Supplementary Materials

Stabilization of chromium (VI) in the presence of iron (II): method development and validation

Daniel Mahringer *, Chantal Polenz and Fatima El-Athman

German Environment Agency (UBA), Schichauweg 58, 12307 Berlin, Germany; c.polenz@campus.tu-berlin.de (C.P.); fatima.el-athman@uba.de (F.E.).

* Correspondence: daniel.mahringer@uba.de (D.M.)

Process water quality

Parameter	Value	Unit
pH at 25 °C	7.56	_
Conductivity at 25 °C	868	µS cm⁻¹
Total hardness	20.3	°dH
Carbonate hardness	11.2	°dH
Carbon dioxide	9	mg L ⁻¹
Acid capacity to pH 4.3	4	mol m ⁻³
Base capacity to pH 8.2	0.2	mol m ⁻³
Calcium	126	mg L ⁻¹
Magnesium	11.8	mg L ⁻¹
Sodium	47.8	mg L ⁻¹
Potassium	< 2.0	mg L ⁻¹
Silicon	12	mg L ⁻¹
Iron	< 0.02	mg L ⁻¹
Manganese	< 0.02	mg L ⁻¹
Copper	< 0.02	mg L ⁻¹
Zinc	0.02	mg L ⁻¹
Aluminum	< 0.01	mg L ⁻¹
Ammonium	< 0.1	mg L ⁻¹
Chloride	75.2	mg L ⁻¹
Sulfate	156	mg L ⁻¹
Nitrate	< 3.0	mg L ⁻¹
Phosphate	< 0.3	mg L ⁻¹
Bromide	0.19	mg L ⁻¹

Table S1. Analytical data of the process water of the waterworks of the German Environment Agency (UBA) in Berlin-Marienfelde (Germany).

Buffer System	Fe (II)	pН	Spearman's Rank
	(mg L-1)		Correlation Coefficient
HPO ₄ ^{2–}	1	10	1,00
		11	0,95
		12	0,80
	3	10	0,80
		11	0,95
		12	0,80
	6	10	0,50
		11	0,95
		12	0,80
HCO3-	1	10	0,80
		11	-0,25
		12	-0,40
	3	10	-0,25
		11	-0,85
		12	-0,40
	6	10	1,00
		11	0,80
		12	0,95
NH_{4^+}	1	10	0,80
		11	0,65
		12	0,80
	3	10	0,90
		11	0,10
		12	0,80
	6	10	0,50
		11	0,90
		12	0,90

Table S2. Correlation between buffer concentration and Cr (VI) recovery.

Figure S1. XRD spectrum of the precipitates of 50 μ g L⁻¹ Cr (VI) with 100 mg L⁻¹ Fe (II) and 30 mM hydrogen phosphate (HPO₄^{2–}) buffer in process water.

Figure S2. XRD spectrum of the precipitates of 50 μ g L⁻¹ Cr (VI) with 100 mg L⁻¹ Fe (II) and 30 mM hydrogen carbonate (HCO₃-) buffer in pure water.

Figure S3. XRD spectrum of the precipitates of 50 μ g L⁻¹ Cr (VI) with 50 mg L⁻¹ Fe (II) and 30 mM hydrogen carbonate (HCO₃-) buffer in pure water.

Figure S4. XRD spectrum of the precipitates of 50 µg L⁻¹ Cr (VI) with 100 mg L⁻¹ Fe (II) and 30 mM hydrogen carbonate (HCO₃-) buffer in process water.

Figure S5. XRD spectrum of the precipitates of 50 μ g L⁻¹ Cr (VI) with 6 mg L⁻¹ Fe (II) and 30 mM hydrogen carbonate (HCO₃-) buffer in process water.