Supplementary materials

Stream	Urban (%)	Sugarcane (%)	Forest (%)	Agriculture (%)	Pasture (%)	Area (km²)	Length (km)
s01	0.00	39.29	23.87	0.00	36.85	3.17	2.07
s02	0.00	66.69	1.11	0.00	32.20	1.07	0.53
s03	2.58	26.15	7.73	0.00	63.55	7.76	4.39
s04	0.00	59.57	13.12	0.00	27.31	7.63	3.17
s05	0.00	23.65	24.02	0.00	52.33	3.43	1.75
s07	13.61	26.18	11.19	0.00	49.01	4.57	2.65
s08	0.02	59.29	36.92	2.72	1.05	3.98	1.96
s09	4.42	68.67	24.14	0.22	2.54	5.48	1.96
s10	0.00	62.4	17.17	0.07	20.36	4.01	1.28
s11	0.00	77.09	4.90	0.35	17.66	6.68	2.17
s12	0.00	62.19	25.43	8.97	3.42	1.55	0.99
s13	0.00	76.78	10.27	0.00	12.95	1.68	0.87
s14	0.00	17.10	34.21	0.27	48.41	6.11	2.17
s15	0.00	4.50	51.95	0.14	43.40	4.14	0.81
s17	18.30	19.55	5.48	0.00	56.68	2.75	1.49
s18	86.50	8.74	2.56	0.00	2.21	2.74	0.80
s20	0.00	15.30	43.34	19,25	22.12	10.13	3.12
s21	0.00	5.58	48.12	16.56	29.74	17.94	3.43
s22	0.00	87.42	0.99	2.65	8.95	5.41	2.78
s23	0.00	72.07	5.84	0.65	21.44	8.13	4.75
s24	0.00	10.49	41.73	0.40	47.37	4.31	3.19
s25	0.00	20.87	21.73	12.48	44.92	5.20	3.15
s27	0.00	11.48	2.23	0.26	86.03	5.23	2.82

Table S1. Abiotic variables at the catchment scale.

Table S2. Local abiotic variables.

Stream	Width (m)	Depth (m)	Slope (°)	Dissolved oxygen (mg/L)	Temperature (ºC)	Velocity (m/s)	рН	Conductivity (µS/m)	Turbity (NTU)	
s01	2.00	0.07	3.55	7.28	24.0	0.09	6.33	36.5	4.97	-

s02	2.59	0.25	2.70	7.79	21.9	0.30	6.49	36.1	11.73
s03	1.62	0.32	4.12	7.56	21.3	0.93	6.45	66.4	8.36
s04	2.12	0.31	2.85	7.65	23.0	0.15	6.22	22.4	8.43
s05	3.82	0.11	2.73	6.26	24.6	0.16	5.69	16.6	35.53
s07	2.65	0.13	2.76	7.30	23.3	0.48	6.48	74.5	25.3
s08	3.00	0.26	3.93	7.28	23.3	0.23	6.88	81.5	13.7
s09	4.63	0.19	2.56	7.43	22.7	0.23	6.57	41.8	10.74
s10	1.38	0.27	3.10	7.26	23.8	0.29	5.83	28.3	4.96
s11	2.24	0.17	2.99	7.30	23.8	0.58	5.44	51.5	10.93
s12	0.85	0.06	4.50	7.38	22.6	0.15	6.52	42.0	12.44
s13	1.60	0.10	3.76	7.15	23.7	0.20	5.82	30.8	6.06
s14	1.19	0.16	2.61	7.34	24.0	0.41	6.28	21.6	7.76
s15	1.30	0.20	3.14	5.65	24.1	0.29	5.54	28.9	4.28
s17	1.49	0.11	2.97	7.29	23.8	0.82	6.71	96.5	156.0
s18	0.80	0.08	2.64	5.46	23.9	0.20	6.83	248.0	7.41
s20	3.12	0.22	3.08	7.35	23.5	0.24	5.96	30.4	3.85
s21	1.65	0.29	3.21	7.35	23.1	0.43	5.69	36.2	2.8
s22	2.83	0.18	3.13	7.32	23.2	0.13	5.76	25.6	3.61
s23	2.76	0.18	2.36	6.70	24.0	0.24	5.87	14.9	17.01
s24	4.74	0.51	3.65	7.37	22.9	0.23	5.79	46.1	11.52
s25	2.11	0.20	3.83	7.18	23.9	0.20	6.23	43.5	37.4
s27	1.27	0.18	2.77	7.06	24.1	0.33	5.67	26.2	21.5

Table S3. Rapid Assessment Protocol adapted to the study region (Cionek, V. M., Beaumord, A. C., & Benedito E., 2011). All parameters were visually evaluated and scored from zero (worst condition) to 20 (optimum condition). The mean value of all parameters was used as the stream local condition.

Parameter	Background	Evaluation
Underwater	Greater variety and / or mixture of suitable cover available for	Proportion of underwater aquatic vegetation, organic
available cover	different biotic communities.	material, trunks, branches and leaves.
	Habitat diversity along the stretch promotes higher spatial	
	heterogeneity. The presence of excavated banks, stable mixture of	Managinal magnetation inclined over the channel presence of
Underwater	trunks, branches and leaves in contact with water, create	Marginal vegetation inclined over the channel, presence of backwaters, small waterfalls and excavated banks
habitat complexity	backwaters, small lagoons and small waterfalls; all these habitats	
	could be available for the aquatic biota as refuge, food and	distributed along the evaluated section.
	spawning.	

Velocity/depth combinations	A greater variety of water velocity and depth combinations favour the presence and survival of organisms with different ecomorphological and habitat use characteristics.	Presence of the four regimes of water velocity and depth characterize a stretch in optimal condition: (1) fast / shallow, (2) slow / shallow, (3) fast / deep and (4) slow / deep; speed regimes are categorized as rapid when the water flow reaches more than 0.2 m/s and are deep when they reach more than 0.2 m.
Channel sinuosity	Higher sinuosity promotes greater availability of habitats for the aquatic communities, combined with the greater capacity of retention of fluctuations of flow caused by heavy rains. The absorption of energy by the curves protects the water course of excessive erosions and floods, and provides refuge for biota during storm events.	Presence of sharp and evident curves along the channel.
Water level amplitude	Channel-level fluctuations are related to the availability of substrate and other cover elements for aquatic communities.	Proportion of substrates and cover elements submerged by water. It should be evaluated differently according to the time of year (dry and rainy season).
Channel integrity	Human-induced disturbances such as dikes, dredging, landfills, drainage, dams, pavement and flow diversion are contributing factors to disturbance in streams. Their presence promotes selectivity of more resistant species, hindering and even preventing the stabilization and maintenance of an environmental balance.	Presence of channelization, dredging, bridges, dams and embankments.
Bank stability	The bank stability is closely associated with the presence of rooted vegetation, which promotes the cohesion of the sand particles and reduces the effects of erosion. In the study area, dominated by sandy soils, erosive processes can lead to the formation of ravines along the stream path.	Presence and proportion of erosive processes, preserved vegetation and signs of detachment and substrate transport of ravines.
Bank vegetative protection	The riparian forests act as a physical barrier to contain nutrients from terrestrial environments, provide organic matter to the aquatic environment, buffer the temperature variations and contribute to the flow of energy between the environments.	Presence and proportion of riparian vegetation along the stretch, considering a width of up to 15 meters from the stream margin.
Vegetation conservation on the riparian zone	The composition of riparian vegetation depends on geological, geomorphological, hydrological, climatic and anthropogenic factors. Riparian forests with native and diverse composition, and in advanced stage of succession, provide greater protection to the system.	Presence and proportion of native species in good conservation status.

Table S4. Classification of sampled species according to their biological characteristics. Categories as follows: Origin (N = native, A = alien); Habitat guild (Preferred habitat for each fish species on water column position: B = benthopelagic, D = demersal); Reproductive guild (Reproductive habit for each fish species: IF = internal fertilization, PC = parental care behavior, N-PC = no parental care behavior); Tolerance (General tolerance to common anthropogenic, physical, and chemical stressors: I = intolerant, T = tolerant); Trophic guild (Primary source of nutrition for each fish species as an adult: Det = detritivore, Herb = herbivore, Ins = insectivore, Omn = omnivore, Pisc = piscivore).

Fish Species	Origin	Habitat Guild	Reproductive Guild	Tolerance	Trophic Guild
CHARACIFORMES					
Characidae					
Astyanax aff. fasciatus	N^{15}	B ¹⁸	N-PC ¹⁸	I^{13}	Ins ^{1,8}
Astyanax aff. paranae	N^{15}	B ¹⁸	N-PC ¹⁸	I^{13}	Ins ^{1,3}
Astyanax lacustris	N^{15}	B ¹⁸	N-PC ¹⁸	I^{13}	Omn ^{1,2}
Astyanax bockmanni	N^{15}	B ¹⁸	N-PC ¹⁸	I^{13}	Herb ^{4,7}
Moenkhausia forestii	N^{15}	B ¹⁸	N-PC ¹⁸	I ^{13*}	Ins ³
Oligosarcus paranensis	N^{15}	B ¹⁸	N-PC ¹⁸	I 17,*	Ins ¹⁰
Oligosarcus pintoi	N^{15}	B ¹⁸	N-PC ¹⁸	I ^{17,*}	Ins ^{2,11}
Cheirodontinae					
Serrapinnus notomelas	N^{15}	B ¹⁸	N-PC ¹⁸	T ¹³	Det ²
Stevardiinae					
Bryconamericus exodon	N^{15}	B ¹⁸	N-PC ¹⁸	I^{14}	Ins ⁵
Knodus moenkhausii	N^{15}	B ¹⁸	N-PC ¹⁸	T ¹³	Ins ^{2,3}
Piabarchus stramineus	N^{15}	B ¹⁸	N-PC ¹⁸	I^{14}	Omn ¹

Piabina argentea	N^{15}	B ¹⁸	$N-PC^{18}$	I ¹³	Ins ^{2,4}
Crenuchidae					
Characidium aff. zebra	N^{15}	B ¹⁸	N-PC ¹⁸	I ¹⁷	Ins ^{1,2}
Erythrinidae					
Hoplias sp3.	N^{15}	B ¹⁸	N-PC ¹⁸	T ¹⁷	Pisc ^{1,8}
Parodontidae					
Parodon nasus	N^{15}	B ¹⁸	N-PC ¹⁸	I ¹³	Det ¹
CICHLIFORMES					
Cichlidae					
Crenicichla britskii	N^{15}	B ¹⁸	$N-PC^{18}$	I ¹³	Ins ²
CYPRINODONTIFORMES					
Poeciliidae					
Phalloceros harpagos	$N^{15,16}$	B ¹⁸	IF ¹¹ , PC ¹⁸	T ¹⁷	Omn ^{3,6}
Poecilia reticulata	A ^{15,16}	B ¹⁸	IF ¹¹ , PC ¹⁸	T ¹³	Det ^{2,3}
GYMNOTIFORMES					
Gymnotidae					
Gymnotus inaequilabiatus	N^{15}	B ¹⁸	N-PC ¹⁸	T ¹³	Ins ^{3,4}
Gymnotus sylvius	N^{15}	B ¹⁸	N-PC ¹⁸	T ^{13*}	Ins ²
Sternopygidae					
Sternopygus macrurus	N^{15}	B ¹⁸	N-PC ¹⁸	I ¹⁶	Ins ⁹

SILURIFORMES					
Callichthyidae					
Callichthys callichthys	N^{15}	D ¹⁸	N-PC ¹⁸	T ¹⁷	Det ⁶
Corydoras aeneus	N^{15}	D ¹⁸	N-PC ¹⁸	T ¹²	Ins ^{2,3}
Heptapteridae					
Cetopsorhamdia iheringi	N^{15}	D ¹⁸	N-PC ¹⁸	I^{14}	Ins ^{4,7}
Imparfinis schubarti	N^{15}	D ¹⁸	N-PC ¹⁸	I ¹³	Ins ^{2,3}
Phenacorhamdia tenebrosa	N^{15}	D ¹⁸	N-PC ¹⁸	I^{14}	Ins ^{4,8}
Rhamdia quelen	N^{15}	B ¹⁸	N-PC ¹⁸	T ^{13,17}	Ins ^{2,3}
Loricariidae					
Hypostominae					
Hypostomus ancistroides	N^{15}	D ¹⁸	N-PC ¹⁸	T ^{13,17}	Det ^{2,7}
Hisonotus francirochai	N^{15}	B ¹⁸	$N-PC^{18}$	I ¹³	Det ²
Rineloricaria pentamaculata	N ¹⁵	D ¹⁸	N-PC ¹⁸	T ^{17,*}	Ins ⁷
Trichomycteridae					
Trichomycterus davisi	N^{15}	B ¹⁸	N-PC ¹⁸	I ^{17,*}	Ins ^{3,6}
SYNBRANCHIFORMES					
Synbranchidae					
Synbranchus marmoratus	N^{15}	D ¹⁸	N-PC ¹⁸	T ¹⁷	Ins ³

Modified from Pereira, 2016. ¹Smith et al., 2013; ²Zeni; Casatti, 2014; ³Cionek, 2016; ⁴Silva, 2013; ⁵Novakowski et al., 2008; ⁶Abilhoa et al., 2008; ⁷Silva et al., 2012; ⁸Ferreira, 2007; ⁹Luz-Agostinho et al., 2006; ¹⁰Esteves et al., 2008; ¹¹Casatti, 2002; ¹²Araújo; Garutti, 2003; ¹³Casatti et al., 2009; ¹⁴Casatti et al., 2012; ¹⁵Graça; Pavanelli, 2007; ¹⁶Petry et al., 2013; ¹⁷Bozzetti; Schulz, 2004; ¹⁸Froese; Pauly, 2019. *The classification of these species followed its genus pattern.

Table S5. Candidate metrics for the N3S-IBI. Total metrics (227) were calculated using standardized

measures of number, biomass and proportion of taxa or individuals.

Metric
Diversity
Shannon index
Simpson's dominance (1 – D)
Total richness
Abundance
Biomass of fish
Number of fish
Composition (Individuals)
A. aff. fasciatus
A. aff. paranae
A. bockmanni
A. lacustris
B. exodon
C. aeneus
C. britskii
C. callichthys
C. tunichings C. iheringi
C. aff. zebra
G. inaequilabiatus
G. sylvius
H. ancistroides
H. francirochai
Hoplias sp3
I. schubarti
K. moenkhausii
M. forestii
O. paranensis
O. pintoi
P. argentea
P. harpagos
P. nasus
P. reticulata
P. stramineus
P. tenebrosa
R. pentamaculata
R. quelen
S. macrurus
<i>S. macrarus</i>
S. notomelas
T. davisi
Characiformes less tolerant
Characiformes + Siluriformes
Characiformes + Siluriformes less tolerant
Characiformes
Siluriformes less tolerant
Siluriformes
Synbranchiformes
Characidae
Loricariidae

Heptapteridae Composition (Family/Order) Characiformes Cichliformes Cyprinodontiformes Gymnotiformes Siluriformes Characiformes + siluriformes Characiformes less tolerant Characiformes + Siluriformes less tolerant
Characiformes Cichliformes Cyprinodontiformes Gymnotiformes Siluriformes Characiformes + siluriformes Characiformes less tolerant Characiformes + Siluriformes less tolerant
Cyprinodontiformes Gymnotiformes Siluriformes Characiformes + siluriformes Characiformes less tolerant Characiformes + Siluriformes less tolerant
Gymnotiformes Siluriformes Characiformes + siluriformes Characiformes less tolerant Characiformes + Siluriformes less tolerant
Gymnotiformes Siluriformes Characiformes + siluriformes Characiformes less tolerant Characiformes + Siluriformes less tolerant
Siluriformes Characiformes + siluriformes Characiformes less tolerant Characiformes + Siluriformes less tolerant
Characiformes less tolerant Characiformes + Siluriformes less tolerant
Characiformes + Siluriformes less tolerant
Siluriformes less tolerant
Characidae
Loricariidae
Heptapteridae
Origin
Alien
Native
Habitat guild
Benthopelagic
Demersal
Benthopelagic less tolerant
Demersal less tolerant
Reproductive Guild
With parental care
Without parental care
External reproduction
Internal reproduction
Without parental care less tolerant
Tolerance
Intolerant
Tolerant
Richness of intolerant
Richness of tolerant
Trophic Guild
detritivore
herbivore
insectivore
omnivore
piscivore
detritivore less tolerant
insectivore less tolerant
omnivore less tolerant

1 of 14

Table S6. RAP metrics. LM – left m	nargin; RM – right margin.
------------------------------------	----------------------------

Stream	Underwater available cover	Underwater habitat complexity	Velocity/depth combinations	Channel sinuosity	Water level amplitude	Channel integrity	Bank stability – LM	Bank stability – RM	Bank vegetative protection – LM	Bank vegetative protection – RM	Vegetation conservation - LM	Vegetation conservation - RM	RAP
s01	18	17	4	6	6	7	7	7	6	6	5	5	94
s02	11	14	15	16	19	20	9	9	6	6	5	5	135
s03	1	3	6	16	7	16	3	3	3	3	0	0	61
s04	15	15	15	20	20	20	8	7	8	7	8	7	150
s05	10	10	10	15	15	15	6	5	6	5	6	5	108
s07	4	5	8	17	12	18	3	3	3	3	0	0	76
s08	5	5	9	8	14	20	9	9	4	4	5	5	97
s09	1	3	3	10	6	2	1	1	2	2	3	3	37
s10	11	11	12	8	11	18	8	7	8	7	6	8	115
s11	9	7	5	4	7	19	5	6	4	5	3	5	79
s12	11	6	2	10	4	3	4	4	4	4	3	3	58
s13	16	16	15	15	19	20	7	8	8	8	8	8	148
s14	17	16	18	17	13	12	4	4	4	4	3	3	115
s15	12	5	7	6	11	17	7	8	3	3	3	4	86
s17	1	3	5	9	8	12	3	4	3	3	4	4	59
s18	3	2	7	5	7	16	2	2	3	3	5	5	60
s20	18	16	15	20	19	20	9	9	9	9	8	8	160
s21	17	17	16	19	17	20	10	10	9	8	10	9	162
s22	16	15	13	13	11	19	5	4	5	5	5	5	116
s23	11	11	13	13	13	13	3	4	2	2	3	3	91
s24	7	7	7	5	8	18	7	7	5	5	5	5	86
s25	7	3	12	13	12	13	4	4	5	5	4	4	86
s27	11	15	12	13	12	20	5	5	5	5	7	7	117

Table S7. Rapid Assessment Protocol – Field Spreadsheet.

Location: _____

Evaluator: _____

Date: ___ / ___ / ___

General observations (i.e.: rainy day, cloudy day, new fallen trees, new flow disruption, or any observation important for data interpretation): ______

		τ	Jnder	wate	r Avai	ilable	Cov	er								
				Ca	ategor	ies										
Optimal		Good					Regular Stream reach presents 26% to				Poor Clear dominance					of
Stream reach presents 76% to 100% of potential cover, such as trunks, branches and leaves fallen into the water, underwater aquatic vegetation and decomposing organic material.	51% co bi fa u	6 to 7 ver, s canch llen ii nderv vege comp	reach 5% of uch as es and nto th water etation posing nateria	poter s trur d leav e wat aqua n and s orga	ntial 1ks, 7es ter, tic	50 cu tru and ir co d org an	% of over, inks, d lea ito th Abse min occur ganic d un vege	pote suc bra ves ie w ence imu rence npote c ma derv	entia ch as nche falle ater or m ce of sing iteria	al es en	b u de ma pr	anc anc esta unde	rryin hes l lim blisl rwat egeta pos al. S ts le	ng av and iting nme: ter a ition ing o treat ss th	vay leav g the nt of quat or or gan n rea an 2	es ic nic ach 5%
20 19 18 17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(

		Unc	lerwa	ater H	labita	t Con	nple	kity									
				Ca	tegori	es											
Optimal			Good	l			Re	gula	r		Poor						
								nes v	vith								
Reaches with aquatic	Re	Reaches with aquatic				aqu	atic	vege	etatio	on,	Re	each	es w	vith a	aqua	itic	
vegetation, marginal	vegetation, marginal					ma	rgin	al		ve	egeta	ation	n, ma	argiı	nal		
vegetation, small		veg	getat	ion,	sma	ıll	1	vege	etati	on, s	smal	1					
waterfalls, excavated	0							waterfalls,					waterfalls, excavate				
banks, backwaters, and		banks, backwaters, and			exc	ava	ed ł	bank	s,	banks, backwaters				s,			
branches and leaves	branches and leaves			ba	backwaters, and			and branches and leaves fallen into th				d					
fallen into the water		fallen into the water			branches and							:he					
covering from 76% up						leaves fallen into				water covering les				ss			
to 100% of the stream		covering from 51% up to 75% of the stream			the water covering				tha	n 25	% of	f the	1				
reach, as potential				otentia			from 26% up to 50% of the stream							h, as			
habitat for fauna.			-	fauna							po	oten			itat f	or	
	-						ch, a	-					faı	ina.			
						hał	oitat	for f	faun	a.							
20 19 18 17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(

Velocity/depth Combinations

	Categor	ies					
Optimal	Good	Regular	Poor				
Sites with the presence		Sites with the					
Sites with the presence of 4 combinations:	Sites with the presence	presence of 2	Prevalence of 1 type;				
fast/shallow; fast/ deep;	of 3 combinations; the	combinations; if	if slow regime				
slow/shallow;	fast/shallow must be	fast/shallow is	predominates, scores				
slow/deep.	present.	absent, scores must	must be lower.				
slow/deep.		be lower.					
20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

	Channel Sir	uosity												
	Categories													
Optimal	Good	Regular	Poor											
Occurrence of sharp and evident curves along the stream reach.	Stream reach sinuosity is not evident, with distant curves.	Stream reach with a few, smooth and distant curves .	Stream reach is straight. If stream is channelized, scores must be lower.											
20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0											

				1	Water	Leve	l Am	plituc	le – Ra	niny	Seas	on							
							Ca	ategoi	ries										
C	ptim	al		Good					Regular					Poor					
						Water level covers													
availab	Water level covers up to 75% of the stream Water level covers all available habitats for the aquatic fauna. Water level covers up to 75% of the stream channel, and less than 25% of substrates and cover elements available for fauna colonization are exposed.						75% cha subs eler	% of anne than trate ment for loniz	n 26% the s l, and 25% es and s ava faur zatio	treat d les of d com ailab a n are	m ss ver le	W	tical vater	, wi flu flov ding	x; m v rat	eduo ost te is	of		
		. –								. 1	osec	1.		_		_			
20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

	Water Level Am	olitude – Dry Season	
	Cat	egories	
	Optimal	Regular	Poor
Water level covers all available habitats for the aquatic fauna.	Water level covers up to 75% of the stream channel, and less than 25% of substrates and cover elements available for fauna colonization are exposed.	Water level covers between 26% up to 75% of the stream channel, and less than 25% of substrates and cover elements available for fauna colonization are exposed.	Stream reach completely dry.
	20	19 18 17 16 15 14 13 12 11 10	0

	Channel Inte	egrity					
	Categorie	25					
Optimal	Good	Regular	Poor				
Absence or minimum							
alterations such as	Presence of past	embankments,	Channelized				
channelization,	alterations such as	dikes,	streams or margins				
dredging, bridges,	bridges or dredging up	channelization, or	supported by				
dikes, embankments	to 20% of the stream	others, altering	gabions. Reaches				
and dams. The water	reach, with absence of	from 21% up to	with strong flow				
course follows a natural	recent alterations.	50% of the stream	disruption.				
flow pattern.		natural course.	-				
20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

					Ban	k Stabilit	у						
					C	ategories							
Op	otimal			Good			Regular		Poor				
mir occur erc pre rip veg sustai	es with nimum rrence osion, served parian etation ining t soil.	of I	30% of exp locatio vegeta by herbac root mov small be co	s present a erosion, v osure in sp ons due to tion; color grasses a ceous vega s exposure ements for beaches the lonized agostrial vege	vith soil parse lack of nization and etation; e, soil rming nat may gain by	65% of expo doma minin arboro some clear so silting limi	s present a erosion, v sure; incr in of grass num prese ous vegeta sparse loc oil mover along the ting veget essional e	with root eased ses and ence of ation in ations; eent and stretch ation	bank with bur interr erosic minin veget domin or	er 66% of clear sig ial and f ruption of on and s num arb ation; m ated by herbaced egetation	oded, gns of low due to ilting; oorous argins grasses ous		
LM	10	9	8	7	6	5	4	3	2	1	0		
RM	10	9	8	7	6	5	4	3	2	1	0		

*LM = left margin. RM = right margin. The sum of both margins provides this parameter scores.

				Bank	Vegetati	ve Protec	ction					
					Categ	ories						
Optin	nal			Good			Regular					
Stream rea	ich w	ith	Classic		1. 700/	Stream	reach w	ith 50%				
over 90% (cover	ed		reach wi		up to 6	9% of the	e stream	Less	than 50)% of	
with na	tural		-	9% of the		margi	ns covere	ed with	the stream margins			
vegetation,	with	out	0	ns covere		natural	vegetati	on, with	covered with			
eviden	ce of			vegetation vegetatio		var	ious spo	vegetation, with				
plantations	, past	ure				anthro	opic occu	pation	large			
or urbaniz	ation	in		tions, pas zation. A		for agr	iculture,	discontinuities or				
the proxim	ity. N	lost				or urb	an land ı	ises. In	al	osence o	of	
riparian pl	ants o	an	0	e disconti		case c	of urbaniz	zation,	ve	egetatio	n.	
grow nat	urally	<i>y</i> .	in vegetation.			scores	must be	lower.				
LM	10	9	8	7	6	5	4	3	2	1	0	
RM	10	9	8	7	6	5	4	3	2	1	0	

*LM = left margin. RM = right margin. The sum of both margins provides this parameter scores.

			Vege	etation Co	nservatio	n on the	e Riparia	n Zone				
					Categ	gories						
O	ptimal			Good		Regular						
veg comj native s good co	Optimal Surrounding vegetation composed by native species, in a good conservation status.			vounding getation posed by species, in a onservation			nat minin nati as ant	inance of tive spect and prese ve spect sociated thropoge impacts.	ies; ence of es is to enic	vegeta to inv pres incluc of na openin	ence of n tion givi vasive sp ssure fac le the ren ative spe ng of trai purnings	ng rise ecies; tors moval ecies, ils and
LM	10	9	8	7	6	5	4	3	2	1	0	
RM	10	9	8 7 6			5	4	3	2	1	0	

*LM = left margin. RM = right margin. The sum of both margins provides this parameter scores.