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Abstract: Evapotranspiration (ET) is one of the biggest data gaps in water management due to 

limited ET measurements, and further, spatial variability in ET is difficult to capture. Satellite-based 

ET estimation has great potential for water resources planning as it allows estimation of agricultural 

water use at field, landscape, and watershed scales. However, uncertainties with satellite data 

derived ET are a major concern. This study evaluates hourly satellite-based ET from 2001–2010 for 

the growing season (May–October) under irrigated and dryland conditions for both tall and short 

crops. The evaluation was conducted using observed ET from four large weighing lysimeters at the 

United States Department of Agriculture Agricultural Research Service (USDA-ARS) Conservation 

and Production Research Laboratory in Bushland, Texas. Hourly ET from satellite data were derived 

using the Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) 

model. Performance statistics showed that satellite-based hourly estimates compared to lysimeter 

measurements provided good performance with an root-mean-square error(RMSE) of 0.14 mm, 

Nash–Sutcliffe efficiency (NSE) of 0.57, and R2 of 0.62 for ET for dryland crops, and RMSE of 0.16, 

NSE of 0.63, and R2 of 0.65 for irrigated crops. METRIC provided accurate hourly ET estimates that 

may be useful for irrigation scheduling and other water resources management purposes based on 

the hourly assessment.  

Keywords: evapotranspiration; METRIC; remote sensing; irrigation water management; Landsat; 

lysimeter  

 

1. Introduction 

Evapotranspiration (ET) is one of the major components of the water budget. It plays a major 

role in the water cycle and irrigation water management [1,2]. Further, ET is the main consumer of 

rainfall and irrigation water in irrigated agricultural fields in arid and semiarid regions of the world. 

ET measurement methods such as pan evaporation, sap flow, and weighing lysimeters are widely 

used. These measurements are considered point estimates for particular irrigation practices in a 

homogenous field. Measuring ET on a watershed scale is challenging due to unavailability of direct 

measurement methods at that scale [3,4]. Other ET methods such as Bowen ratio, scintillometers, and 

eddy covariance can provide greater spatial coverage but may not adequately represent a watershed 

scale. Remote sensing models using satellite data can provide large-scale spatial coverage at various 
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spatial resolutions [5,6]. Considering the limitation that multiple weather parameters are required for 

ET modeling (air temperature, relative humidity, and wind speed), uncertainties also exist with 

satellite ET estimates [7].  

Weighing lysimeters are considered the most accurate method for measurement for ET [8,9] as 

they directly measure the change in mass of a representative soil volume as ET occurs. Lysimeters 

vary in size, design, and weighing method but have shown applicability to a variety of crops, fruit 

trees, and forests [10]. Large weighing lysimeters can have sufficient depth and surface area as to not 

impede crop and root growth; however, shallower or smaller lysimeters may cause restrictions on 

plant development in addition to affecting drainage and soil water dynamics. These issues can cause 

discrepancies between the field surrounding the lysimeters or between different lysimeters. 

However, properly designed and maintained lysimeters can be managed in such a way that the 

conditions on the lysimeter are the same as the surrounding field, giving field-scale, directly 

measured ET data. These data still may not be representative of various land uses and management 

methods at a watershed scale; however, they can provide enough spatial resolution for validation of 

other ET measurements, such as remote sensing models. 

Remote-sensing (RS)-based ET models are better suited than point estimates for estimating crop 

water use at a regional scale [11]. Numerous remote-sensing-based ET algorithms with varying 

complexities have been developed and are available for estimating the magnitude and trends in 

regional ET [12]. Daily, weekly, monthly, and seasonal ET estimation are the most dominant temporal 

resolutions using remote sensing for regional and watershed scales [13,14]. Gowda et al. [12] reported 

that daily ET estimates differed by 3% to 35% compared to ET measurements obtained using Bowen 

ratio and EC methods. Error sources include: (a) modeling errors and (b) measurement uncertainties 

and discrepancies in model-measurement scales, which are often not adequately accounted for in 

model testing studies. Errors are associated with all ET determination methods, but many can be 

minimized by increasing measurement accuracy and by careful quality assessment and quality 

control of ancillary data [12,15]. 

Accurate testing of field surface energy balance models, including those based on thermal 

imagery, depends on the ground truth and remotely sensed data accuracy. At watershed and basin 

scales, few examples of calibration of satellite-based ET using ground truth data measurements have 

occurred. These studies used ground truth from mass balance methods, including weighing 

lysimeters and the soil water balance, and EC measurements based on the energy balance to perform 

analysis on RS-based energy balance estimates of ET.  

One of the major sources of ET estimation uncertainty using satellite energy balance models is 

the hourly satellite calibration [16,17]. This uncertainty can be minimized by comparing the hourly 

satellite estimates of evapotranspiration (ET), surface temperature (Ts), net solar radiation (Rn), and 

soil heat flux (Go) to the measurements. This calibration is achieved for each image to reduce bias 

with radiometric accuracy related to the changing aerodynamics of the satellite scene, thermal 

conditions, and bias related to modeler estimates of the extreme conditions (dry and wet pixels). A 

dry pixel is described as bare agricultural soil, with high temperature and low evaporation rate, and 

a wet pixel is described as fully covered agricultural soil, with low temperature and high 

transpiration rate. 

Hourly ET assessment has many benefits, including understanding sources of uncertainty with 

daily, weekly, monthly, seasonal, and yearly ET estimation. Accuracy assessment of hourly ET is a 

major step to quantify estimation errors with irrigation water management practices. 

This study evaluated the hourly ET estimates of a 10-year period since the hourly estimates are 

the main component for various time scale ET interpolations. Previous studies evaluated daily, 

monthly, seasonal, and/or yearly ET estimates; however, no existing study has evaluated the hourly 

ET for irrigation management purposes. Evaluating hourly ET estimates is crucial to quantify 

uncertainties associated with the daily, monthly, seasonal, and yearly estimates for irrigation 

management purposes.  
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2. Materials and Methods 

2.1. Site Description 

Four fields equipped with lysimeters at the USDA-ARS Conservation and Production Research 

Laboratory at Bushland, TX (35.19° N, 102.10° W) at an elevation of 1170 m above mean sea level were 

selected for this study. The research field is a square with a surface area of approximately 20 ha, 

subdivided into four quadrants of approximately 4.7 ha each. A precision, large weighing lysimeter 

is located at the center of each quadrant; two lysimeters were managed as dryland (NW and SW), 

and the other two lysimeters were managed as irrigated (NE and SE) during the study years. The 

observed data were combined for each lysimeter, and statistical performance assessment was 

performed for the estimated values for each parameter for the two dryland lysimeters (NW and SW) 

and the two irrigated lysimeters (NE and SE). The soil characteristics for the study field are deep, 

well-drained Pullman silty clay loam (fine, mixed, superactive, thermic Torrertic Paleustoll) [18]. The 

local climate is classified as semi-arid, with large daily temperature variations. Cotton, soybean, grain 

and silage sorghum, sunflower, and cotton were the predominant crops for the research fields.  

2.2. Weather Parameter Measurements 

Dataloggers (CR6, Campbell Scientific, Logan, Utah) were used to collect data using the 

following sensors: air temperature and relative humidity sensor (HMP155, Vaisala, Helsinki, 

Finland), four soil water sensors (Acclima 315, Acclima Inc., Meridian, Idaho), six soil heat flux plates 

(HFT-3, Radiation Energy Balance Systems, Bellevue, Washington), an infrared thermometer, and a 

net radiometer (Q*7.1, Radiation Energy Balance Systems, Bellevue, Washington) [19]. These sensors 

were utilized to measure surface temperature, soil heat flux, and net solar radiation over each 

lysimeter. The QA/QC protocol from Evett et al. [20] was performed on the collected data. Weather 

parameter data were recorded every 6 s and summed or averaged for 30-min intervals.  

The solar radiation sensor calibration was performed to assess the sensor accuracy through 

evaluating the observed Rn with the sum of measured downwelling and upwelling short- and 

longwave radiation as well as comparing to the theoretical maximum clear sky solar irradiance. Based 

on the sensor calibration results, the sensor performance was accurate in solar radiation 

measurement. 

Colaizzi et al. [21] highlighted the soil heat flux calculation and calibration process for 30-min 

time intervals. The calibration process was performed using the soil water and temperature sensor 

data to calculate the change in soil heat storage from the surface to the soil heat flux plates.  

2.3. Landsat Imagery 

Landsat Collection-1 was used for Landsat 5 Thematic Mapper (TM) satellite data throughout 

the growing season (May–October). The images were obtained through Earth Explorer 

(https://earthexplorer.usgs.gov/), with two satellite paths (30 and 31) and row 36 from 2001 to 2010. 

A total of 53 cloud-free images were acquired, as the presence of clouds can cause errors in the 

estimation process due to aerodynamics and radiometric disturbance [17]. Appendix A includes day 

of year (DOY) for images used. The Landsat 5 TM consists of six spectral bands (bands 1–5 and band 

7) with spatial resolutions of 30 m and one thermal band (band 6) with a spatial resolution of 120 m. 

Top-of-atmosphere reflectance was used to calculate NDVI Equation (5) using the red and near-

infrared bands [22].  

2.4. Image Analysis  

The Bushland Evapotranspiration and Agricultural Remote Sensing (BEARS) software is an 

image processing and geographic information system software deriving hourly, daily, and seasonal 

evapotranspiration maps. It also produces other energy exchange outputs between land and 

atmosphere using Landsat 5, 7, and 8 [23]. The BEARS software was used for this analysis to estimate 

the hourly ET, Ts, Rn, and Go for the four lysimeters. The BEARS software is public domain software 
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that offers users the option to select one of five energy-balance-based ET methods: 

Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC), Surface 

Energy Balance Algorithm for Land (SEBAL), Surface Energy Balance System (SEBS), Tow Source 

Model (TSM), and Simplified Surface Energy Balance (SSEB). The METRIC model has been utilized 

in this study. To extract the average value of each parameter, a grid of 3 by 3 pixels was selected, with 

each lysimeter located towards the center of this grid.  

The Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) 

model is a satellite image processing model that is used for ET estimation as a residual of the energy 

balance for various short crops, tall crops, trees, and forest [24–32] Equation (1). 

𝐸 = 𝑅𝑛 − 𝐺 − 𝐻 (1) 

where 𝐿𝐸 is the latent heat flux density [W m−2], 𝑅𝑛 is the net radiation [W m−2], 𝐺 is the soil heat 

flux [W m−2], and 𝐻 is the sensible heat flux density [W m−2].  

METRIC has been employed for Landsat image analysis (with a spatial resolution of 30 m) for 

agricultural water use and other agricultural applications that require field-scale resolution. The 

energy balance is evaluated internally under two extreme conditions (dry and wet) using surface 

temperature, vegetation growth, and available weather data. The accuracy of ET estimation depends 

on user experience, and the estimation accuracy was found to be inversely related with ET levels, 

where low ET levels had high uncertainty and vice versa [33]. Those two extremes are the strength 

of METRIC, compared to the Surface Energy Balance System (SEBS) and other satellite-based ET 

models [25]. An automated statistical calibration method has been developed to better estimate the 

dry and wet pixels, enhancing ET estimation accuracy [17]. 

Atmospheric correction is not required for surface temperature (𝑇𝑠) and reflectance (albedo) 

measurements using radiative transfer models due to the use of the indexed temperature gradient 𝑑𝑇 

and the internal calibration of the sensible heat computation within METRIC [34]. Another advantage 

of using the internal calibration is that it reduces the bias with aerodynamic stability corrections and 

surface roughness.  

Net radiation at the surface (𝑅𝑛) is calculated by subtracting all outgoing radiant fluxes from all 

incoming radiant fluxes including solar and thermal radiation Equation (2): 

𝑅𝑛 = 𝑅𝑆↓ − 𝛼𝑅𝑆↓ + 𝑅𝐿↓ − 𝑅𝐿↑ − (1 − 𝜀𝑜)𝑅𝐿↓ (2) 

where 𝑅𝑆↓ is the incoming short-wave radiation [W m−2 ], 𝛼 is the surface albedo (dimensionless), 

𝑅𝐿↓  is the incoming long-wave radiation [ W m−2 ], 𝑅𝐿↑  is the outgoing long-wave radiation 

[ W m−2 ], 𝜀𝑜  is the broad-band surface thermal emissivity (dimensionless), and (1 − 𝜀𝑜)𝑅𝐿↓ is the 

fraction of incoming long-wave radiation reflected from the surface. 

The surface temperature ( 𝑇𝑠 ) is calculated for Landsat images using the modified Planck 

equation, based on Markham [35], with both atmospheric and surface emissivity correction, as shown 

in Equation (3). 

𝑇𝑠 =
𝐾2

ln[(𝜀𝑁𝐵
𝐾1

𝑅𝑐
⁄ )+1]

  (3) 

where 𝐾1 𝑎𝑛𝑑 𝐾2 are constants (𝐾1 = 607.8 𝑎𝑛𝑑 𝐾2 = 1261 [W m−2 sr−1 μm−1 ]for Landsat 5), 𝜀𝑁𝐵 is 

the narrow-band emissivity corresponding to satellite thermal sensor wavelength band, and 𝑅𝑐 is 

the corrected thermal radiance from the surface using spectral radiance 𝐿𝑡,𝑡ℎ𝑒𝑟𝑚𝑎𝑙  from the thermal 

band of Landsat. 

The corrected thermal radiance (𝑅𝑐) [W m−2 sr−1 μm−1 ] is calculated using Equation (4) [36]:  

𝑅𝑐 =
𝐿𝑡,𝑡ℎ𝑒𝑟𝑚𝑎𝑙 − 𝑅𝑃

𝑇𝑁𝐵

− (1 − 𝜀𝑁𝐵)𝑅𝑠𝑘𝑦  (4) 

where 𝐿𝑡,𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is the spectral radiance of Landsat 5 thermal band [W m−2 sr−1 μm−1 ], 𝑅𝑃  is the 

path radiance in the 10.4–12.5 μm band [W m−2 sr−1 μm−1 ], 𝑇𝑁𝐵 is the narrow-band emissivity of air 

(10.4–12.5 μm range), and 𝑅𝑠𝑘𝑦 is the narrow-band downward thermal radiation from a clear sky 

[W m−2 sr−1 μm−1 ]. 
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The normalized difference vegetation index (NDVI) is the ratio of the differences in reflectivity 

for the near-infrared band and the red band divided by the sum Equation (5).  

𝑁𝐷𝑉𝐼 =
(𝜌𝑡,𝑛𝑖𝑟 − 𝜌𝑡,𝑟𝑒𝑑)

(𝜌𝑡,𝑛𝑖𝑟 + 𝜌𝑡,𝑟𝑒𝑑)
 (5) 

where 𝜌𝑡,𝑛𝑖𝑟 is the reflectance of the near-infrared band, and 𝜌𝑡,𝑟𝑒𝑑  is the reflectance of the red band.  

The soil heat flux represents the rate of heat storage in the soil and vegetation as a result of 

conduction. METRIC calculates 𝐺 as a ratio 
𝐺

𝑅𝑛
 using Equation (6) [37] to represent values near mid-

day.  

𝐺

𝑅𝑛

= (𝑇𝑠 − 273.15)(0.0038 + 0.0074𝛼)(1 − 0.98 𝑁𝐷𝑉𝐼4) (6) 

where 𝑇𝑠 is the surface temperature (𝐾), and 𝛼 is the surface albedo. 

Alternatively, [38] developed the ratio 
𝐺

𝑅𝑛
 using soil heat flux data collected by USDA-ARS [39] 

for an irrigated crop near Kimberly, Idaho, as represented in Equations (7) and (8).  

𝐺

𝑅𝑛

= 0.05 + 0.18 𝑒−0.521 𝐿𝐴𝐼                 (𝐿𝐴𝐼 ≥ 0.5) (7) 

𝐺

𝑅𝑛

= 1.80
(𝑇𝑠 − 273.15)

𝑅𝑛
⁄ + 0.084         (𝐿𝐴𝐼 < 0.5) (8) 

where 𝐿𝐴𝐼 is the leaf area index, and 𝑇𝑠 is the surface temperature.  

METRIC sensible heat flux calculation is estimated from the aerodynamic function as listed in 

Equation (9). 

𝐻 = 𝜌𝑎𝑖𝑟 𝐶𝑃  
𝑑𝑇

𝑟𝑎ℎ

 (9) 

where 𝜌𝑎𝑖𝑟  is the air density [kg m−3], 𝐶𝑃 is the specific heat of air at constant pressure [J kg−1K−1], 

𝑟𝑎ℎ is the aerodynamic resistance [s m−1] between two near-surface heights, 𝑧1 𝑎𝑛𝑑 𝑧2 (always 0.1 

and 2 m) computed in a particular pixel, and 𝑑𝑇  is the near-surface temperature difference (𝐾) 

between 𝑧1 𝑎𝑛𝑑 𝑧2. 

In METRIC, the 𝑟𝑎ℎ calculation uses wind speed extrapolation from blending heights (normally 

100 to 200 m) above the ground surface. 𝑑𝑇 is used in Equation (9) due to complications in estimating 

surface temperature accurately from satellites, which arise from uncertainties in atmospheric 

attenuation or contamination and radiometric calibration of the sensor [25]. The surface temperature 

obtained by the satellite, whether it is a radiometric or kinematic temperature, can also be different 

by several degrees from the aerodynamic temperature, the main driver for the heat transfer process 

[3,40,41]. 𝑑𝑇 can be estimated using Equation (10) [42]. 

𝑑𝑇 = 𝑎 + 𝑏𝑇𝑠 𝑑𝑎𝑡𝑢𝑚 (10) 

Where 𝑎 𝑎𝑛𝑑 𝑏 are the empirical constants for a given Landsat satellite image, and 𝑇𝑠 𝑑𝑎𝑡𝑢𝑚 is 

the surface temperature adjusted to a common elevation for each image pixel using a digital elevation 

model and customized lapse rate.  

Determining accurate hot (dry) and cold (wet) pixels is one of the most critical and challenging 

steps in implementing METRIC to spatially estimate ET [17,33]. A manual selection method was 

performed to determine the dry and wet pixels using the surface temperature and the NDVI outputs 

based on the criteria listed in Table 1. The manual selection process was performed using the surface 

temperature (Ts) and NDVI histogram distribution. Obtaining the Ts distribution is necessary to 

determine the range of the high and low temperature threshold for each image.  
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Table 1. Hot and cold pixel description and constraint limits. 

Parameter Condition 
Constraint 

Outcome 
Ts NDVI 

Lowest ET Bare agricultural soil High ≤ 0.2 Hot pixel location (x,y) 

Highest ET Cultivated agricultural soil Low ≥ 0.7 Cold pixel location (x,y) 

Several iterations were implemented to obtain the most accurate hot and cold pixels that met the 

conditions listed in Table 1. The more accurate the dry and wet pixel determination, the better the ET 

estimates across the satellite scene. Special consideration of the hot and cold pixel selection, such as 

avoiding the image edges, as well as the hot and cold pixels distribution across the scene instead of 

centralizing the pixels toward a specific location was used. 

2.5. Statistical Analysis 

In addition to visual inspection of observed and simulated ET values for pixels covering 

lysimeters, the satellite-based ET performance was evaluated for the selected day's images that were 

available. Various statistical parameters were estimated, including Nash–Sutcliffe efficiency (NSE), 

root-mean-square error (RMSE), and mean bias error (MBE), to evaluate the relationship strength 

between simulated and measured values [19,43,44]. RMSE and MBE were calculated using Equations 

(11) and (12), respectively. Linear regression was performed to determine the coefficient of 

determination (R2), the slope and intercept, and Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 

1970) (Equation (13) [45]. The slope of 1.0, intercept of zero, and R2 approaching 1.0 indicates a perfect 

fit. The MBE provides the ability to determine the deviation between the measured and satellite-

based estimates, with MBE = 0 indicating no bias in estimation. The NSE values can range from -∞ to 

+1, with +1 being a perfect agreement between the model and observed data [46]. 

𝑀𝑆𝐸 = √
∑ (�̂�𝑡 −𝑦𝑡)2𝑛

𝑖=1

𝑛
 (11) 

𝑀𝐵𝐸 =        
∑ ( 𝑦𝑡 −  �̂�𝑡 )

𝑛
𝑖=1 

𝑛
        (12) 

where 𝑦𝑡  = the i-th observed value, �̂�𝑡  = the i-th simulated value, and 𝑛  = total number of 

observations.  

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑚 − 𝑦𝑠)𝑖𝑖

2

∑ (𝑦𝑚,𝑗 − 𝑦
𝑚

)
2

𝑖

 (13) 

where �̅�𝑚 is the average measured value, �̅�𝑠 is the average simulated value, 𝑦𝑚  is the measured 

data on day i, 𝑦𝑠 is the simulated output on day 𝑖, and 𝑗 represents the rank. 

3. Results 

3.1. Lysimeter Comparison 

The METRIC model [25] was used to estimate ET, and an hourly evaluation was performed for 

surface temperature, solar radiation, soil heat flux, and evapotranspiration (Ts, Rn, Go, ET). The 

evaluation process was conducted for tall crops, including forage sorghum and forage corn; short 

crops including cotton, sunflowers, and soybeans; and bare soil for the dryland and irrigated 

lysimeters.  

Tables 2 and 3 summarize the statistical performance of the METRIC model estimation for Ts, 

Rn, Go, and ET versus the observed lysimetric data. The regression line between the observed and 

simulated values for the dryland and irrigated lysimeters can be found in Figures 1 and 2, 

respectively.  
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The observed mean hourly surface temperature value for the dryland lysimeter at the time of 

satellite overpass was 33.8 ℃, and it closely matched the estimated mean value of 33.0 ℃. The dryland 

lysimeter regression line for surface temperature had a good coefficient of determination of 0.76, with 

a slope and intercept of 0.7 and 9.3 ℃. The RMSE was ~6.8% (2.3 ℃ of the mean observed values, 

with an MBE of 0.8 ℃.  

Figures 1b and 2b represent the Rn comparison between dryland and irrigated lysimeters, 

respectively, compared to the measured data. The dryland model estimated Rn value was 

521.5 W M−2 , and it closely matched the measured value of 533.5  W M−2 . The irrigated lysimeter 

estimate was 551.3 W M−2 , and the observed Rn was 542.3 W M−2 . The dryland lysimeter model 

provided good performance for net radiation with an NSE of 0.68 and poor performance for the 

irrigated lysimeter with an NSE of 0.17. The regression model for dryland lysimeters accounted for 

71% of the variability, with a slope of 0.8 and intercept of 98.2 W M−2  (Table 2). The irrigated 

regression model captured 22% of the variability, which is lower than for the dryland regression 

model, with a slope of 0.29 and intercept of 392.3 W M−2 (Table 3). 

Figures 1d and 2d represent the soil heat flux comparison between dryland and irrigated 

lysimeters and satellite estimates. Both irrigated and dryland conditions underestimated the soil heat 

flux compared to the observed values. Consequently, the summary statistics provided a weak 

correlation for irrigated and dryland lysimeter soil heat flux. The METRIC mean estimated Go for 

dryland was 34.5 W M−2  and the observed was 38.6 W M−2 , with 10.6% underestimation for the 

dryland condition. The irrigated lysimeter mean estimated value was 35.6 W M−2, and the observed 

value was 38.6 W M−2, with 2.2% underestimation for the irrigated lysimeter. 

The mean hourly estimated ET for dryland was 0.33 mm h−1, and the mean observed ET was 0.28 

mm h−1. For the irrigated model, the mean simulated value was 0.47 mm h−1, and the mean observed 

value was 0.43 mm h−1. 

  

(a) (b) 

  

(c) (d) 

Figure 1. Regression relationship between observed hourly evapotranspiration (a), net radiation (b), 

surface temperature (c), and soil heat flux (d) from 2001–2010 for NW and SW dryland lysimeters. 
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Table 2. Performance statistics of surface energy balance components using Mapping 

Evapotranspiration at High Resolution with Internalized Calibration (METRI)C for dryland 

lysimeters (NW and SW) from 2001–2010. 

 Mean    Regression 

Estimated parameter Observed Estimated RMSE MBE NSE R2 Slope 

T (℃) 33.8 33.0 2.3 0.8 0.65 0.76 0.70 

Rn (W m−2) 533.5 521.5 46.9 10.0 0.68 0.71 0.80 

Go (W m−2) 38.6 34.5 21.2 4.2 0.17 0.20 0.20 

ET (mm h−1) 0.28 0.33 0.14 −0.05 0.57 0.62 0.68 

Table 3. Performance statistics of surface energy balance components using METRIC for irrigated 

lysimeters (NE and SE) from 2001–2010. 

 Mean    Regression 

Estimated parameter Observed Estimated RMSE MBE NSE R2 Slope 

T (℃) 31.5 31.2 4.6 0.55 0.76 0.80 0.63 

Rn (W m−2) 542.3 551.3 84.8 −9.0 0.17 0.22 0.29 

Go (W m−2) 36.4 35.6 32.6 0.8 −0.47 0.08 0.30 

ET (mm h−1) 0.43 0.47 0.16 −0.04 0.63 0.65 0.64 

 

  

(a) (b) 
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(c) (d) 

Figure 2. Regression relationship between observed hourly evapotranspiration (a), net radiation (b), 

surface temperature (c), and soil heat flux (d) from 2001–2010 for NE and SE irrigated lysimeters. 

4. Discussion 

The hourly comparison for the lysimeter site was performed for surface temperature, 

evapotranspiration, net radiation, and soil heat flux. The observed surface temperature for the 

dryland lysimeter was higher than the irrigated lysimeter (Figures 1c and 2c), as expected. The hourly 

evaluation of the METRIC model illustrated good performance for both water management 

conditions; however, the irrigated lysimeter overall hourly comparison provided slightly better 

statistics than the dryland lysimeter. The dryland lysimeter observed and estimated temperatures are 

higher than for the irrigated lysimeter, and this is due to the irrigation cooling effect.  

The observed mean surface temperature value for the irrigated lysimeter was 31.5 ℃, and it 

closely matches the estimated mean value of 31.2 ℃. The irrigated lysimeter regression line for surface 

temperature has better estimates than for the dryland lysimeter, with a coefficient of determination 

of 0.8, a slope and an intercept of 0.63 and 11.2 ℃. The RMSE was 14.6% (4.6 ℃) of the mean observed 

values with MBE of 0.55 ℃. These predicted errors are close to those reported in the literature [43,47–

50]. Moorhead and Gowda have similar unpublished reports for METRIC hourly comparisons. The 

NSE values of 0.65 and 0.76 for the dryland and irrigated surface temperatures, respectively, are 

viewed as a good match [27,31,43]. 

The RMSE for the solar radiation for dryland lysimeters was lower than for irrigated lysimeters, 

with values of 8.8% (46.9 W M−2) and 15.6% (84.8 W M−2), for the dryland and irrigated lysimeters, 

respectively. These errors may have resulted from estimation errors in air emissivity and surface 

albedo as well as the water content in the air above the irrigated field being higher compared to the 

dryland lysimeter. This water content may distort the electromagnetic reflectance more than for dry 

fields, resulting in poor solar radiation estimates. These errors ranged within reported values in the 

literature [31,43,51–54].  

As a result of soil heat flux underestimation, the NSE values were 0.17 and –0.47 for dryland and 

irrigated lysimeters, respectively, which indicated poor performance for the irrigated field compared 

to the dryland lysimeter. The RMSE and MBE for the dryland were 55% (21.2 W M−2 ) and 4.2 

W M−2, respectively; the RMSE and MBE for the irrigated lysimeter were 89.6 and 0.8 W M−2 , 

respectively. The dryland regression model accounted for 20% of the variability in measured data 

with a slope of 0.2 and intercept of 25.7 W M−2 (Table 2). The irrigated regression model accounted 

for only 8% of variability, with a slope of 0.3 and intercept of 25.5 W M−2 (Table 3). The range of 

satellite-estimated soil heat fluxes is much lower than that with the observed data, indicating 
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METRIC is underestimating soil heat flux, possibly due to the time difference between the physical 

process of conduction and the instantaneous acquisition of the satellite image. The wet conditions of 

the irrigated fields may have an impact on the estimation accuracy of Rn and G0 due to the humidity 

above the soil surface. Accuracy in the estimation of Rn and G0 may be affected by increased humidity 

near the top of the canopy on the irrigated lysimeter, which may disturb the electromagnetic radiation 

reflectance compared to the dryland lysimeter. These results agree with [27,31,43]. 

The METRIC ET estimation provided a good correlation for the dryland model; however, 

METRIC ET estimation performed better for the irrigated conditions. The hourly ET regression model 

explained 62% of the ET variability in the observed data for dryland lysimeters, with a slope of 0.68 

and an intercept of 0.1 mm h−1. The regression model for irrigated conditions estimated 65% of the 

variation in the observed data, with a slope of 0.64 and an intercept of 0.19 mm h−1.  

The dryland RMSE for the hourly ET was 0.14 mm, which was 50% higher than that of the mean 

observed ET; the MBE was –0.05 mm. The irrigated modeled hourly ET RMSE was 0.16 mm h−1, about 

37.2% higher than that of the mean observed hourly ET; the MBE was –0.04 mm. The irrigated 

lysimeters error values were less than those of the dryland lysimeter (Tables 2 and 3), possibly due 

to increased overall ET and less sensible heat flux, which may have caused attenuation in the reflected 

radiation from the dryland field as captured by the satellite. Overall, these results agreed with [23,45], 

illustrating that the accuracy level of METRIC hourly Ts, Rn, and Go for dryland and Ts and Rn for 

irrigated lysimeter estimation are considered good for the Texas High Plains, with potential 

applications for other geographic locations. These results are within the range reported in the 

literature [12,27,29–31,44,54–56]. 

5. Conclusions 

The METRIC model was tested against lysimetric hourly surface temperature (Ts), net radiation 

(Rn), soil heat flux (Go), and evapotranspiration (ET) in the Texas High Plains. For this purpose, 53 

cloud-free images from Landsat 5 TM acquired during 2001–2010 were used. The hourly values were 

extracted and compared against observed Ts, Rn, Go, and ET for different (tall and short) crops as well 

as bare soil conditions managed under dryland and irrigated conditions. The METRIC model 

performance was good in estimating Ts, Rn, and ET under dryland conditions and Ts and ET for 

irrigated conditions. The wet conditions in the irrigated lysimeter fields affected electromagnetic 

reflectance.  

The overall accuracy level of the Landsat estimates of the evaluated parameters (surface 

temperature, net radiation, soil heat flux, and evapotranspiration) indicate that the METRIC model 

may be suitable for deriving hourly input at a watershed scale with fairly good accuracy.  

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/12/4/1192/s1, Table 
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