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Abstract: This study examines the relationship between gully erosion in channels, sidewalls, and
interfluves, and precipitation parameters (duration, total accumulation, average intensity, and
maximum intensity) annually and seasonally to determine seasonal drivers for precipitation-related
erosion. Ordinary Least Square regression models of erosion using precipitation and antecedent
precipitation at weekly lags of up to twelve weeks were developed for three erosion variables for each
of three geomorphic areas: channels, interfluves, and sidewalls (nine models in total). Erosion was
most pronounced in winter months, followed by spring, indicating the influence of high-intensity
precipitation from frontal systems and repeated freeze-thaw cycles in winter; erosion in summer was
driven by high-intensity precipitation from convectional storms. Annually, duration was the most
important driver for erosion, however, during winter and summer months, precipitation intensity
was dominant. Seasonal models retained average and maximum precipitation as drivers for erosion
in winter months (dominated by frontal systems), and retained maximum precipitation intensity as a
driver for erosion in summer months (dominated by convectional storms). In channels, precipitation
duration was the dominant driver for erosion due to runoff-related erosion, while in sidewalls and
interfluves intensity parameters were equally important as duration, likely related to rain splash
erosion. These results show that the character of precipitation, which varies seasonally, is an important
driver for gully erosion and that studies of precipitation-driven erosion should consider partitioning
data by season to identify these drivers.
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1. Introduction

Gully erosion is a global problem, particularly in the southeastern United States, where erodible
soils, high relief, and climatic and meteorological factors encourage soil erosion. Gully erosion is one of
the most dangerous forms of soil degradation, which is caused by natural and anthropogenic activities.
Gullies are composed of several continuous or discontinuous channels and rills with varying slopes,
which may later develop into deep trenches, inhibiting effective remediation by tillage. Gully erosion
can initiate from anthropogenic factors like farming or grazing on susceptible soils, increased runoff

from land-use changes due to logging or construction, and poor vegetative cover from wildfire or high
soil salinity. Additionally, natural drivers for soil erosion are meteorological variables, topography,
and soil type and texture [1,2].

Changes in land use can increase soil erosion. Vast regions of the United States experienced
soil erosion when forested lands were converted to croplands in the late 19th century and the early
20th century [3]. Estimates of the volume of soil erosion in the United States caused by both sheet
and rill erosion combined is 6.7 Mg/ha/y in cultivated cropland, 0.90 Mg/ha/y on federal lands, and
1.55 Mg/ha/y in pasture lands [3]. Considerable land area in the southeastern US was converted
from forest to agriculture to support cotton farming in the 1800s and pasture for animal grazing [4,5].
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Land cover change due to logging and conversion of forest to crop and pasture was linked to
nineteenth-century European settlement in the southern Blue Ridge Mountains and Appalachian
hillslopes [6–9]. Harvesting on the steep Appalachian hillslopes has been identified as one potential
cause of soil erosion [10]. After recognizing the problem as early as 1933, soil conservation programs
were implemented in the United States. As part of present soil conservation efforts, afforestation on
the reclaimed land has partially halted erosion, but severe erosional areas from the past cotton farming
era are still prominent [4]. Some researchers have described a multi-stage formation of severe soil
erosion [11,12], i.e., a process for gully development in the Appalachian Piedmont: (i) rills and gullies
are initiated along existing paths, tracks, ditches, or animal burrows, where runoff is concentrated due
to reduced infiltration; (ii) head scarp erosion begins as runoff gains energy and is concentrated in
steeply sloped land; (iii) gully downcutting eventually stabilizes when weathered bedrock and the
shallow groundwater zone are encountered; (iv) erosion continues laterally along channel sidewalls
and headwalls by slumping and under caving, inhibiting effective control by tillage. Hence, reclamation
can be expensive.

Sidewalls (or midslopes), gully channels (or valleys), and interfluves (or gully divides) are major
topographical factors that influence soil erosion [7,8,13]. Soil erosion increases with slope steepness,
which is more relevant to gully sidewall erosion and less relevant to interfluves. Gully channels are
dynamic and can serve as intermittent sediment sinks and sources, transporting sediment to the gully
outlet [14].

In addition to land cover change and topographic variation, water-induced soil erosion from
severe precipitation events erodes fertile soil, mainly in areas with poor agricultural management,
land degradation from mining, road construction, or wild fires [2]. Unique climatic conditions in the
humid subtropical climate (Köppen Cfa) of the southeastern United States are a major contributing
factor in gully erosion [15]. Cold periods in the south are short and winters are mild, inhibiting deeper
ground freezing. The thin surface layer (5–10 cm) of frost-heaved soil becomes loose after a few
freeze-thaw cycles, and can erode easily from subsequent heavy rain or snow-melt runoff [13]. During
warm periods, intensive rainfall that falls on steep, sparsely vegetated slopes contributes to erosion.
General precipitation trends in the Appalachian hillslopes indicate that high-intensity events occur
more during summer months, while higher accumulation low-intensity storms are more prevalent in
winter months. Seasonal variability in precipitation characteristics impacts erosion, but the extent and
nature of this relationship are not well understood in this region.

A short-term study of hillslope erosion in the Appalachians found that duration and accumulation
of precipitation were more important than storm intensity as drivers for gully erosion [13]. The same
study also found antecedent precipitation is a stronger predictor of erosion and discrete precipitation
events alone may not result in measurable erosion. Antecedent precipitation along with successive
precipitation events can saturate the soil, reduce shear strength, and cause erosion. To examine
inter-annual variability and longer-term effects from antecedent precipitation, as well as the influence
of seasonal events on soil erosion, a more extensive time series of precipitation and corresponding
erosion data is necessary [16], however, it will be important to retain a high temporal resolution in the
data to assess seasonal scale patterns.

In this context, the Appalachian hillslopes in the southern US are representative of a region of
historic and modern land degradation from unique meteorological conditions, variable topography,
and land use/land cover change. Therefore, the objective of the present study is to examine the effect of
meteorological parameters, specifically precipitation, on soil erosion through long term high-resolution
monitoring. This paper summarizes six years of comprehensive weekly monitoring of precipitation
events and soil erosion in an Appalachian hillslope paying particular attention to seasonal effect.
An understanding of the seasonal pattern of soil erosion with respect to precipitation-related drivers of
erosion will improve the potential to achieve conservation measures.
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2. Materials and Methods

The study site was a system of branching gullies located on a hillslope at the East Tennessee State
University Valleybrook research facility in northeast Tennessee, USA (+36◦25′36.77”, −82◦32′10.63”) at
an elevation of 530 m (Figure 1). The site was within the Appalachian Valley and Ridge physiographic
province and consisted of northeast-southwest trending parallel limestone valleys (Maynardville
Formation) and sandstone or shale ridges (Nolichucky Formation) [17]. The 1.5 ha study area was
located on a grass and shrub hillslope surrounded by forest (on the ridges) and pasture (in the valleys).
Soils were highly erodible fine-grained silt and clay Ultisols (Collegedale-Etowah complex (CeD3))
with an average erodibility factor (RUSLE K-factor) of 0.28, indicating susceptibility to raindrop
impact and transport by surface runoff [18]. The region has a humid subtropical climate (Köppen
Cfa) with year-round precipitation of 1070 mm (42 in) annually and an average annual temperature
range from 1.1 ◦C (34 ◦F) in January to 23.3 ◦C (74 ◦F) in July. The National Oceanic and Atmospheric
Administration describe Tennessee’s winter precipitation as dominated by the polar front and summer
precipitation that results from convectional systems. September and October are the driest months.
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A detailed description of the site setup can be found in [13,19] and is summarized as following.
Steel erosion pins were installed in transects throughout the 100 m × 100 m gullied zone. Each transect
spanned interfluves, sidewalls, and the gully channel to assess erosion in these three morphological
settings. In total, 105 erosion pins were installed, 34 (1 m × 5 mm) pins in channels, and the remaining
(0.5 m × 5 mm) pins in interfluves (29 pins) and sidewalls (42 pins). From 23 May 2012 to 22 August
2018, pin length was recorded approximately weekly for each pin using a folding ruler. Pin attrition
occurred periodically over the study period, such that some pins were eroded, damaged, or dislodged
by animals. Therefore, in May 2015, 43 new pins were installed and 3 damaged pins were replaced,
bringing the total number of pins to 105. The nature of the site surface limited access during and
immediately after rain events, and over the six-year period, pin length was recorded 294 times.
The difference between the exposed lengths of each pin was calculated between one measurement
period and the next, and this dataset of pin change was compared to precipitation data to identify
important drivers for erosion in each morphological setting.

For each setting, we created three erosion variables: (1) average of the absolute value of change
(Avg|Ch|); (2) average of only positive changes in pin lengths (deposition) from one measurement
period to the next (AvgDep), and; (3) average of only negative changes in pin lengths (erosion) from
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one measurement period to the next (AvgErosion). In prior research, a fourth variable, average
change, was generated, however, because of a balance of erosion and deposition, especially in channels,
the average change remained near zero and was not a useful parameter to capture weekly and
longer-term erosion on-site [13,14,19–21]. Therefore, in this study, we have retained the three variables
described above.

A Davis Vantage Pro wireless weather station (KTNJONES12, data available at https://www.
wunderground.com/dashboard/pws/KTNJONES12) was located 350 m from the research site, and
recorded precipitation, pressure, temperature, and wind data at five-minute intervals. Occasional
data gaps were filled with data from a neighboring station 1.6 km away (KTNJONES7, data available
at https://www.wunderground.com/dashboard/pws/KTNJONES7), with only 21 of 2282 study days
missing weather data. See [19] for a detailed list of weather data gaps and coverage.

From these data, four precipitation parameters were generated for each measurement period: (1)
Duration (total minutes of rainfall); (2) Total Accumulation (total precipitation in mm); (3) Average
Intensity in mm/min (Total Accumulation/Duration), and; (4) Maximum Intensity in mm/min (the
greatest station-reported rain rate during the measurement period). The rain rate is a smoothed function
of rain accumulation over time that is calculated using the ratio of the tipping bucket depth-adjusted
volume to the time between tips. As rainfall tapers off, the rate drops but does not reach zero
immediately upon cessation of precipitation. Instead, it smooths the rate to more accurately represent
how precipitation naturally tapers over an area at the end of a rain storm [22].

Prior research has shown that antecedent precipitation may be an important factor in erosion,
and therefore a series of antecedent precipitation parameters were generated for the prior eleven
measurement periods, for each of Duration, Total Accumulation (TotAcc), Average Intensity (AvgInt),
and Maximum Intensity (MaxInt). These antecedent lagged variables were named Duration-1,
Duration-2 ... Duration-11, TotAcc-1, TotAcc-2 . . . and so-on, a total of 48 precipitation parameters,
which we refer to as lagged precipitation parameters.

The relationship between erosion variables and all precipitation parameters was assessed with
Spearman correlation coefficients. Ordinary Least Squares (OLS) regression models were created
for the nine erosion variables using the set of current and lagged precipitation parameters. Further,
because seasonal variability in erosion was observed in prior studies [13,19], the data were partitioned
by season: winter (December, January, February); spring (March, April, May); summer (June, July,
August); and autumn (September, October, November). OLS regression models were generated for the
erosion variables using the precipitation parameters for each of the seasonal datasets.

3. Results

3.1. Precipitation

Precipitation accumulation for each measurement period had an annual mean of 22.2 mm, with
the highest seasonal mean accumulation in winter (26.3 mm) and spring (24.3 mm), and the lowest in
autumn (15.3 mm) (Table 1). Likewise, the duration of precipitation had an annual mean of 278.7 min,
but the longest seasonal mean duration was received in winter (424.7 min), and the shortest in autumn
(192.5 min). Both average and maximum precipitation intensity were higher in summer months
(0.1 mm/min and 108.1 mm/min, respectively) compared to the annual values of these parameters (0.08
and 71.5 mm/min, respectively).

The study area experienced year-round precipitation, however, most of the accumulation was
in winter (frontal systems) and summer (convectional storms) (Figure 2). September and October
were the driest months, most notably in 2012, 2013, and 2016. The most intense rains occurred in
summer months, for example, see high values for Average Intensity (AvgInt) in the summer of 2012,
2014, 2016, 2017, 2018, and to a lesser degree 2013 and 2015. One may also notice that when Total
Accumulation (TotAccum) was high and Duration was low, Maximum Intensity (MaxInt) was also

https://www.wunderground.com/dashboard/pws/KTNJONES12
https://www.wunderground.com/dashboard/pws/KTNJONES12
https://www.wunderground.com/dashboard/pws/KTNJONES7
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high because it follows that higher intensity rainfall occurred when high rainfall totals were received
in a short time-period.

Table 1. Descriptive statistics of precipitation parameters by measurement period.

Parameter Season Mean Median Standard Deviation Min. Max. Skewness Kurtosis

Total
Accumulation

(mm)

All 22.2 17.0 21.1 0.0 132.6 1.6 4.0
Spring 24.3 17.5 21.7 0.25 93.2 1.1 0.8

Summer 22.7 19.6 18.6 0.0 72.1 0.7 −0.2
Autumn 15.3 11.2 16.2 0.0 78.0 1.5 2.8
Winter 26.3 19.1 25.9 0.25 132.6 2.1 5.7

Duration (min)

All 278.7 220.0 285.6 0 2600 3.0 16.5
Spring 299.4 265.0 243.4 5 1185 1.3 2.0

Summer 209.9 190.0 178.3 0 995 1.5 3.6
Autumn 192.5 130.0 218.2 0 1175 2.3 7.1
Winter 424.7 305.0 409.1 5 2600 2.8 11.6

Average
Intensity

(mm/min)

All 0.1 0.06 0.05 0 0.3 1.9 4.5
Spring 0.1 0.07 0.04 0.03 0.2 1.5 1.5

Summer 0.1 0.1 0.06 0 0.3 1.1 1.4
Autumn 0.1 0.06 0.05 0 0.3 1.9 4.8
Winter 0.1 0.05 0.01 0.05 0.1 2.2 5.6

Maximum
Intensity

(mm/min)

All 71.5 15.5 220.2 0 2090.2 6.4 45.2
Spring 49.1 16.3 120.9 0 975.4 6.7 50.7

Summer 108.1 48.5 276.8 0 2090.2 5.7 35.8
Autumn 88.1 13.0 288.0 0 1625.6 5.0 24.6
Winter 34.6 6.6 121.3 0 975.4 7.3 56.9
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Figure 2. Time series of precipitation parameters. AvgInt and MaxInt refer to average and maximum
precipitation intensity, respectively. TotAccum is the total depth of precipitation received during
each weekly measurement period, and Duration is the total minutes during which precipitation was
measured, for each measurement period. Columns delineate seasons (Su = summer, A = autumn,
W = winter, and Sp = spring).

3.2. Erosion

Mean erosion by measurement period (assessed using the average absolute change variables
CAvg|Ch|, IAvg|Ch|, and SAvg|Ch|, where C, I, and S, refer to channels, interfluves, and sidewalls,
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respectively) was greater in winter and spring than the overall mean for all three geomorphic areas
(Table 2). Notably, in winter months, CAvg|Ch| was 16.8 mm compared to 9.9 mm overall and SAvg|Ch|

was 8.0 mm compared to 5.0 mm overall. Seasonal effects on interfluves were less pronounced, with
IAvg|Ch| in winter at 4.8 mm compared to the overall mean of 3.5 mm. As with precipitation parameters,
autumn was the season with the lowest mean erosion by measurement period for all geomorphic areas
at 4.8 mm for channels, 3.5 mm for sidewalls, and 2.8 mm for interfluves.

Table 2. Descriptive statistics for erosion variables by measurement period. All values measured in
millimeters. C, channel I, interfluve; S, sidewall.

Variable Season Mean Median Standard Deviation Min. Max. Skewness Kurtosis

CAvg|Ch|

All 9.9 5.9 10.3 0.9 82.4 2.6 10.2
Spring 11.1 6.9 12.2 1.4 82.4 3.4 16.1

Summer 7.4 4.8 6.3 0.9 31.2 1.8 2.9
Autumn 4.8 3.2 4.6 0.9 24.4 2.6 7.7
Winter 16.8 12.8 12.2 1.4 53.9 1.1 0.7

CDep

All 10.6 6.2 12.2 1.0 79.4 2.9 10.5
Spring 10.0 7.0 9.2 1.0 45.2 2.2 5.2

Summer 8.4 5.3 9.7 1.0 72.3 4.1 23.4
Autumn 4.8 3.5 4.2 1.0 25.8 2.7 9.5
Winter 19.3 16.2 17.3 2.0 79.4 1.8 3.0

CErosion

All −9.4 −5.2 10.7 −78.2 0 −2.7 9.5
Spring −11.4 −5.6 13.9 −78.2 −1.4 −2.7 8.7

Summer −7.1 −5.0 5.9 −28.6 −1.0 −2.0 3.9
Autumn −5.4 −3.4 5.7 −34.0 −1.0 −3.0 10.9
Winter −14.2 −10.6 12.8 −50.3 0 −1.4 1.4

IAvg|Ch|

All 3.5 3.2 1.8 0.6 14.1 2.2 8.1
Spring 3.6 3.2 1.8 1.1 14.1 3.3 16.1

Summer 3.0 2.9 1.0 1.0 6.7 0.8 1.9
Autumn 2.8 2.6 1.1 0.6 6.9 0.9 2.4
Winter 4.8 4.7 2.3 0.8 13.1 1.2 2.1

IDep

All 3.7 3.4 2.0 1.0 15.7 2.2 8.9
Spring 3.8 3.5 1.6 1.0 9.6 1.0 1.6

Summer 3.3 3.1 1.8 1.0 15.7 3.9 25.2
Autumn 3.2 2.8 1.6 1.0 9.7 1.6 4.1
Winter 4.7 4.3 2.5 1.4 14.1 1.8 4.4

IErosion

All −4.1 −3.6 2.3 −19.3 0 −2.3 9.0
Spring −4.2 −3.8 2.4 −14.9 −1.3 −2.1 6.3

Summer −3.4 −3.3 1.4 −10.8 0 −2.0 10.3
Autumn −3.2 −3.0 1.4 −7.8 −1.0 −0.8 1.0
Winter −5.6 −4.9 3.1 −19.3 −1.2 −1.7 5.0

SAvg|Ch|

All 5.0 4.1 3.2 0.6 18.2 1.7 3.0
Spring 5.0 4.3 2.9 1.7 15.2 1.9 3.9

Summer 3.8 3.4 1.6 1.2 8.1 0.8 0.2
Autumn 3.5 3.0 1.9 0.6 10.9 1.9 5.1
Winter 8.0 7.6 3.8 1.6 18.2 0.8 0.1

SDep

All 5.2 4.2 3.3 1.0 20.2 1.8 4.2
Spring 5.1 4.5 2.9 1.0 18.5 2.1 6.4

Summer 3.9 3.6 1.8 1.3 9.3 0.8 0.2
Autumn 3.9 3.4 2.2 1.1 12.3 1.7 4.0
Winter 8.1 6.9 4.3 2.3 20.2 1.0 0.5

SErosion

All −5.6 −4.5 3.7 −23.3 −1.0 −2.0 4.6
Spring −5.7 −4.6 3.8 −23.3 −2.2 −2.6 7.6

Summer −4.5 −3.7 2.5 −14.4 −1.5 −1.9 4.1
Autumn −4.0 −3.6 2.1 −13.7 −1.0 −2.2 7.2
Winter −8.4 −7.7 4.6 −22.7 −1.3 −0.9 0.9

Seasonally, erosion variables show the most variability during winter months (Figure 3). Winter
of 2016–2017 experienced less erosion than other years for all geomorphic areas, however, the study
area received high rainfall accumulation during two weekly measurement periods.
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3.3. Statistical Modeling

Erosion variables were significantly correlated with total accumulation and duration parameters
for all variables except interfluve erosion (IErosion) (Table 3). Concordant with prior studies, erosion
in channels was most strongly correlated with total accumulation (r = 0.467, r = 0.352, and r = −0.469
for CAvg|Ch|, CDep, and CErosion, respectively) and duration (r = 0.470, r = 0.367, and r = −0.447 for
CAvg|Ch|, CDep, and CErosion, respectively). Note that all correlation coefficients for erosion variables
(CErosion, IErosion, and SErosion) are negative because these variables are values below zero.
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Spearman’s correlation between the four precipitation parameters was compared to assess the
potential for multicollinearity in statistical models, and total accumulation shows a very strong positive
correlation with duration (r = 0.903) and a moderately strong positive correlation with average intensity
(r = 0.591) and maximum intensity (r = 0.657). Likewise, average and maximum intensity were strongly
and positively correlated (r = 0.794).

Table 3. Spearman’s correlation coefficients for erosion variables and precipitation parameters. C,
channel; I, interfluve; S, sidewall. Only significant correlations are shown (* significant at α = 0.05, **
significant at α = 0.01).

Variable Name Total Accumulation
(mm)

Duration
(min)

Avg. Intensity
(mm/min)

Max. Intensity
(mm/min)

CAvg|Ch| 0.467 ** 0.470 ** 0.116 * 0.184 **
CDep 0.352 ** 0.367 ** - 0.132 *

CErosion −0.469 ** −0.447 ** −0.155 ** −0.230 **
IAvg|Ch| 0.130 * 0.178 ** - -

IDep 0.138 * 0.146 * - -
IErosion - −0.156 ** - -
SAvg|Ch| 0.238 ** 0.279 ** - -

SDep 0.240 ** 0.265 ** - -
SErosion −0.199 ** −0.248 ** - -

Total Accumulation (mm) 1.000 0.903 ** 0.591 ** 0.657 **
Duration (min) 1.000 0.278 ** 0.461 **

Average Intensity (mm/min) 1.000 0.794 **
Maximum Intensity (mm/min) 1.000

Before modeling erosion by season, OLS regression models were developed for the annual dataset
(all measurement periods) using the four precipitation parameters from the current period, plus lagged
variables for up to 11 prior periods (weeks). Table 4 summarizes output from models for each erosion
variable in columns, with the variable name and R2 value at the head of the column, and retained
parameters marked by *. Retained parameters (independent variables) were those with statistically
significant coefficients in each OLS model output. Nine models are represented in Table 4, one for each
erosion variable. Model coefficients are not presented (only significance) here because the purpose of
the modeling was to identify the precipitation parameters that were universally important, which was
completed through frequency analyses. All model linear equations are, however, presented in Table A1
in Appendix A. Duration and total accumulation were the most important variables for channel erosion,
while average intensity was important for erosion in interfluves and sidewalls. Also notable is the
influence of antecedent precipitation at lags of up to 11 weeks for some variables.
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Table 4. Precipitation parameters retained (indicated by *) in Ordinary Least Squares regression
models of erosion variables (dependent variables) using lagged precipitation parameters (independent
variables). C, channel; I, interfluve; S, sidewall. Each column represents a different model.

Parameters
Retained

CAvg|Ch| CDep CErosion IAvg|Ch| IDep IErosion SAvg|Ch| SDep SErosion

R2 0.297 0.191 0.354 0.119 0.093 0.120 0.174 0.137 0.205

Duration
(min)

Current * * * * * * * *
Lag1 * *
Lag3 *
Lag4 * * * * *
Lag5 *
Lag6 * * *
Lag8 * * * *

TotAcc
(mm)

Current
Lag1 *
Lag4 * * *
Lag6 * *
Lag8 *

AvgInt
(mm/min)

Lag2 * * *
Lag4 * * *
Lag5 *
Lag7 *
Lag8 * * * *
Lag9 *

Lag11 *

MaxInt
(mm/min)

Lag4 *
Lag9 *

Lag10 * *
Lag11 *

Seasonal OLS regression models clearly indicate the importance of precipitation intensity, which
was, in prior studies, not retained in annual models of erosion (Table 5). Note that seasonal models for
IAvg|Ch| were omitted from Table 5 because only one viable model was generated, and its coefficient
of determination was extremely low (R2 = 0.064).

Interestingly, in summer and winter, average and maximum intensity were important explanatory
parameters both during the current period, but also in prior periods. Precipitation intensity was
not often retained in models of erosion during spring and autumn. It is also important to note that
viable OLS regression models were generated for all erosion variables for summer and winter, with
coefficients of determination ranging from R2 = 0.245 to R2 = 0.49 (except for IErosion in summer at
R2 = 0.131 and SDep in winter at R2 = 0.087), suggesting that precipitation is an important driver for
erosion in these months, no matter the metric used. Moreover, these results show that the character
of the precipitation is an important driver for erosion; antecedent precipitation has an influence on
erosion in the following weeks and months and it varies with season.
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Table 5. Parameters retained (indicated by *) in seasonal Ordinary Least Squares regression models of
erosion variables (dependent variables) using lagged precipitation parameters (independent variables)
Duration (min), Total Accumulation (TotAcc (mm)), and Average and Maximum Intensity (AvgInt
and MaxInt, respectively (mm/min)). C, channel; I, interfluve; S, sidewall. Each column represents a
separate model.

Spring

Parameters
Retained

CAvg|Ch| CDep CErosion IDep IErosion SAvg|Ch| SDep SErosion

R2 0.078 No
Model 0.429 No

Model 0.045 0.113 No
Model 0.144

Duration

Current *
Lag3 *
Lag6 *
Lag7 *
Lag8 * * *

TotAcc
Current * *

Lag2 *
Lag8 *

AvgInt Lag1 * * *

Summer

Parameters
Retained

CAvg|Ch| CDep CErosion IDep IErosion SAvg|Ch| SDep SErosion

R2 0.49 0.389 0.344 0.257 0.131 0.373 0.372 0.32

Duration

Current * *
Lag2 *
Lag7 *
Lag11 * * *

TotAcc
Current * *

Lag6 *
Lag8 *

AvgInt Current * * *
Lag5 *

MaxInt

Lag1 * * *
Lag2 *
Lag4 *
Lag8 * *
Lag10 *
Lag11 * * * *

Autumn

Parameters
Retained

CAvg|Ch| CDep CErosion IDep IErosion SAvg|Ch| SDep SErosion

R2 0.364 0.19 0.258 0.125 no
model 0.07 0.093 0.147

Duration
Current * * *

Lag3 *
Lag7 *

TotAcc Lag9 *

AvgInt Lag10 * * * *

MaxInt
Current *

Lag2 * *

Winter

Parameters
Retained

CAvg|Ch| CDep CErosion IDep IErosion SAvg|Ch| SDep SErosion

R2 0.374 0.324 0.472 0.273 0.251 0.245 0.087 0.347

Duration
Current * *

Lag4 *
Lag6 *

TotAcc
Lag4 * *
Lag6 *

AvgInt

Lag1 * *
Lag4 *
Lag9 *
Lag10 *
Lag11 * *

MaxInt

Current * * *
Lag1 *
Lag7 * *
Lag9 * * * *
Lag10 * *
Lag11 *
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4. Discussion

4.1. Erosion Variability

Variability exists in erosion statistics between the three geomorphic areas, such that channels
had the highest variability and interfluves the lowest (Table 2), with sidewalls having intermediate
variability. In particular, for both the overall annual dataset and for each seasonal partition, the mean
and standard deviation were of similar magnitudes. Similar behavior was observed in a previous study
in the same study area [13] and a study of gully erosion in the Karoo region of Africa [23]. Channels
were dynamic and acted as both source and sink for sediment loads. Slugs of sediments gathered
intermittently in the channel areas and were transported with channel flow following precipitation.
Soil erosion was dominant in the gully sidewalls, however, the variability was moderate compared to
channel erosion data, implying that sidewalls were less responsive with regard to erosion. In contrast,
in the interfluve, the lesser amount of erosion and variability reflected the limited sediment yield,
which may be due to the presence of vegetation that retarded erosion and lower gradient. Additionally,
differences in soil cover thickness, soil types, moisture content, slope aspect and angle within the
different geomorphic settings may explain the range of variability, however, that is beyond the scope
of this paper and will be studied in the future.

4.2. Erosion-Precipitation Relationships

Seasonally, a comparison of erosion variables and precipitation parameters shows the same trend.
Ordering seasonal precipitation parameters (Duration and TotAcc) and erosion variables from greatest
to least, winter was greatest, followed by spring, summer and lastly, autumn. We see in Table 2
that winter months were the most dynamic, with the greatest mean erosion and the largest standard
deviation of all seasons, and this pattern was consistent across channels, interfluves, and sidewalls for
all erosion variables. This may be explained by the character of the winter precipitation: greater total
accumulation and duration during these months associated with frontal precipitation events. Prior
research has also demonstrated that freeze-thaw events are significant drivers of erosion in winter
months at this site [14,19]. A similar pattern existed for spring, likely influenced by precipitation
accumulation and duration as well as antecedent winter freeze-thaw activity [19]. Next, summer
erosion and precipitation (Duration and TotAcc) ranked third, but interestingly, summer experienced
the highest precipitation intensity of all seasons (both for AvgInt and MaxInt) (Table 1). This reflected
the dominance of convectional precipitation events in summer. Autumn experienced the minimum
erosion and precipitation accumulation and duration, but greater maximum precipitation intensity than
the annual average. This suggests that autumn precipitation events were short duration, high-intensity
events that did not produce much precipitation depth and had little erosive power.

During winter 2016–2017, precipitation variables were near normal levels for the winter season,
however, erosion for all geomorphic areas was very low (Figure 3). We examined temperature during
this time period to determine whether the reduced freeze-thaw activity may have played a part, but,
while winter 2016–2017 had less intense freeze-thaw activity than other winters during the study
period, freeze-thaw events occurred. The timing of the greatest precipitation accumulation and
duration was late autumn/early winter, and because these events were coincident, they indicate a
period of low-intensity precipitation that may have encouraged more infiltration and less runoff,
leading potentially to less erosion during this period. Lower hydrostatic pressure in unsaturated
soils increases cohesion [24] which may be a significant factor associated with reduced erosion in late
autumn and early winter of that year.

Average Intensity and Maximum Intensity of precipitation were very different, with approximately
three orders of magnitude between the generally low average precipitation intensities and maximum
intensity for the full dataset and each seasonal partition (Table 1). Future research at this site should
assess the soil’s infiltration capacity and explore different metrics that may better capture the relation
between precipitation intensity and erosion. For example, measuring the rainfall duration when the
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rain rate exceeds the soil’s infiltration capacity would generate a metric of the length of time during
which there was a high probability of runoff generation.

4.3. Precipitation as a Driver for Erosion

Prior research at this site using 14 months of data found that Duration and TotAcc were the drivers
for erosion, most strongly in channels. With six years of data, the present study confirmed the earlier
result when erosion and precipitation data were lumped without regard for season. OLS regression
models of annual erosion for the nine erosion variables, using the set of lagged precipitation parameters
as independent variables, and overwhelmingly retained Duration parameters most frequently (24 times)
(Table 6). This means that overall nine OLS models of erosion outlined in Table 4, Duration and lagged
Duration independent variables had significant coefficients 24 times. Despite the high correlation
between TotAcc and erosion variables (Table 3), TotAcc was retained less frequently in the models
(7 times) due to the high correlation between Duration and TotAcc (r = 0.903, p = 0.001) (Table 3),
indicating multicollinearity. Lagged intensity parameters were likewise retained fewer times; AvgInt
parameters were retained 14 times, while MaxInt parameters were retained only 5 times. Therefore,
using lumped annual data, Duration was the most important predictor of erosion, indicating that over
the long term, prolonged precipitation is key.

Table 6. Retention frequency of lagged precipitation parameters (Duration, Total Accumulation
(TotAcc), and Average and Maximum Intensity (AvgInt and MaxInt, respectively) in OLS regression
models of erosion annually and seasonally for the full study area and for each geomorphic area:
Channels, Interfluves, and Sidewalls.

Geomorphic Area Parameter All Seasons Spring Summer Autumn Winter

Study area

Duration 24 7 7 5 4
TotAcc 7 4 4 1 3
AvgInt 14 3 4 4 7
MaxInt 5 0 12 3 6

Channels

Duration 10 3 4 4 4
TotAcc 4 4 1 0 2
AvgInt 1 1 1 2 0
MaxInt 2 0 2 2 6

Interfluves

Duration 6 1 0 0 0
TotAcc 1 0 2 0 1
AvgInt 5 0 1 1 3
MaxInt 2 0 3 0 2

Sidewalls

Duration 8 3 3 1 0
TotAcc 2 0 1 1 0
AvgInt 8 2 2 1 4
MaxInt 1 0 7 1 5

When erosion data were partitioned by geomorphic areas (Table 6), channel models
overwhelmingly retained Duration most often. In contrast, sidewall and interfluve models retained
Duration and AvgInt at approximately the same frequency (retained in 6 and 5 interfluve models and 8
sidewall models, respectively). This shows the importance of precipitation intensity as a driver for
erosion in these two geomorphic areas. This may occur because interfluves and sidewalls may be more
exposed to rain splash erosion, which is associated with higher intensity precipitation. Channels are
not as steeply sloped as sidewalls and gully channel erosion is associated with the flow within the
channel, which occurs after long-duration events that result in saturation-related runoff.

When erosion data were partitioned by season, the influence of precipitation intensity became
apparent, especially during summer and to a lesser degree winter. This may be observed in Table 6,
where MaxInt lagged parameters were retained 12 and 6 times in summer and winter erosion models,
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respectively, but only 0 and 3 times in spring and autumn models, respectively. This indicates that,
while over the long term, Duration was the most important driver, during certain individual seasons
intensity became important. This emphasizes the importance of the mechanics of convectional storms
(summer) and frontal storms (winter) as an additional factor in seasonal erosion patterns. These
patterns are also apparent when model results are partitioned by both season and geomorphic area
(Table 6).

Partitioning the data by season, therefore, produces additional knowledge that was not previously
captured. We conclude that different drivers may be more effective agents of erosion in different
seasons and, therefore, we recommend that studies of precipitation driven erosion should, wherever
possible, partition data by season.

5. Conclusions

This study examined the effect of precipitation parameters on soil erosion through six years of
high-resolution weekly monitoring in an Appalachian hillslope paying particular attention to seasonal
effect. The long-term data provided an understanding of the seasonal pattern of soil erosion in a
humid sub-tropical environment, which was not noticeable in other studies in the region using an
annual dataset.

Different gully morphologies responded differently to long-term erosion. Channels were most
active, showed a wide range of variability, and responded most dynamically, whereas the interfluves
were least disturbed by erosion. Sidewalls were prone to erosion but were not as dynamic as channels.
To explore the reason behind varied gully erosion patterns in the different geomorphic settings, further
studies are recommended to evaluate how erosion fluctuates with soil cover thickness, soil types,
moisture contents, slope aspect, and slope angle.

Precipitation duration was the most important factor in initiating and continuing erosion
year-round, yet seasonality played a significant role in the severity of gully erosion. Erosion was
most pronounced in winter months, followed by spring, indicating the influence of high-intensity
precipitation from frontal systems and repeated freeze-thaw cycles. Erosion in summer was driven
by high-intensity precipitation from convectional storms. Soils in the study area were least prone to
erosion during the moderate months of autumn. In channels, precipitation duration was the dominant
driver for erosion due to runoff-related erosion, while in sidewalls and interfluves, intensity parameters
were equally important as duration, likely related to rain splash erosion. This research shows that soil
erosion is seasonally variable and an understanding of the seasonal pattern of soil erosion with respect
to precipitation-related drivers improves the potential to achieve strategic conservation measures.
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Appendix A

OLS Regression models of erosion are presented in Table A1. While model equations are useful
for prediction when determination coefficients are high, even when they are relatively low, useful
information can be revealed with respect to the importance of independent variables. Standardized
coefficients can likewise provide information about the relative importance of independent variables
within each model. For channels, Duration and TotAcc during the current and prior measurement
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periods were retained most often, and these variables had the highest standardized coefficients
compared to the intensity parameters (AvgInt and MaxInt) (standardized coefficients are not shown
in the table). For interfluves, AvgInt and MaxInt were also retained in the models, and for the IDep
and IErosion models, standardized coefficients for all retained variables were of similar magnitudes.
For sidewalls, a similar pattern was generally noted, with retention of the intensity variables. For the
SErosion model, Duration and TotAcc parameters had the largest standardized coefficients.

Table A1. Regression equations for erosion variables (dependent variables) using lagged precipitation
parameters (independent variables). Lagged variable names are appended with “LagN”, where N
indicates the number of measurement periods of antecedent lag. Duration_Lag1 indicates precipitation
duration in prior measurement period (Lag of 1 period).

Dependent Variable R2 Equation

CAvg|Ch| 0.297
= 3.177 + 0.013 × Duration + 0.016 × Duration_Lag4
+ 0.019 × Duration_Lag6 + 0.004 × Duration_Lag8 −

0.146 × TotAcc_Lag4 − 0.193 × TotAcc_Lag6

CDep 0.191
= 8.078 + 0.008 × Duration + 0.026 × Duration_Lag4
− 0.236 × TotAcc_Lag4 − 34.139 × AvgInt_Lag11 +

0.013 ×MaxInt_Lag9 + 0.010 ×MaxInt_Lag10

Cerosion 0.354
= −0.315 − 0.017 × Duration − 0.004 ×

Duration_Lag1 − 0.020 × Duration_Lag6 − 0.005 ×
Duration_Lag8 + 0.173 × TotAcc_Lag6

IAvg|Ch| 0.119
= 3.502 + 0.001 × Duration + 0.003 × Duration_Lag8
− 5.070 × AvgInt_Lag4 + 0.452 × AvgInt_Lag8 −

0.035 × TotAcc_Lag8

IDep 0.093 = 3.800 + 0.001 × Duration + 0.001 × Duration_Lag4
− 6.238 × AvgInt_Lag8 − 0.002 ×MaxInt_Lag4

IErosion 0.120
= −4.426 − 0.001 × Duration − 0.001 ×

Duration_Lag8 + 5.831 × AvgInt_Lag4 +
AvgInt_Lag5 − 0.002*MaxInt_Lag10

SAvg|Ch| 0.174
= 7.115 + 0.002 × Duration + 0.002 × Duration_Lag4
− 10.517 × AvgInt_Lag2 − 9.828 × AvgInt_Lag4 −

8.345 × AvgInt_Lag7 − 9.446 × AvgInt_Lag8

SDep 0.137 = 5.996 + 0.003 × Duration = 0.002 × Duration_Lag5
− 11.568 × AvgInt_Lag2 − 12.272 × AvgInt_Lag8

SErosion 0.205

= −5.623 − 0.006 × Duration_Lag1 − 0.002 ×
Duration_Lag3 − 0.005 × Duration_Lag4 − 0.002 ×
Duration_Lag6 + 0.062 × TotAcc_Lag1 + 0.052 ×
TotAcc_Lag4 + 7.750 × AvgInt_Lag2 + 11.889 ×

AvgInt_Lag9 − 0.002 ×MaxInt_Lag11
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