

