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Abstract: Climate change (CC) and land use/cover change (LUCC) are the main drivers of streamflow
change. In this study, the effects of CC and LUCC on streamflow regime as well as their spatial
variability were examined by using the Distributed Hydrology Soil Vegetation Model (DHSVM) for
the Beichuan River Basin in the northeast Tibetan Plateau. The results showed that CC increased
annual and maximum streamflow in the upstream but decreased them in the downstream. CC also
enhanced minimum streamflow in the whole river basin and advanced the occurrence of daily
minimum streamflow. Temperature change exerted greater influence on streamflow regime than
wind speed change did in most situations, but the impact of wind speed on streamflow reflected the
characteristics of accumulative effects, which may require more attention in future, especially in large
river basins. As for LUCC, cropland expansion and reservoir operation were the primary reasons for
streamflow reduction. Cropland expansion contributed more to annual mean streamflow change,
whereas reservoir operation greatly altered monthly streamflow pattern and extreme streamflow.
Reservoir regulation also postponed the timing of minimum streamflow and extended durations
of average, high, and low streamflow. Spatially, CC and LUCC played predominant roles in the
upstream and the downstream, respectively.
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1. Introduction

Streamflow is one of the key components of hydrologic cycle, an important water resource
for maintaining sustainable social and economic development and an ecosystem with diverse life
forms [1,2]. However, with the increase of atmospheric concentration of radiatively active gases [3],
such as carbon dioxide, and continuous development of human society, global natural water balance
has been affected [4]. The former, that is, climate change (CC), affects the hydrologic cycle, such as in
precipitation and evaporation [5]. The latter primarily refers to land use/cover change (LUCC) caused
by human activities, such as deforestation, urbanization, cropland expansion, and reservoir operation,
which affect landscape morphological and physiological properties by altering albedo, leaf area index
(LAI), surface roughness, soil infiltration rate, and interruption of stream channels, among others [6,7].
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Hydrological response to CC and LUCC at global or large basin scales help us to understand
the general condition of the impacts [7–9]. However, significant spatiotemporal variations of CC and
LUCC in different regions indicate that regional or local responses deviate from the general conditions.
Further, understanding regional or local hydrological responses is especially relevant to everyday
people’s life, as the knowledge can be directly used in water resources management [10–16]. Regional or
localized knowledge is especially important for the Tibetan Plateau, which hosts the numerous small-
and meso-scale headwaters of large rivers in Asia, including the Yellow, the Yangtze, the Mekong, the
Indus, the Salween, and the Tarim, [17–20].

Quite a few studies on CC and LUCC impacts on hydrology have substantially sprung up in the
last 50 years [7]. The earliest review articles examined the LUCC effects on the basis of paired catchment
studies [21–23], but the approach was only suitable for small catchments (<10 km2) that have uniform
vegetation cover and the same climate, contributing little to water resource management, which
usually covers varied land cover types and climate conditions [7]. Recent studies employed statistical
methods [24–26] and hydrological models [10,17,20,27,28] to assess the impacts from both CC and
LUCC. Statistical methods are simple and effective [29], but reveal few physical mechanisms. Moreover,
this method is generally applied to describe interannual and interdecadal hydrological processes due to
the foundation of equations based on annual or multi-year average [30]. Physically-based hydrological
models, especially distributed hydrological models, can describe spatial variability in land and climate
by using spatially distributed soil and vegetation parameters and climate variables, and can account for
physical mechanisms of CC and LUCC impacts on hydrological processes [6,31]. This study utilized a
distributed physically based model to investigate the impacts of CC and LUCC on streamflow regime.

Existing literature paid more attention to precipitation and temperature factors when evaluating
impacts of CC on streamflow [10,32,33]. However, climate is much more than precipitation and
temperature. McVicar et al. [34] analyzed 148 studies related to near-surface terrestrial wind speed on
a global scale and found the average trend was −0.014 m s−1 year −1), and highlighted the leading role
that wind speed change played in evaporation change in certain regions. On the basis of water balance,
wind speed can affect streamflow through changing evaporation. However, to our knowledge, impacts
of wind speed change on streamflow remain unknown.

Streamflow regime, magnitude, frequency, variability, timing, and duration can be used to
characterize the complex pattern of a river flow [35]. Although some researchers have evaluated
streamflow regime change under CC and LUCC, most of them ignored their spatial variability from
upstream to downstream in a river basin and only focused on the basin outlets [36–38].

In order to provide more regional perspectives of hydrological responses to CC and LUCC, and to
fill the knowledge gaps in wind speed effects on streamflow regime and the spatial heterogeneous
impacts of CC and LUCC on streamflow regime, this study aimed to (1) analyze the characteristics of
CC and LUCC in a meso-scale watershed on the Tibetan Plateau during 1966–2016, and (2) reveal the
spatially heterogeneous combined and respective impacts of CC and LUCC, including wind speed
change on streamflow regime in the basin.

2. Methods

2.1. Study Area

The Beichuan River Basin (BRB, 100.8–102 ◦E, 36.8–37.5 ◦N), located in the northeastern Tibetan
Plateau in western China, was chosen to examine the impacts of CC and LUCC on streamflow regime.
BRB is a diverse river basin that has had little human intervention because of low population density in
the area (km−2, from communication with local herdmen), and a national nature reserve (780.73 km2)
to protect the ecosystem and water resources exists in the upper stream (Figure 1, red line outlined),
whereas a large area of cropland spreads in the middle reach, and a large reservoir (Heiquan reservoir
with 1.82 × 108 m3 water storage capacity) that has operated since 2001 exists in the lower reach.
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The diversity makes BRB a perfect study area for quantifying the heterogeneous effects of various
factors on streamflow.

The area of the BRB is about 2800 km2, with the outlet at the Qiaotou station (Figure 1). The elevation
ranges from 2400 to 4800 m and drops off from the northwest to the southeast. Its climate is dominated
by East Asian monsoon as well as plateau monsoon [39]. The BRB mean annual air temperature is
around 2.8 ◦C, and the total annual precipitation is approximately 508 mm. Beichuan river originates
from the south slope of Daban Mountain of the Qilian Mountain Range (Figure 1). It is a major branch
of the Huangshui River, one large tributary of the Yellow River. Baoku River and Heilin River are the
two tributaries of the Beichuan River. The BRB supplies 70% of the fresh water consumption (about
1.35 × 108 m3 domestic and industrial use) to Xining City, the capital city of Qinghai Province, with a
population of more than 2 million people, being the largest city on the Tibetan Plateau. There are about
10,000 people living in the BRB who herd cattle and grow wheat, canola, and potatoes. The basin also
provides irrigation water to the downstream agriculture field, a main crop production region for the
Qinghai Province.
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Figure 1. Geographic location and topography of the Beichuan River Basin. NC: Niuchang, XM:
Xiamen, HL: Heilin, and QT: Qiaotou hydrological stations; DT: Datong climate station; AWS: automatic
weather station; R: Heiquan reservoir. Qinghai Province is outlined in the northeastern plateau in the
inset figure.

2.2. Model

The Distributed Hydrology Soil Vegetation Model (DHSVM) [40,41] was used in this study.
The DHSVM is a fully distributed, physically-based hydrologic model, and has been identified as one of
the most suitable models for hydrologic study in complex mountainous terrain among 30 hydrological
models [42]. It is typically applied at high resolutions varying from 25 to 200 m at a sub-daily time
scale for watersheds of up to 10,000 km2. The DHSVM has been widely applied in both tropical [43–45]
and temperate catchments [10,46] in many research fields, including forest–snow interactions [47],
climate change [48], landscape change [27,49], human activities [27], urbanization [10,44], stream
temperature [50], water quality simulations [51], and sediment transportation [52].
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Using a grid, the model explicitly accounts for spatial variations of topography, meteorological
elements, soil, and vegetation in a basin, and describes physical processes in energy and water balances.
Built on digital elevation model (DEM)-derived grid, each cell with specified resolution has explicit
elevation, soil and vegetation types, soil depth, and meteorological variables interpolated from nearby
stations. All energy and water balance variables are calculated for each cell. Stream channels are
also distributed on the grid on the basis of their actual existence and are connected on the basis of
the elevation. Water and energy balances are computed using physical laws, for instance, potential
evapotranspiration is calculated by the Penman–Monteith equation for both overstory and understory
vegetation. Surface runoff and sub-surface flow are modeled cell-by-cell and first accumulated to the
streams, being then routed downstream using the linear reservoir method on the basis of elevation.
Vertical unsaturated moisture movement through the soil layers is calculated by using Darcy’s law.
Canopy snow interception and release is modeled using a one-layer mass–energy balance model,
whereas snow accumulation and melt below the canopy are simulated using a two-layer mass–energy
balance model [40]. Given rugged terrain and complicated physical processes in the study area, we
hereby chose the DHSVM so that high spatial resolution could be fully implemented. Figure S1 shows
conceptual representation and flow chart of the DHSVM.

The spatial resolution of the DHSVM in BRB was 100 m. This 100 m resolution was used because the
original land use/cover data we obtained was in 100 m resolution, and 100 m resolution can sufficiently
reflect terrain in this area. The 100 m resolution also balanced the physical representation of the basin
and the efficiency of the performance of the computer. Stream network and soil depth were generated
on the basis of the DEM for the BRB. The model was run at 3 hour time step, and the simulation results
were aggregated to daily and monthly so that calibration and validation could be performed at daily
and monthly steps, as there was only observed daily streamflow available. According to Cuo et al. [46],
sensitive parameters of the DHSVM are lateral saturated hydraulic conductivity, exponential decrease
in lateral hydraulic conductivity with depth, porosity, LAI, vegetation height, and vapor pressure
deficit, which were calibrated in this study. The model warming-up period was 1965, and the analysis
was conducted from 1 January 1966 to 31 December 2016 after model calibration and validation.

Model performance was evaluated using Nash–Sutcliffe efficiency (Ens), the ratio of root mean
square error and standard deviation of the observation (RSR), and relative error (Er). Ens is a normalized
statistic that compares the residual variance to observed data variance and is regarded as the best
objective function to reflect the overall fit between simulation and observation (see Equation (1)) [53,54].
RSR is normalized root mean square error (RMSE; Equation (2)), and it considers both an error index
statistic and a scaling factor, making it applicable to multifarious constituents [53]. Er describes the
difference in the means between simulation and observation (Equation (3)).

Ens = 1−

∑n
i=1(Qobs.i −Qsim.i)

2∑n
i=1

(
Qobs.i −Qobs

)2 (1)

RSR =
RMSE

STDEVobs
=

√∑n
i=1(Qobs.i −Qsim.i)

2√∑n
i=1

(
Qobs.i −Qobs

)2
(2)

Er =
Qsim −Qobs

Qobs
× 100% (3)

where n is the number of data points, Qobs.i is the observed streamflow (m3 s−1) at time step i, Qsim.i is
the simulated streamflow (m3 s−1) at time step i, and Qobs and Qsim are the means of observed and
simulated values (m3 s−1), respectively. The model can be judged as “satisfactory” if 0.50 < Ens ≤ 0.65,
0.60 < RSR ≤ 0.70, and 15% ≤|Er | < 25%; “good” if 0.65< Ens ≤ 0.75, 0.50 < RSR ≤ 0.60, and 10% ≤|Er | <

15%; and “very good” if 0.75< Ens ≤ 1.00, 0.00 < RSR ≤ 0.50, and |Er | < 10% for a monthly time step [53].
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2.3. Data

There are four hydrological stations and one meteorological station in the BRB (Figure 1).
Datong (DT) had daily temperature maxima and minima, precipitation, and wind speed operated
by Qinghai Meteorological Bureau. Daily streamflow and precipitation were collected from four
hydrological stations: Niuchang (NC) above Heiquan dam, Xiamen (XM) on Baoku River, Heilin (HL)
on Heilin River, and Qiaotou (QT) on Beichuan River, all managed by the Qinghai Bureau of Hydrology
and Water Resources Survey. The station operation periods were different (Table 1). XM was removed
in 2001 when Heiquan reservoir was put into use, and NC was built in 2002.

In light of the reality that no meteorological observations were available in the altitude higher
than 2459 m in the BRB, we installed an automatic weather station (AWS) in September 2013, situated
at 3463 m to measure meteorological elements at hourly time steps. Due to the short periods, the
meteorological data observed at AWS could not be used as model forcing. Instead, we used daily mean
temperature at this station and DT to compute temperature lapse rate in the BRB for the overlapping
period in 2014 and 2017, obtaining −0.81 ◦C/100 m as the BRB temperature lapse rate, which was
then used to interpolate maximum and minimum temperature across the basin. The average of daily
maximum and minimum temperature was used as daily mean temperature. We assumed that every
station had the same daily wind speed as DT. The missing precipitation was filled by applying the
linear relationship for monthly precipitation between the two stations in the overlapping period.

The method of Nijssen et al. [55] was adopted to calculate relative humidity, downward shortwave,
and longwave radiation on the basis of daily precipitation and temperature. An iterative algorithm
between dewpoint temperature and radiation was used to calculate both variables involving factors of
temperature range, minimum temperature, and annual precipitation [56,57]. The estimated dewpoint
temperature was used to calculate actual vapor pressure, and with saturation vapor pressure, relative
humidity was calculated. Spline interpolation was used to disaggregate daily to hourly temperature
and relative humidity. Daily precipitation was evenly distributed to hourly time steps. Daily wind
speed was regarded as the same as hourly interval wind. Hourly downward shortwave and longwave
radiation were calculated from disaggregated hourly temperature and humidity by taking various
factors into consideration, such as location, local time, transmissivity, emissivity, and cloudiness.
Hourly forcings were then aggregated or averaged to obtain three-hourly forcing to drive the model.
These station data were gridded to 100 m spatial resolution using the Cressman interpolation approach,
which calculated weighted average values from multiple stations on the basis of the distance as a
radius from the stations.

The DEM was extracted from Shuttle Radar Topographic Mission (SRTM) data (http://srtm.
csi.cgiar.org/srtmdata/). The BRB soil class map was downloaded from Harmonized World Soil
Database (HWSD) (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soildatabase/HWSD_
Data/), which showed that loam and sandy loam were the main soil types occupying nearly 90% of the
basin, being consistent to our laboratory measurement of field-collected soil samples. Land use/cover
data for three periods: 1980, 2000, and 2015, were derived from Resource and Environment Data
Cloud Platform (http://www.resdc.cn/Default.aspx). Maps of 1980 and 2015 were the earliest and latest
available for the BRB, respectively, and the 2000 map was the year before the reservoir operation.
Because 1980 and 1990 maps were very similar, we did not use the 1990 map. As there were no existing
land cover products before 1980, we created land cover of 1960 on the basis of the land cover map of
1980. According to the older generation who have lived in this area since the 1950s, cropland appeared
in the late 1960s. We then constructed land cover for 1960 with assumptions that (1) cropland area in
1980 transformed into grassland, as it was the dominant land cover type of the whole basin, and (2)
other land cover types were not changed during 1960–1980.

2.4. Statistical Analysis

Investigating long-term trends of hydroclimatic variables improve the understanding of
hydroclimatic conditions and changes [58]. In this study, Sen’s slope estimator, Mann–Kendall

http://srtm.csi.cgiar.org/srtmdata/
http://srtm.csi.cgiar.org/srtmdata/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soildatabase/HWSD_Data/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soildatabase/HWSD_Data/
http://www.resdc.cn/Default.aspx
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(MK) test [59,60], and moving t-test technique were employed to examine the trends and change-points
in various hydroclimatic variables in the BRB. Details of these techniques are provided in the
Supplementary Materials section.

3. Results

3.1. Observation

Table 1 shows mean annual, annual trend, and variability of observed air temperature, wind speed,
precipitation, and streamflow obtained from daily time series at each station. Figure 2 shows mean
monthly and monthly trend of these variables. The mean annual air temperature at DT station was
4.84 ◦C (Table 1), high in July and low in January (Figure 2a). Both annual and monthly temperature
increased significantly, ranging from 0.056 to 0.118 ◦C year−1 for the monthly and 0.08 ◦C year−1 for
the annual over 1966–2016. The coefficient of variation (CVyr) of annual temperature was 26.49%.
The average annual wind speed was 1.59 m/s and decreased significantly at −0.008 m s−1 per year
during the period. The CVyr of annual wind speed was 22.56%. Wind speed showed a strong seasonal
pattern as well, high in spring and low in summer (Figure 2b). Wind speed significantly decreased
in January–May and November–December, and the rates ranged from −0.018 to −0.011, increasing
insignificantly in July–September.

Due to monsoon influence, precipitation was concentrated in May–September, accounting for
80% of annual total, and peaked in August for all stations (Figure 2c–g). Precipitation did not show a
significant change, except in February and June at XM and February at DT. Table 1 shows that annual
precipitation and elevation had a generally positive relationship in BRB, with the exception of HL.
Although HL was located at the second highest place, lower than NC, HL measured the highest annual
precipitation (600.88 mm) among all stations, perhaps due to it having the closest distance to Qinghai
Lake, the largest inland lake in China. Abundant water vapor from the lake and orographic lifting
could favor precipitation in winter and spring. CVyr of annual precipitation was between 11.19%
and 14.98%.

Table 1. Mean annual, annual trend, and variability of air temperature (T), wind speed (WS),
precipitation (P), and streamflow (Q) calculated from daily time series observed at Niuchang (NC),
Heilin (HL), Xiamen (XM), Qiaotou (QT), and Datong (DT) in the Beichuan River Basin (BRB).

Stations NC HL XM QT DT

Elevation (m) 3004 2756 2618 2442 2459
Data Periods 2002–2016 1981–2016 1966–2000 1966–2016 1966–2016

T
Mean (◦C) —— —— —— —— 4.84

Trend (◦C year−1) —— —— —— —— 0.080 **
CVyr (%) —— —— —— —— 26.49

WS
Mean (m s−1) —— —— —— —— 1.59

Trend (m s−1 year−1) —— —— —— —— −0.008 **
CVyr (%) —— —— —— —— 22.56

P
Mean (mm) 581.79 600.88 526.60 525.56 525.93

Trend (mm year−1) 0.857 −0.888 −0.701 1.068 0.879
CVyr (%) 11.19 13.42 14.24 14.98 13.62

Q
Mean (m3 s−1) 7.73 2.39 11.11 17.51 ——

Trend (m3 s−1 year−1) 0.136 −0.003 −0.021 −0.051 ——
CVyr (%) 17.57 26.32 24.49 24.19 ——

Note: (1) CVyr is the coefficient of variation in annual time series. (2) Although the period of NC streamflow was
2002–2016, the period of NC precipitation was 1976–2016. (3) ** represents significant level of 0.01. (4) —— means
no data. The same below.
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(right y-axis). Star represents significant trends at 0.05 significance level.

The monthly streamflow pattern (Figure 2h–k) followed that of temperature and precipitation
in general, with its peak 1 month lag behind that of precipitation at NC, HL, and QT. There were a
few significant monthly streamflow trends at NC, HL, and QT, which were different from monthly
precipitation change. At NC, HL, and XM, annual streamflow trends followed those of annual
precipitation without any statistical significance (Table 1). However, at QT, annual streamflow decreased
while annual precipitation increased slightly due to reservoir operation (Table 1). CVyr of annual
streamflow in the BRB was less than 27%, which is relatively small compared to other rivers in China.

Figure S2 displays the change point detection of annual data. Figure S2a demonstrates that an
obvious upward trend of temperature started in 1993 when the UF (Test statistic, details are provided in
the Supplementary Materials section) curve exceeded the 0.05 confidence interval. However, because
the intersection of the curves was located outside the confidence interval, the MK method failed
to detect the exact year of the abrupt change point. We then used the moving t-test technique to
detect again. Figure S2b shows that abrupt changes appeared in 1982 and 1984 for n = 15 and n = 10,
respectively. We chose 1983 as the change point, and the annual temperature showed upward trends
of 0.012 ◦C year−1 and 0.113 ◦C year−1 before and after 1983 on the basis of Sen’s slope test. For wind
speed, UF and UB (Test statistic, details are provided in the Supplementary Materials section) curves
intersected in 1980 (Figure S2c), an abrupt change year. After 1993, the UF curve was constantly lower
than the confidence interval, indicating wind speed consistently and significantly decreasing at p < 0.05.
The MK change point test identified no mutation point for precipitation and streamflow for all stations
(not shown). In the following analysis, we used temperature and wind speed change to represent
climate change during 1966–2016 in the BRB.
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3.2. LUCC

As shown in Figure 3 and Table 2, the main landscape types in BRB were grassland, closed
shrubland, and cropland, together accounting for more than 80% of the total area throughout the period.
Grassland took up about 50% and was distributed across the whole river basin. More than 20% of the
basin was occupied by closed shrubland, concentrated mostly in the upstream and midstream areas.
The third largest land cover type was cropland, which made up 11.64%–12.75% of the downstream
and lowland areas of the basin in 1980, 2000, and 2015. There was no cropland in 1960.
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The transmission matrixes of land use in Tables S1 and S2 illustrate the interconversion between
different landscape types from 1980 to 2000 and from 2000 to 2015. From 1960 to 1980, mere grassland
transformed to cropland (358.52 km2). Table S1 illustrates that from 1980 to 2000, the most significant
features of LUCC were urban and built area expansion and interconversion between grassland and
other land cover types. Urban and built area increased by 1.57 times and reached to 41.65 km2, of
which 37% (15.44 km2) was from cropland. Grassland interconverted mostly with closed shrubland,
cropland, and bare ground. As a result, grassland increased by 45.52 km2, whereas closed shrubland,
cropland, wooded grassland, woodland, and bare ground decreased moderately. Cropland decreased
due to its conversions to grassland (38.03 km2), closed shrubland (5.76 km2), and woodland (5.06 km2).
Water increased by 19.41% (0.64 km2) from cropland and closed shrubland transformation.
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Table 2. Land use/cover type area (units: km2) and proportion (P; units: %) in the Beichuan River Basin
in 1960, 1980, 2000, and 2015.

Category 1960 1980 2000 2015

Area P Area P Area P Area P

Woodland 117.04 4.16 117.04 4.16 113.87 4.05 115.42 4.11
Wooded grassland 114.82 4.08 114.82 4.08 111.17 3.95 111.31 3.96
Closed shrubland 620.59 22.07 620.59 22.07 594.26 21.14 591.3 21.03

Grassland 1730.56 61.55 1372.04 48.8 1417.56 50.42 1423.98 50.65
Cropland 0 0 358.52 12.75 333.15 11.85 327.22 11.64

Bare ground 198.85 7.07 198.85 7.07 196.01 6.97 189.42 6.74
Urban and built 26.44 0.94 26.44 0.94 41.65 1.48 44.83 1.59

Water 3.29 0.12 3.29 0.12 3.92 0.14 8.11 0.29
Total 2811.59 100 2811.59 100 2811.59 100 2811.59 100

Compared to 1980–2000, there were a few changes from 2000 to 2015 (Table S2) due to the nature
reserve that was approved for establishment by the Qinghai People’s Government in 2005, being
promoted to a national nature reserve by the State Council in 2013, as well as other conservation
policies. The greatest change was from bare ground to grassland, which was only 6.61 km2. Urban and
built area only increased by 3.18 km2 during this period, indicating limited human activity after 2000.
Moreover, cropland decreased slightly, owing to the increment of urban/built area and water area.
Water area expanded by two times and was increased from 3.92 km2 in 2000 to 8.11 km2 in 2015 due to
the operation of Heiquan reservoir since 2001.

3.3. Model Simulation

3.3.1. Calibration and Validation Results

Model calibration was conducted for 1971–1980 at XM station. HL (1981–1988), XM (1991–2000),
and NC (2002–2016) were used for model validation (Figure 4 and Table 3). The Ens for monthly
streamflow was 0.76, and monthly RSR and Er were low, which indicated that the DHSVM-simulated
streamflow matched the “very good” observation during calibration periods (Table 3). Peakflows were
overestimated in 1979 (Figure 4a). To further investigate model performance of extreme streamflow,
Table 4 compares the standard deviation and relative error of peakflows and low flows selected from the
top 10 maximum flow and bottom 10 minimum flow in each year during the calibration period. It can
be seen that the model could capture the basic features of peakflows, but there was large relative error
(48.64% due to low observed value as denominator) for low flow simulation, although the absolute
difference (only at 0.57 m3 s−1) was reasonable.

Table 3. Statistics of Distributed Hydrology Soil Vegetation Model (DHSVM) calibration and validation.

Stations
Calibration Validation

XM HL XM NC

Year 1971–1980 1981–1988 1991–2000 2002–2016
Nash–Sutcliffe (Ens) Daily 0.56 0.54 0.59 0.65

Monthly 0.76 0.66 0.74 0.80
RSR Daily 0.66 0.68 0.64 0.59

Monthly 0.49 0.59 0.51 0.45
Relative error (Er %) −7.65 −19.81 5.10 −8.21

Annual simulated Q (m3 s−1) 9.28 2.06 10.82 7.10
Annual observed Q (m3 s−1) 10.05 2.57 10.30 7.73

Note: RSR represents the ratio of root mean square error and standard deviation of the observation.
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parameter value uncertainty.

Table 4. Statistics of daily peak flows and low flows selected from top 10 maximum flow and bottom
10 minimum flow in each year during calibration and validation.

Flows Q (m3 s−1) Standard Deviation (m3 s−1) Relative Error (%)

Calibr_XM

Sim. Qmax 41.93 13.46 −6.75
Obs. Qmax 44.97 12.36
Sim. Qmin 1.75 0.12 48.64
Obs. Qmin 1.18 0.49

Validt_HL

Sim. Qmax 8.88 3.11 19.05
Obs. Qmax 7.46 4.49
Sim. Qmin 0.25 0.04 −67.88
Obs. Qmin 0.79 0.29

Validt_XM

Sim. Qmax 44.02 14.09 27.48
Obs. Qmax 34.53 21.99
Sim. Qmin 1.81 0.18 −47.81
Obs. Qmin 3.47 2.52

Validt_NC

Sim. Qmax 27.06 5.92 17.05
Obs. Qmax 23.12 10.45
Sim. Qmin 1.48 0.10 −36.62
Obs. Qmin 2.34 0.74

For model validation, monthly Ens, RSR, and Er showed “good” or “very good” agreements
between simulation and observation, wherein NC station had the highest monthly Ens at up to 0.8
(Table 3). In contrast, the simulation at HL station was inferior to XM and NC stations; this may
have been caused by its low annual streamflow, which was only about 33% and 25% of NC and XM
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annual streamflow, respectively. Simulated peakflows could always meet the “satisfactory” standard,
especially upstream at HL and NC, whereas low flows showed “dissatisfactory” status, owing to the
small value (Table 4). In general, the above analysis indicates that the DHSVM model could reproduce
the flow pattern fairly well in the BRB.

After calibration and validation, model uncertainty resulting from the parameter uncertainty was
evaluated. Sensitive parameters including lateral conductivity, exponential decrease, porosity, field
capacity, leaf area index, and vapor pressure deficit were increased (or decreased) by 10% at the same
time, and two extra simulations were conducted for the ±10% changes. The streamflow of the two
simulations were also shown in Figure 4. The figure shows that model parameter uncertainty yielded
very small uncertainty ranges in streamflow, as uncertainty ranges of annual and monthly streamflow
of all stations in BRB were within ±5% and ±12%, respectively.

To further evaluate the performance of the DHSVM, we also compared the annual and monthly
simulated and observed streamflow regime indices in the longer overlapping periods at NC and HL
(Table 5 and Figure S3), where human activity is not intense. Table 5 compares the mean annual; annual
variability; and the trends of annual streamflow, annual 1-day peakflow (FX1day), and 1-day lowflow
(FN1day). The relative errors of mean annual streamflow were only −8.21% and −10.77% at NC and
HL, respectively. The simulated annual variability could also reflect the observed variability, especially
at HL. At both stations, the directions of trends of annual mean and extreme streamflow were the same
for the simulation and observation, although the quantities were slightly different.

Table 5. Mean annual, variability, and annual trends of streamflow at NC and HL in the overlapping
periods of simulation and observation.

Stations NC HL

Year 2002–2016 1981–2016

Sim. Obs. Sim. Obs.
Mean (m3 s−1) 7.10 7.73 2.13 2.39

CVyr (%) 12.84 17.57 25.76 26.32
Trend (m3 s−1 year−1) Annual 0.098 0.136 −0.004 −0.003

FX1day 0.310 0.483 −0.008 −0.119 *
FN1day 0.002 0.042 * 0.001 0.004 **

Note: * and ** represent significant level of 0.05 and 0.01, respectively.

Figure S3 shows the simulated and observed means and trends of monthly streamflow. In general,
simulated streamflow could reflect the intra-annual variability to some extent, but with low spring
flow and early occurrence of maximum monthly flow, as shown by the lines. The bar graph shows that
the directions of most of the monthly trends of simulation and observation were the same at the two
stations, and all six opposite trends (January, February, April, and May for NC, July and September
for HL) in the simulation and observation were insignificant. Overall, the DHSVM could reflect real
hydrological conditions and changes reasonably well in the upper BRB with limited human activity.
Next, we investigated CC and LUCC impacts on streamflow regime and the spatial variation of the
impacts across the basin using DHSVM throughout 1966–2016, which is longer than the observation
periods at most stations except QT.

3.3.2. Scenarios and Streamflow Regime Metrics

As annual precipitation at all stations did not show statistical significant change over the period
(Table 1), we did not examine long-term precipitation change effects on streamflow in this study.
To evaluate the impacts of temperature and wind speed change on streamflow regime, we compared
historical climate with the trend removed climate conditions. Figure S4 shows the annual maximum
and minimum temperature as well as the wind speed for 1966–2016 and 1966 climate condition (climate
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1966). Climate 1966 represents the beginning state of climate conditions during 1966–2016, with no
climate change throughout the time period.

LUCC refers to cropland expansion, grassland change, urbanization, reservoir regulation, and so
on. This study adopted the scenario method, which has been widely utilized [6,10,17,61] to investigate
CC and LUCC impacts and to segregate their impacts. Six scenarios were used: (1) S1, a baseline
represented by climate in 1966 and land cover in 1960; (2) S2, represented by historical wind speed
condition, temperature in 1966, and land cover in 1960. The comparison between S2 and S1 showed
the impact of wind speed change; (3) S3 was represented by historical temperature condition, wind
speed in 1966, and land cover in 1960. The comparison between S3 and S1 denoted the impact of
temperature change; (4) S4 was represented by historical climate conditions and land cover in 1960.
The comparison between S4 and S1 showed the influence of CC in general; (5) S5 was represented
by a series of simulations in the sequence using historical climate conditions bracketing land cover
conditions in corresponding periods, that is, simulations with land cover in 1960 with 1966–1970
climate, 1980 land cover with 1971–1990 climate, 2000 land cover with 1991–2010 climate, and 2015
land cover with that of 2011–2016. The comparison between S5 and S4 revealed the impacts of LUCC
without reservoir impacts; (6) S5R was the observed streamflow at QT station. The comparison of S5R

and S4 represented the LUCC, including reservoir operation influences on streamflow at QT with the
rationale that observed streamflow was affected by the combined impacts of CC and LUCC.

The full streamflow regime represented by magnitude, frequency, variability, timing, and
duration [35] was examined. This study selected 18 streamflow metrics on the basis of the Indicators
of Hydrologic Alteration (IHA) [62,63]. A detailed description of these metrics is provided in Table 6.
The rigorously calibrated and validated DHSVM model was then employed to compare the differences
of flow regimes among all the scenarios.

Table 6. Streamflow regime metrics examined for impact analyses.

Types Name Definitions Units

Magnitude

Qyr annual mean streamflow m3 s−1

Qm1-12 monthly mean streamflow, Jan-Dec m3 s−1

Qmax1 annual 1-day maximum streamflow m3 s−1

Qmax3 annual consecutive 3-day maximum streamflow m3 s−1

Qmin1 annual 1-day minimum streamflow m3 s−1

Qmin3 annual consecutive 3-day minimum streamflow m3 s−1

Frequency P non-exceedance probability of annual maximum streamflow

Variability

CVyr the coefficient of variation in annual average streamflow %
CVmax1 the coefficient of variation in annual 1-day maximum streamflow %
CVmin1 the coefficient of variation in annual 1-day minimum streamflow %
CVmax3 the coefficient of variation in annual 3-day maximum streamflow %
CVmin3 the coefficient of variation in annual 3-day minimum streamflow %

Timing
JDmax Julian day of annual maximum streamflow occurrence -
JDmin Julian day of annual minimum streamflow occurrence -
JDCT Julian day of annual temporal centroid of streamflow occurrence -

Duration

DAve number of days with daily streamflow higher than annual mean streamflow days

DHigh
number of days with daily streamflow higher than high streamflow, high

streamflow = annual mean streamflow + 1 standard deviation days

DLow
number of days with daily streamflow lower than low streamflow, low

streamflow = annual mean streamflow – 1 standard deviation days

3.3.3. Magnitude and Variability

Figure 5 displays simulated monthly streamflow in baseline scenario and its response to CC and
LUCC in 1966–2016. It is clear that the magnitude of monthly streamflow corresponded to the basin
area (Figure 5a). For Beichuan river, wind speed decrease caused increase in monthly streamflow in
most months, with higher increase for the downstream station during March–August (Figure 5b).
Streamflow at NC, HL, XM, and QT rose by 0.06, 0.03, 0.12, and 0.35 m3 s−1, respectively, on average
across the months. With the warming in the BRB, most months’ streamflow increased at NC, HL,
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and XM stations, except April, May, and August streamflow (Figure 5c). QT had decreased flow
in the warm season, except June, and increased flow in autumn and winter. The increased winter
flow at the four stations could be due to cryosphere degradation. The combined impact of wind
speed and temperature generally resembled that of temperature impact, except in June and July at
QT, indicating temperature was the predominant impact factor for changing monthly streamflow
magnitude (Figure 5d). The impacts of LUCC on monthly streamflow amplified from the upstream to
the downstream areas, largely reflecting the reality in the basin (Figure 5e). As cropland expansion was
the main feature of land cover change taking place in the middle to lower reaches in 1980, NC and HL
streamflow was barely affected, whereas streamflow at XM dropped slightly during May–September
(reduced by 0.23 m3 s−1). Streamflow at QT trended similarly with XM, but with 10-fold reduction from
May to October without considering the reservoir (left y-axis). However, with the reservoir, the change
was mixed, with increases and decreases across months (Figure 5e, right y-axis). Streamflow reduced
by 10.65 m3 s−1 on average in June–September, and increased by 4.37 m3 s−1 on average in March
and April, resulting from flood control in the rainy season and water release for spring irrigation.
Under the combined CC and LUCC (Figure 5f), monthly streamflow at NC, HL, and XM increased in
most months, similar to the changes caused by CC impacts, indicating the dominance of CC impacts.
Although monthly streamflow without reservoir influence at QT had similar variability caused by
CC impacts (Figure 5d), the magnitude of monthly streamflow was mainly negative, like that by
LUCC impacts (Figure 5e), with the greatest decline (4.19 m3 s−1) in August. With reservoir regulation,
October–May streamflow increased, whereas June–September streamflow decreased dramatically,
especially in August, which dropped markedly by 14.93 m3 s−1.

Figure 6 demonstrates that extreme streamflow (Qmax1 and Qmax3, hereafter Qmax with reference
to left y-axis; Qmin1 and Qmin3, hereafter Qmin with reference to right y-axis) increased with basin area
(Figure 6a) and responded diversely to CC and LUCC. Wind speed decrease resulted in higher Qmax,
which was enhanced in the downstream area, but had a smaller negative change in Qmin (Figure 6b).
With greater temperature, Qmax increased at NC, HL, and XM, but decreased at QT, whereas Qmin

consistently increased in the whole basin (Figure 6c). Figure 6b–d also shows that temperature was
the dominant impact factor on Qmax and Qmin in the whole river basin. The impacts of LUCC with
and without the reservoir were different (Figure 6e). LUCC without the reservoir displayed negative
effects on all Qmax and Qmin, whereas LUCC with the reservoir had positive effect on Qmin but greater
negative influence on Qmax. By comparing Figure 6d–f, it can be found that CC impacts on Qmax

and Qmin were dominant in the upstream (NC and HL) and the midstream (XM) areas. As for the
downstream area (QT), LUCC was the principal factor for extreme streamflow change.

The variability of extreme streamflow (CVmax1 and CVmax3, hereafter CVmax; CVmin1 and CVmin3,
hereafter CVmin) are depicted in Figure 7. Average values of CVmax and CVmin in the BRB in baseline
scenario were around 55% and 12%, respectively. In general, the two indices showed an inverse
relationship with basin area, with CVmax decreasing and CVmin increasing with area (Figure 7a). CVmax

decreased with the wind speed change at all stations, whereas CVmin decreased at NC and HL, but
increased at XM and QT (Figure 7b). Temperature increasing led to declining CVmax but rising CVmin

at each station (Figure 7c). Comparing Figure 7b–d shows that CVmax and CVmin were dominated
by temperature increase, except CVmax at QT. LUCC, especially LUCC with the reservoir, exerted
positive effects on CVmax1 and CVmin (Figure 7e). The great positive effects on variability could make
extreme streamflow less predictable. The impacts of the combined CC and LUCC (Figure 7f), especially
including the reservoir, increased the variability of CVmin at all stations. However, CC and LUCC
effects had negative impacts on CVmax at most stations. Figures 6 and 7 show inverse change in Qmax

and CVmax, but similar change in Qmin and CVmin caused by CC and LUCC. This is because streamflow
magnitude changes can arouse standard deviation change of data series, and different magnitudes of
extreme flow can result in various trends of variability.
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Figure 5. Monthly streamflow of baseline scenario S1 (a) and its change in scenarios of wind speed
change (b); temperature change (c); wind speed and temperature change, that is, climate change (d);
land use/cover change (e); and both climate change and land use/cover change (f). QTR represents
Qiaotou streamflow change caused by land use/cover change, which covered reservoir regulation (the
same below for QTR).
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Figure 6. Extreme streamflow indices (left y-axis represents Qmax1 and Qmax3, right y-axis represents
Qmin1 and Qmin3) under baseline scenario (a) and the impacts of wind speed change (b), temperature
change (c), climate change (d), land use/cover change (e), and both climate change and land use/cover
change (f).
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3.3.4. Frequency

Non-exceedance probability of annual maximum peakflows for each station are shown in Figure 8.
Peakflows with 95% non-exceedance probability for baseline (S1) corresponded to 78.35, 29.47, 124.26,
and 323.34 m3 s−1 at NC, HL, XM, and QT, respectively. CC and LUCC caused little change in NC,
HL, and XM peakflow frequency, with characteristics the same as CC and LUCC impacts on their
magnitude of extreme flow. Peakflow frequency changed moderately at QT affected by CC and LUCC.
The 95% non-exceedance probability of peakflow for S1, S4, and S5R corresponded to 323.34, 285.11,
and 190.2 m3 s−1, respectively.
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Figure 8. Non-exceedance probability of annual maximum peakflow for six scenarios at NC (a), HL
(b), XM (c), and QT (d).

3.3.5. Timing

Three timing indices were selected—the occurrences of centroid of annual mean daily streamflow
(JDCT) [63], annual maximum peakflow (JDmax), and annual minimum streamflow (JDmin), all
represented by Julian day. In baseline scenario, JDCT, JDmax, and JDmin appeared on the 214th,
218th, and 88th days on average for all stations, respectively, during the course of a year on average,
which were in early August for JDmax and JDCT and in late March for JDmin (Figure 9a). Figure 9b
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shows that wind speed had little influence on JDCT, JDmax, and JDmin, with only a 1 day difference for
most stations. Temperature rising, on the one hand, postponed JDCT, but advanced JDmin and resulted
in mixed change in JDmax (Figure 9c). Figure 9d reveals that JDmin appeared earlier due to CC, similar
to temperature increase effect, whereas JDCT and JDmax had various changes at each station. Figure 9e
shows that when there was no reservoir, LUCC changed a little in JDCT. Moreover, there were 8 days in
advance for JDmax and JDCT after the reservoir operation (solid triangle of QTR in Figure 9e, values on
the right y-axis). Additionally, under the reservoir operation, JDmin was delayed for 62 days compared
with baseline, which was in late May. On the basis of Figure 9d–f, CC played a leading role in changing
timing indices for NC, HL, and XM. However, CC and LUCC showed equal impacts on QT timing
indices when there was no reservoir (left y-axis), and LUCC was the dominant factor when reservoir
began to operate (right y-axis). Overall, timing indices only changed greatly under reservoir operation,
whereas in other situations the changes in timing was within 7 days.
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Figure 9. Timings of centroid of streamflow (JDCT), annual maximum (JDmax), and minimum (JDmin)
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3.3.6. Duration

Three streamflow duration indices encompassing number of days with daily streamflow higher
than annual mean streamflow (DAve), higher than high streamflow (DHigh), or lower than low streamflow
(DLow) were chosen in this study. At baseline, the average durations were 128–132 days, 51–57 days,
and 2–7days for DAve, DHigh, and DLow, respectively (Figure 10a). Compared to baseline, wind speed
change only lengthened DAve within 2 days, but exerted no influence on DHigh and DLow (Figure 10b).
Temperature change lengthened the duration of DHigh by 1–3 days, but cut down DLow by about 0–4
days, and also exerted mixed influences on DAve at different stations (Figure 10c). Combined CC effect
was dominated by temperature change effect (Figure 10d). As for LUCC, it had almost no influence
when there was no reservoir (Figure 10e). However, once the reservoir was put into operation, DAve,
DHigh, and DLow were all extended, especially DLow, which was prolonged by 15 days. Figure 10f
suggests that the combined impacts of CC and LUCC were generally similar to CC impacts when there
was no reservoir, and reservoir operation on top of CC and LUCC still had the greatest impacts on
the duration.
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streamflow (DHigh), or lower than low streamflow (DLow) in baseline scenario S1 (a), and the impacts
of wind speed (b), temperature (c), climate change (d), land use/cover change (e), and both climate
change and land use/cover change (f).
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3.3.7. Deconvolve the Impacts of CC and LUCC

The coefficients of variation in annual streamflow (CVyr) for all scenarios fluctuated slightly
around 24% (Table 7). Temperature played a more important role in changing CVyr relative to wind
speed. Comparing the impacts of CC and LUCC on CVyr, it is clear that CC impact was dominant at
NC and HL in the upstream area, whereas LUCC with or without reservoir was dominant at XM and
QT in the downstream area. In general, combined CC and LUCC moderately increased CVyr at NC,
XM, and QT, but decreased CVyr at HL.

Table 7. The coefficient of variation in annual average streamflow (CVyr) of S1 and the impacts of
wind speed, temperature, climate change, land use/cover change, and both climate change and land
use/cover change on CVs at four stations.

CVyr (%) NC HL XM QT

S1 23.11 25.91 23.12 23.02
CC WS −0.08 −0.07 −0.15 −0.24

T 0.18 0.23 0.34 1.03
CC 0.24 −0.47 0.01 0.46

LUCC 0.02 0.23 0.24 1.29 (0.71)
CC + LUCC 0.26 −0.24 0.25 1.75 (1.17)

Note: For the last two rows of land use/cover change (LUCC) and climate change (CC) + LUCC at QT, inside and
outside brackets represent impacts of land use/cover change with and without reservoir, respectively.

Table 8 demonstrates the deconvolved effects of multiple impact factors. During the period
of 1966–2016, most changes caused by CC and LUCC on annual mean streamflow passed the 0.01
significance test. On the basis of the first two columns of WS and T, it is clear that temperature affected
mean annual streamflow more than wind speed, except for QT. In addition, the third column of CC
was not the linear addition of temperature and wind speed impacts.

Table 8. Total and deconvolved impacts of temperature, wind speed, climate change, and land use/cover
change on mean annual streamflow with reference to S1.

Impact Factors CC
LUCC CC + LUCC

WS T CC

NC
AC (m3 s−1) 0.06 * 0.78 * 0.89 * 0 0.89 *

RC (%) 1.01* 13.18 * 15.03 * 0 15.03 *
P (%) —— —— 100 0 100

HL
AC (m3 s−1) 0.03 * 0.08 * 0.13 * −0.03 * 0.1*

RC (%) 1.52 * 4.04 * 6.57 * −1.52 * 5.05 *
P (%) —— —— 81.25 18.75 100

XM
AC (m3 s−1) 0.13 * 0.8 * 1.04 * −0.13 * 0.91 *

RC (%) 1.34 * 8.26 * 10.74 * −1.34 * 9.40 *
P (%) —— —— 88.89 11.11 100

QT
AC (m3 s−1) 0.35 * −0.03 0.44 * −1.32 * (−2.40 *) −0.88 * (−1.96 *)

RC (%) 1.80 * −0.15 2.26 * −6.78 * (−12.32*) −4.52 * (−10.06 *)
P (%) —— —— 25 (15.49) 75 (84.51) 100 (100)

Note: (1) AC is absolute change; RC is relative change; P is percentage impacts of CC and LUCC. (2) For the last
three rows at QT, numbers inside and outside brackets represent impacts of land use/cover change with and without
reservoir, respectively. (3) * represents significant level of 0.01 using a paired sample t-test.

Streamflow at different stations responded differently to CC and LUCC. NC, HL, and XM stations,
which are in the upstream and midstream areas, were mostly affected by CC, which accounted for
100%, 81.25%, and 88.89%, respectively (Table 8), indicating that streamflow change at NC was totally
controlled by CC because of the protection from national natural reserve. Streamflow at QT, the outlet
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of the BRB, was decreased by 1.96 m3 s−1 (p < 0.01) due to CC and LUCC, accounting for 10.06% of the
mean annual streamflow of S1 at QT. LUCC was the predominant factor, causing 84.51% reduction in
mean annual streamflow, whereas CC accounted for only 15.49%. In general, upstream and midstream
flow were more controlled by CC, whereas downstream flow was mainly predominated by LUCC.

4. Discussion

Generally, the DHSVM provided good agreement between simulation and observation in the
overlapping periods (Table 5 and Figure S3). However, some discrepancies appeared in monthly
simulated and observed streamflow at NC and HL (Figure S3). For example, in the line graph,
maximum monthly streamflow was in September for the observation but in July for the simulation,
and spring streamflow was underestimated. Both of them were caused by inaccurate estimation of
cryospheric variables such as snow water equivalent (SWE) and frozen soil, which will be investigated
in the future.

Depending on the elevation and location of the intensity of human activity, streamflow regime
changes were different in the BRB. Decreased wind speed restrained the annual evapotranspiration
by −0.24 mm in the BRB on average, resulting in increases in the means of maximum, monthly,
and annual streamflow (Figures 5b and 6b; Table 8), leading to decreases in streamflow variability
(Figure 7b and Table 7). Although annual wind speed decreased significantly, monthly wind speed
trends in July–September increased slightly (Figure 2b), which resulted in decreased streamflow in
July–September, shuffling the timing of the maximum daily flow by usually advancing its occurrence;
thus, JDmax appeared earlier (Figure 9b). In the meantime, DAve lengthened consistently in this river
basin (Figure 10b), which happened in April–June when great increase in streamflow occurred.

Temperature increase impacts on evaporation could be explained by the following three ways.
According to the Clausius–Clapeyron equation, saturation water vapor increases with air temperature,
and thus vapor pressure deficit between land surface and air increases. The rate of evaporation is
dependent on the amount of heat transferred, and warmer dry air may supply more energy to an
evaporating surface. Less energy is required to evaporate warm water than cool water, as latent heat of
vaporization (Lv) becomes smaller with higher temperatures, for instance, Lv at 20 ◦C and 35 ◦C are
2.44 and 2.40 MJ kg−1, respectively. For the same energy input, more water will be evaporated at the
higher temperature. In the BRB, temperature increase intensified the mean annual evapotranspiration
by 51.57 mm on average in the BRB, and a similar amount in the upper basins.

Temperature increase also reduced mean daily SWE by 20.86 mm on average in the entire BRB,
and by 32.01 mm and 26.47 mm in the upstream basins above NC and HL, respectively, on the basis of
the model scheme. Reduction in SWE and increase in evapotranspiration due to temperature increase
interrupted the original partition among water balance terms over the simulation period across the
BRB, hence changing the streamflow regime indices as shown above. In the upstream (NC and HL)
and midstream (XM), snow melt increase was greater than evapotranspiration increase over the year
on average, which resulted in greater streamflow magnitude at most monthly and annual time steps
(Figures 5c and 6c; Table 8). In the lower elevation, SWE increase could not balance the evaporation
increase, leading to decreased maximum and annual flow in lower stream (Figure 6c and Table 8).
With temperature increase, starting date of snow melt was brought forward, making lower JDmin,
whereas JDCT was postponed due to the delaying of starting freeze date, resulting in greater streamflow
in September and October (Figure 9c).

For CC impacts, streamflow regime variables, such as magnitude (annual, monthly, and extreme
streamflow), variability (annual, extreme flow), timing (minimum flow), and duration were more
influenced by temperature than by wind speed at most stations. Notwithstanding, effects of wind speed
change on mean annual and monthly streamflow, Qmax, CVmax, and CVyr increased from upstream to
downstream, which indicated significant spatially accumulative effects that wind speed change exerted
on streamflow. By contrast, temperature change had completely opposite impacts on some streamflow
regime indices, especially for annual streamflow and CVmax, which indicated that temperature is
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more important at high elevation. The accumulative effects resulted in greater wind speed influence
than temperature effect on mean annual streamflow and CVmax at the downstream QT (Table 8 and
Figure 7b). It is thus inferred that accumulative effects of wind speed change on streamflow may
be more severe in large river basins, requiring more studies to evaluate this phenomenon, as such
studies are lacking. The analysis also showed that combined climate change impacts were not the
linear addition of temperature and wind speed impacts (Tables 7 and 8).

Since the 1960s and 2001, the downstream BRB has experienced cropland expansion and Heiquan
reservoir operation, respectively. The former increased evapotranspiration by 15.29 mm in the BRB,
and thus led to the reduction of the flow magnitude (Figures 5e and 6e; Table 8) and peakflow (Figure 8),
which resulted in lower means in maximum and annual flow and increased their variability (Figure 7e
and Table 7). Reservoir operation caused re-distribution of monthly streamflow, decreasing maximum
streamflow and its variability during the flooding season (Figures 5e and 6e), but increasing them
for minimum streamflow (Figures 6e and 7e). This change narrowed the gap between maximum and
minimum flow throughout the year, making intra-annual streamflow pattern flatter and prolonging
durations (Figure 10e). The operation could also make JDmin occur on any day in a year, not only in
March, which could postpone JDmin considerably. On the other hand, with the noteworthy increase
of streamflow in January–April after reservoir operation, JDCT appeared earlier (Figure 9e). At QT
mean, annual streamflow declined by 6.78% due to LUCC without considering reservoir operation.
The Heiquan reservoir also caused it to fall by 5.54% (12.32% minus 6.78%; Table 8). It seems that the
effects of cropland expansion on mean annual streamflow were slightly larger than that of reservoir
regulation. However, Figure 5f shows that reservoir regulation played a stronger role in intra-annual
streamflow re-distribution.

As there was no streamflow observation right below the reservoir after 2001 when the reservoir
started operation and reservoir information was recorded, the reservoir effects cannot be accounted
for in this study. When examining LUCC (including the reservoir) impacts on river flow, we used
a simplified approach, as mentioned above. Reservoir regulation rules, reservoir storage, and open
water evaporation were not considered, as they would introduce errors and bring uncertainty into the
results. In a future study, we plan to incorporate a reservoir module by considering reservoir storage
and regulations with the DHSVM to further investigate reservoir impacts on streamflow in detail.

Model uncertainties result from input data, model structure, and parameter values. In this study,
we only examined parameter-related uncertainty. As we have relatively high confidence in our model
input data, including soil and vegetation types and climate forcing, the uncertainty from input data
was not analyzed. As for model structure uncertainty, it was beyond the scope of the current study, but
certainly can be examined in the future by using an ensemble of hydrological models.

5. Conclusions

The BRB experienced prominent upward trends in temperature and downward trends in wind
speed at p < 0.01 from 1966 to 2016, with abrupt changes appearing in the 1980s, whereas annual
precipitation and streamflow exhibited non-significant trends.

In general, the impacts of temperature change dominated over those of wind speed change,
especially at high elevation, but accumulative effects of wind speed change on streamflow should
not be ignored. As for magnitude, CC enhanced annual and maximum flow in the upstream and
midstream areas but reduced those in the downstream area, and also increased minimum flow at all
stations. For variability, annual and minimum flow showed upward trends, wheras maximum flow
decreased. The frequency of peakflow under CC was changed little. For timing, CC brought the early
occurrence of daily minimum streamflow. The duration of maximum streamflow was always extended.

Since the 1960s, cropland expansion, interconversion between grassland and other land cover types,
and the Heiquan reservoir operation were the major characteristics of BRB LUCC. Reservoir regulation
was the predominant factor altering the streamflow regime in the downstream area. It significantly
increased the streamflow variability and extended the duration of all indices while decreasing the
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maximum flow and flood frequency. Additionally, there was earlier timing for maximum and temporal
centroid streamflow, but later timing for minimum streamflow. Cropland expansion and reservoir
regulation were the two major land cover type changes, with the former exerting greater impacts on
annual streamflow, and the later primarily affecting intra-annual streamflow distribution.

Spatially, upstream and midstream flow in high elevation were more sensitive to CC, whereas
downstream flow in low elevation was mainly predominated by LUCC.

The results of this study expand our understanding of the wind speed change impacts on
hydrological processes, and also provide evidence to support mitigation schemes to better manage the
water resources synergistically in this river basin.
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Minimum and maximum temperature, wind speed for historical period 1966–2016, and climate 1966 for Datong
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Transition matrix of land use in the Beichuan River Basin from 2000 to 2015 (km2).
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