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Abstract: The urban rainstorm can evolve into a serious emergency, generally characterized by
high complexity, uncertainty, and time pressure. It is often difficult for individuals to find the
optimal response strategy due to limited information and time constraints. Therefore, the classical
decision-making method based on the “infinite rationality” assumption is sometimes challenging to
reflect the reality. Based on the recognition-primed decision (RPD) model, a dynamic RPD (D-RPD)
model is proposed in this paper. The D-RPD model assumes that decision-makers can gain experience
in the escaping process, and the risk perception of rainstorm disasters can be regarded as a Markov
process. The experience of recent attempts would contribute more in decision-making. We design the
agent according to the D-RPD model, and employ a multi-agent system (MAS) to simulate individuals’
decisions in the context of a rainstorm. Our results show that experience helps individuals to perform
better when they escape in the rainstorm. Recency acts as a one of the key elements in escaping decision
making. We also find that filling the information gap between individuals and real-time disaster
would help individuals to perform well, especially when individuals tend to avoid extreme decisions.
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1. Introduction

Urban rainstorms are a type of major natural disaster and induce enormous loss [1]. The urban
rainstorms may cause a seeper phenomenon noted as waterlogging too [2], which frequently happens
in many big cities around the world, especially in the developing countries [3]. The 7/21 accident
occurred in Beijing, China, on 21 July 2012, caused 79 deaths, and a great direct economic loss of
11.64 billion RMB [4]. In addition to direct damage, some indirect loss caused by the rainstorm is also
huge. For instance, waterlogging and low visibility in the urban rainstorms will give rise to traffic
problems and other derivative accidents [5]. Therefore, it is critical to study how to reduce the loss
caused by urban rainstorms.

In recent years, many rainstorm disaster researchers have focused on scenario modeling and risk
assessment [6]. Geographic information system (GIS) technology is widely applied to study the spatial
distribution of rainstorm disasters, providing a basis for the establishment of shelters [2,3,7,8]. However,
though waterlogging occurrence rules can be recognized, absent cognition and misunderstanding of
information about rainstorm risk are common in real scenes [9]. The rainstorm disaster is a typical
complex society system [10]. Given the complexity of human activities, agent-based modelling and
simulation (ABMS) shows great advantages in urban emergencies [11]. Through ABMS, the disaster
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environment and human behaviors can be well captured [12]. In this way, emergency plans can
be made in advance to prevent disaster and to reduce risk. ABMS on people’s behavior in the
rainstorm is gradually developing [13,14], and mixed reality game system enables people to participate
in the simulation of urban rainstorms [9]. ABMS has been applied widely in evacuation [9], risk
assessment [15], and the spatial allocation of urban emergency shelters [16]. Although quite a few
studies have simulated escape scenarios, these are based on entirely rational assumptions [13,14].
However, unconventional emergencies like escaping in the continuous heavy rainfall are characterized
by complexity, uncertainty, and time pressure, which make it challenging for individuals to gain
complete information and make entirely rational decisions [17]. People’s behavioral patterns and
psychological characteristics are crucial in the multi-agent simulation [18]. The recognition-primed
decision (RPD) model assumes that, in continually changing conditions, decisions are made in
reaction to and on the basis of prior experience, and they mainly focus on situation recognition [19].
Human teams perform better with the help of RPD-enabled agent architecture in high time pressure
situations [20]. People’s behavior in panic indicates that recognition of the situations is crucial [21].
Therefore, the RPD model can be employed in emergency events. The RPD model is an attempt to
understand how experienced decision makers like firemen deal with complex real-world settings [19].
However, in continually changing conditions, people with no expert experience can also make decisions
based on their experience. Thus, the RPD model can be applied to study an individual’s escape in the
urban rainstorm.

There exist quite a few studies focused on the variations in the risk response attitudes of individuals
during the rainstorm. However, relatively speaking, current studies focus on the macro-group instead of
the emergence of micro-individual decision-making behavior. Considering that the micro individuals’
behavior pattern and risk attitudes towards rainstorms were mostly neglected in existing studies,
in this paper, we improve the recognition-primed decision (RPD) theory and propose a dynamic
recognition-primed decision (D-RPD) theory for personal risk decision making in a heavy rain
environment. Based on D-RPD theory, we model agents that can update their strategies based on
their experience gained in the process of the rainstorm. The objectives of this study are as follows:
(1) Discovering individuals’ capability of risk perception. (2) Exploring the behavior pattern during
the escape in the urban rainstorm. (3) Recognizing whether experience has an influence on individuals’
risk preferences during the rainstorm.

2. Materials and Methods

2.1. Study Area

To provide an illustrative flood risk analysis, we construct a typical community in Wuhan
(N 29◦58′–31◦22′ and E 113◦41′–115◦05′), Hubei province in China (Figure 1). Wuhan is the biggest
city in central China, covering an area of 8569 km2. It has a population of over 11 million. In the past
few years, the average annual rainfall in Wuhan was approximately 1200 mm. Due to the summer
monsoon, the rainfall is unevenly distributed throughout the year. Most of the annual precipitation
falls from June to August. The flood in July 2016 had caused 14 deaths and caused a great direct
economic loss of 4 billion RMB.

Considering great similarities among regional plans in Wuhan, we have selected a typical
community in this study. There are as well as loose dense gathering areas in the community. To fully
capture every scenario, this selected community consists of both low- and high-density zones.
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2.2. Framework of Multi-Agent Simulation

The traditional simulation model is limited to simple and low dependence problems [22], which is
not suitable for our scenario. To solve this problem, we develop agent-based modeling and simulation
(ABMS) to model systems comprised of autonomous, interacting agents.

The agent is defined as a physical or abstract entity and acts as a basic unit in multi-agent systems
(MAS) [23]. The agent has properties as follows [24]:

{Attribute, State, Communication, Knowledge, Action, Environment}
Combining real and simulated data is a challenge for multi-agent simulation. In this study,

we conduct artificial and real systems in parallel and apply adaptive control methods for the
experiments [25]. Through the artificial societies-computational experiments-parallel execution (ACP)
platform [26], we can interact with the real social system, and provide reliable support for the
management and decision-making of real social scenes. Thus, we can realize the evolution of the
situation, co-evolution, and closed-loop feedback.

The evacuation of individuals in the rainstorm is a complex, interacting social system [27].
The urban rainstorm escape simulation platform is demonstrated in Figure 2 [26]. The data of real
system can be employed in the manual system. The results of simulation in manual system can help
prevent risk in real system. Through management, control, observation and evaluation, data and model
are exchanged between real and manual systems. In this paper, we get meteorological data from Hubei
Meteorological Service and actual observations, and then turn it to the geographic information in
the simulation.

It is argued that the concept of risk can be regarded as expected loss, probability of an undesirable
event, an event that endangers human value, and so on [28]. Risk preference reflects individuals’
attitudes towards risk [29]. When passing through waterlogging points, individuals may lose much
energy because of trapping in the water, infecting with the virus and other events. In this paper, we
refer risk as the probability of losing much energy in the waterlogging points. Risk preference reflects
an individual’s tendency to implement risky or conservative strategies facing the potential loss caused
by waterlogging points.

The risk of rainstorm is the result of multiple factors, such as elevation, density of the rainstorm,
and slope [30]. According to the size of risk, we define a “risk environment” as an environment with
all these factors. In low risk environment, individuals tend to lose less energy than that in a high
risk environment. Evaluation methods with GIS techniques can be combined to provides reliable
information about the rainstorm [31]. This paper mainly focuses on individuals’ behavior in the
rainstorm, thus the risk is simplified in the simulation. As the simulation map comes from a small
community, some factors like elevation to reflect the risk are ignored.
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Figure 2. Urban Rainstorm Escape Simulation Platform.

Expert knowledge (EK) and participant observation (PO) can be used to understand agents and
their actions [11]. Detailed agent attribute data is from Hubei Meteorological Service, Civil Affairs
Bureau of Wuhan, data analysis of rainstorms in Wuhan [32], and study of the mitigation behavior in
floods [33].

This paper describes a simple scenario of an individual escape in the rainstorm. We employ ABMS
to simulate an individual’s escape model in the rainstorm, and design the individual agent based on
the D-RPD model. In the rainstorm, due to elevation, slope, and other factors, there will exist much
accumulated water (we referred them waterlogging points in this paper). Here, ‘energy’ is one attribute
of each human agent, representing essential resources and power for staying alive. Individuals may
lose much energy when passing waterlogging points. To reach refuges in the rainstorm, individuals
must keep their energy sufficient while passing by many waterlogging points. When wading directly,
individuals will spend less time, but may lose more energy than wading cautiously. We use R to reflect
the risk when individuals wade directly. After making some preparation, individuals will reduce risk,
we use δ × R to reflect the risk of wading cautiously (0 < δ < 1). Individuals only have information
about the intensity of the rain, but have little extra information about the waterlogging points like
geographic information under water. Thus, individuals would struggle to judge whether it is safe to
wade through the waterlogging point directly. After passing one waterlogging point, they will lose
some energy and time, but gain some experience as to where to wade directly or cautiously.

2.3. Recognition-Primed Decision Model

Classical decision-making strategies generally describe a situation where decision-makers search
for the optimal decision given sufficient information and perfect rationality [34]. The classical decision
theory may not work well in real-world scenarios [17]. Different from classical decision theory,
naturalistic decision making (NDM) mainly focuses on expert experience, and a satisfactory solution
is acceptable [35]. Klein proposed the concept of NDM in 1989 to understand how people make
decisions in real life rather than in artificial laboratory settings [36]. In complex situations, people act
and react based on previous experience. Emergency responders tend to compare the current situation
with previous ones and identify a plausible action. A “workable,” “timely,” and “cost-effective”
decision is more acceptable in the real decision situation [19,37,38]. As Figure 3 shows, the process of
situation matching, action implementing and strategy forming are integrated into a comprehensive
recognition-primed decision model [19], in which typicality recognition and situation search could be
performed simultaneously.
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Figure 3. Recognition-primed decision model.

The recognition-primed decision (RPD) model is the application of NDM theory. The focus of the
RPD model is environmental condition identification and reproduction [37]. The RPD model can be
divided into 2 phases: situation recognition and solution generation [39]. Klein proposed ideas in three
scenarios: (1) recognize typicality and visible reaction, (2) recognize typicality and conscious evaluation,
(3) situation reassessment and evaluation modification [19]. Although RPD theory has demonstrated
unique advantages in the practice of quite a few fields, there still exist several controversies about it.
The RPD model simplifies the situation and focuses little on rational decision, which is not universal in
all situations. In other words, the conditions must be considered when employing the RPD model,
which include experienced decision-makers, high-time pressure, limited cognitive resources, and so
forth. In addition, few studies on the RPD model addresses dynamic decision problems, in which
successive decisions are not independent and require an iterative “look-ahead” approach [40].

2.4. Dynamic Recognition-Primed Decision Model

The dynamic recognition-primed decision (D-RPD) model is motivated by the need for continuous
decisions in a dynamic condition. In classical PRD model, decision makers are domain experts, and
they make decisions based on all experiences. However, in the rainstorm, past experiences may not
reflect the reality. The risk changes during the rainstorm process, and hence emergency decision
making should also be carried out in stages [41]. Further, an individual’s risk perception changes in the
disaster [4]. Apparently, an individual’s perceived risk of a rainstorm can be regarded as a Markov
process [42]. That is, the perceived risk of the rainstorm at the next moment is only related to the first k
states, and has nothing to do with the time before k + 1. Because of this, the individual only needs to
consider the experience of the preceding k stages. The experience considered by the individual in the
decision of tn time is presented in Figure 4:
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In the actual urban rainstorm escape process, individuals will pass many waterlogging points.
Since the risk of heavy rain is dynamic, not all the experience is valuable. In the actual situation, the
experience within a period similar to the current environmental risk is the most helpful. However,
the problem is the case that the assessment of risk is one of the individual’s goals, not the given
information [9].

2.5. Model of Individuals’ Escape in the Urban Rainstorm Context

2.5.1. Agent Attributes

In the study of evacuees’ behaviors in a disaster situation using multi-agent simulation, initial
locations and the number of agents can be decided depending on the aims [9,43,44]. To simplify the
model, the following assumptions are proposed:

(1) The choice of the individual at the risk point does not include immediate detour.
(2) The waterlogging points are homogeneous, that is, all the waterlogging points have the same

probability of risk and the loss caused by the risk. We set different risk environments for different
groups of experiments. The probability of lose energy for individuals is influenced by the environment.

(3) There is only one refuge in the rainstorm area, and all individuals move there through an
optimal path.

Unlike the simple accumulation of experience in the classical RPD model, the experience base in
this model is dynamically updated. The agent attributes can be illustrated as follows:

Action set (AS): {direct wading (DW), cautious wading (CW)}. In actual urban rainstorms, there are
usually three types of decisions when individuals pass through the waterlogging points: (1) bypassing
the road (2) directly wading (3) observing the behavior of others or taking certain measures to reduce
the risk. In this study, assuming that no one chooses to detour. Decision 2 is referred to as a direct
wading strategy, and decision 3 is collectively referred to as a cautious wading strategy. We set a control
parameter for cautious wading strategies. Supposing that the risk for direct wading is R, then the risk
for cautious wading is δ × R, where 0 < δ < 1.

Energy loss (EL): A set with k elements, where the element Ee is displayed in Equation (1).
EL represents the actual energy loss of wading each time, and E0 represents the energy loss when no
risk breaks out. Set ER as the energy loss when the risk breaks out. Here, ER > E0

Ee =


−1 EL > E0

0 EL = E0

1 EL < E0

(1)
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Time loss (TL): A set with k elements, where the element Te is presented in Equation (2).
TL represents the actual time spent in wading each time, and T0 represents the time when an agent
does not prepare the wading. Set Tp as the time when the individual makes some preparation for the
wading. Here, Tp > T0.

Te =


1 TL > T0

0 TL = T0

−1 TL < T0

(2)

Direct wading probability (DWP) reflects the individual’s risk preference, which is the function of
P0, ST, and SE. P0 represents the initial risk preference, ST represents the direct wading support from
TL, and SE represents the direct wading support from EL.

A value of 1 for Ee indicates that no risk has occurred this time, which will support direct wading.
The number of elements equal to 1 in EL is ke. ke is an integer ranging from 0 to k. SE, as shown in
Equation (3), represents the degree of direct wading support from EL, and its value is between −1 and
1. Here, k is positive integer, and keep constant in one specific experiment.

SE =
ke − (k− ke)

k
=

2ke

k
− 1 (3)

Similarly, when the value of Te is 1, it will support direct wading. The number of elements equal
to 1 in TL is kt. kt is an integer between o and k. ST, as shown in Equation (4), represents the degree of
direct wading support from TL, and its value is between −1 and 1.

ST =
kt − (k− kt)

k
=

2kt

k
− 1 (4)

The degree of support for wading directly can be divided in 2 parts: SE and ST, and α represents
the weights between the two. Thus, the total degree of support, S, is shown in Equation (5).

S = αSE + (1− α)ST =
2(keα− ktα+ kt)

k
− 1 (5)

where P, the probability of wading directly without preparation, is the sum of P0, and S, which is
represented in Equation (6).

P =


0 P0 + S < 0

P0 − 1 + 2(keα−ktα+kt)
k 0 < P0 + S < 1

1 P0 + S > 1
(6)

2.5.2. Agent Interaction Rule

In the first k times of wading, the agent only acts according to the initial preference. After the kth
time, the agent makes decisions according to experience base and dynamically updates it. The process
is demonstrated in Figure 5. TL and EL are updated after each wading, deleting the first element and
adding a new element.
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Figure 5. Agent’s decision rule during the escaping in the rainstorm.

3. Result and Discussion

The simulation map is shown in Figure 6. The individuals represented by green circles walk
along the road shown by lines. When traveling, individuals encounter a lot of waterlogging points
represented by red forks, and lose some energy and time. Individuals try to adopt strategies to reduce
the loss of energy to reach the refuge, which is the blue square on the map.
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Three sets of experiments are created based on the parameters k, δ, P. Each parameter has ten
different values. In one test, all the parameters are constant and vary in different tests. Each test includes
50 agents.
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3.1. Individual’s Perception of Risk

A rational individual should change decisions as the environment changes [45]. In the process
of urban rainstorms, due to the high time pressure and information uncertainty, the risks at the
waterlogging points is uncertain. In this case, the individual often judges the risk level of the
waterlogging point through the experience of past waterlogging points. To explore the individual’s
perception of risk in urban rainstorms, the variations in individual preferences in low-risk, medium
risk and high-risk environments are studied through simulation. We set 3 types of agents: L-type
(agents with low initial risk preference), M-type (agents with medium initial risk preference), and
H-type (agents with high initial risk preference). Figure 7 reveals the individual’s initial preference
and the average preference to reach the destination through multiple risk points in three types of
environments. This describes how individuals continuously update their risk preferences through
experience and gradually adapt to risk in the environment.
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context; (c) High risk context (L-type: agents with low initial risk preference, M-type: agents with
medium initial risk preference, H-type: agents with high initial risk preference).

In a low risk environment (Figure 7a), individuals with lower initial risk preferences constantly
update their risk preference according to experience, and ultimately improve their risk preference to a
large extent. Individuals with medium risk preference ultimately increase their risk preference to a
small extent, while individuals with higher initial risk preferences moderately reduce risk preference
to better adapt to actual risks in the environment. A low risk environment motivates people to take
risks because the cost of risk (loss of energy) is small and the benefits (reducing time spent) are large.
However, as can be observed in Figure 5, although the individual adopts a riskier strategy than the
original, the overall risk preference remains at a lower level. In an emergency, the individual’s risk
strategy is more conservative, though it may have adverse consequences [46].

In a moderate risk environment (Figure 7b), individuals with lower initial risk preference constantly
update their risk preference according to experience, and finally improve their risk preference to a
large extent. The individual with medium-risk preference almost fluctuated with his initial preference.
Individuals with higher initial risk preferences reduce risk preferences to a great extent in order to
better adapt to the actual risks in the environment. Since the probability of the risk occurring at the
risk point is close to the likelihood of no risk occurring, it is challenging to decide the decision at the
risk point.

For example, if the probability of a risk is 0.7, it may be better to adopt a cautious strategy; if the
probability of a risk is 0.3, it may be better to adopt a direct strategy; if the probability of a risk is 0.5,
then the two strategies are tough to judge advantages and disadvantages. Therefore, in a moderate risk
environment, individual preferences tend to be arbitrary, that is, the probability of choosing a cautious
strategy and a direct strategy is close. However, considering the time factor, the proportion of direct
strategies should be higher.
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In a high-risk environment (Figure 7c), individuals with lower initial risk preferences constantly
update their risk preferences according to experience, and ultimately improve their risk preference.
Individuals with a moderate risk preference reduce their risk preferences to a small extent.
Individuals with higher initial risk preferences greatly reduce risk preference to avoid energy loss
caused by wading without preparation. However, in the overall view, the individual’s risk preference
is medium, which is contrary to the intuition that a cautious strategy should be adopted in a high-risk
environment. This can be explained by the fact that the risk for taking a cautious strategy is still
high, even in a high-risk environment, thus reducing time becomes the main goal. Therefore, under a
high-risk environment and high time pressure, although individuals will present risk aversion from
the overall trend, under the time pressure, a direct strategy will still be adopted sometimes.

The risk of waterlogging points is set from 0 to 1 with 0.1 as interval, forming ten types of
experiments. Figure 8 shows each average and standard deviation of the preferences of multiple agents
in these ten types of experiments. Obviously, there exists a reverse association between environmental
risks and individual risk preference. Although the values of standard deviation have slight fluctuation,
they are all around 0.2. Furthermore, experimental calculation in large scale contains almost all possible
situations, leading to a high credibility.
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Figure 9 shows energy variations with time in different risk environments. The energy is the
average of all the agent’s energy. Energy is a linear function of time when the energy loss at the
cumulative point is not considered. However, due to the risk of waterlogging points and the uncertainty
of individual decision-making, the change in energy presents a curve fluctuation. It can be seen that
energy consumption is no longer the same from the beginning due to different environmental risks.
These three curves have no intersections other than the starting point, which means that individuals can
evade certain risks through their own decisions, but since individuals cannot always make completely
rational decisions, the energy loss values differ.

In the process of making multiple decisions, an individual’s experience affects their risk
preference [4] and adapts to the actual risk of the environment. Specifically, after multiple wading
experiences, individuals in low-risk situations will increase their risk preference, and individuals
in high-risk situations will increase their risk preference. However, their risk preference tends to
be “conservative” after multiple experiences regardless of the individual’s initial risk preference.
For instance, even if the risk of the environment is extremely low, individuals will not adopt risky
strategies all the time, but a small number of conservative strategies. For example, a heavy rain occurs,
and waterlogging points are formed. Even though the risk of waterlogging points is quite low, a few



Water 2020, 12, 1190 11 of 17

people step into the deep waterlogging points at the water level and spend a certain amount of energy.
Then, in the next few waterlogging points, the probability of adopting a cautious wading strategy
will increase. However, classical decision theory tells us that environmental risks are exceedingly low.
Even if encountering risk, individuals should continue to wade directly and reach the rescue point as
soon as possible. The reason for the deviation is that the individual has limited information on the
probability of future risks and can only choose to believe in past experience. Information during the
rainstorm is vitally important, however, quite a few individuals will not be informed in advance [47].
In the process of urban rainstorms, the government should monitor the risk of the rainstorm in real-time
and inform people of the risk by means of broadcasting, messages, screen display in public places.
In a low-risk environment, tell the public not to panic, and take a direct strategy. If the government
monitors potential risks in real time and discloses the relevant information to the public, individuals’
behavior to make decision is more compatible with the classical theory.
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3.2. Influences of Individuals’ Experience Pool Size

Individuals decide their behavior according to their own experience. However, for two reasons,
it is inappropriate for individuals to make decisions based on all previous experience in the rainstorm.
First, the individual’s memory ability is limited [48], and it is impossible to retain all the memories about
the risk point. Second, the variation of risk is a dynamic process, individuals’ perceived risk during
the rainstorm has the Markov property, and the individual’s recent experience is more valuable [41].
Therefore, it is crucial to explore the influence of the size of the experience base on individuals. Figure 10
illustrates the relationship between the final remaining energy of the individuals and the size of the
experience base. In one experiment, the size of k is the same, and we conducted different experiment
to compare the remaining energy with various k. As the experience base increases, the individual’s
residual energy begins to increase, and then decreases. That is, theoretically, there exists a moderate k
value, making the remaining energy the largest. In this experiment, the value of k is 25. In reality, the
value of k is affected by many factors, not all of which are 25.
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The value of k is neither as large as possible nor as small as possible. The reason is that as k
increases, the individual’s preference at the current risk point is less sensitive to previous experience.
Figure 11 indicates the fluctuations in individual risk preferences in four scenarios. The vertical axis is
the first difference in risk preferences. And the horizontal axis represents the amounts of waterlogging
points individuals have passed. We give 4 figures for different k in 4 groups of experiments. It can be
clearly seen that, as k increases, the individual’s preference fluctuation between risk points decreases.
Therefore, when k is small, the fluctuation of risk preference is too large, so that each time wading the
waterlogging point, there is a considerable degree of randomness. When k is large, individuals are
slow to update risk preferences, resulting in an inability to adapt to rapidly changing environments.
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In classical RPD theory, all the experience of the past can provide decision support [19]. However,
in the heavy rain scenario, the individual’s experience is only related to several wading experience in
current rainstorm. The experience of past rainstorms formed the initial preference of the individual
in the rainstorm. Therefore, in the continuous decision-making process, the remaining energy is not
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positively correlated with the individual’s experience base size. Only experience that is similar to
current environmental risks can provide favorable decision support for individuals.

For instance, an individual rushes to a refuge in heavy rain that continues to increase. If an
individual assesses the risk of wading based on all previous wading experience, the risk of current
wading is seriously underestimated. According to recent experience, the risk assessment will be more
accurate. In the real situation, there is a certain judgment on the intensity of the rainstorm, by which
the risk of wading the waterlogging points will be judged. However, complex problems, such as the
intensity of heavy rain or the flow of water on the road, make it challenging to judge the risk of the
waterlogging points by analysis, and it is more meaningful to refer to several experience with similar
rainstorm intensity.

3.3. Influences of the Regulation Parameter on Individuals’ Behavior

By studying the individual decision-making and energy changes under different control
parameters, it is likely to explore whether the individual’s decision-making behavior can perceive the
size of the control parameters.

Figure 12 demonstrates the average proportion of individuals taking direct wading strategies
under different regulation parameters. The result of linear regression fitting is also shown as the red
line in Figure 12. It can be seen that as the regulation parameter increases, the proportion of individuals
adopting direct wading strategies decreases. This may not be in line with our intuition, because an
increase in regulation parameters means that the benefits of an indirect strategy are reduced. Thus,
the proportion of indirect wading strategies should decrease. However, the increase of regulation
parameters also implies the deterioration of the environment. That is, the illusion of individuals under
time pressure: δ × R is regarded as the probability of occurrence of the risk, and the increase of
regulation parameters means the probability of occurrence of risk becomes larger. As δ increases, the
likelihood of the risk is increasing in people’s minds. Driven by this illusion, even if the actual effect
of δ to reduce risk becomes smaller, the individual still adopts a cautious strategy. This reflects the
bounded rationality of the individual: under high time pressure, it is arduous for an individual to
explore the actual cause to the risk of taking a prudent strategy [49].Water 2020, 12, x FOR PEER REVIEW 13 of 17 
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Figure 13 shows the energy’s variations under different control parameters. It can be seen that,
as δ increases, the remaining energy decreases. The result of linear regression fitting is also shown
as the red line in Figure 13. This seems inconsistent with our conclusions above: as δ increases, the
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proportion of individuals adopting direct wading strategies is decreasing, and the energy lost should
also be reduced. However, it should be considered that as δ increases, although the proportion of
individuals directly wading is reduced, the probability of the risk occurring is increasing. On the one
hand, increasing the proportion of cautious strategies reduces risk. On the other hand, an increase
in δ increases the risk of a prudent strategy. The combined effect of the two makes the final result
represented in Figure 13. It can be concluded that, although the individual does not possess a clear
understanding of the regulation parameters, the perception of the overall risk is correct.Water 2020, 12, x FOR PEER REVIEW 14 of 17 
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4. Conclusions

During emergencies, individuals often make decisions based on previous experience. Especially in
the process of continuous decision-making in urban rainstorm escape, decisions often depend only
on recent experience. To better characterizes individuals’ continuous decision-making processes, we
propose a D-RPD model for individuals’ decisions under the scenario of an urban rainstorm. The main
conclusions of this study are as follows:

(1) Individuals’ experience can provide information about the risk, so individuals can perceive
the size of risk. However, the information is insufficient and accurate in a dynamic risk environment.
External information, e.g., government broadcast, will help individuals to perform better in
the rainstorm.

(2) In the process of urban rainstorm disaster escape, individuals tend to choose “conservative”
strategies. In other words, even the risk of waterlogging points is very low, individuals will choose
some cautious decisions. Moreover, as the environment changes, individuals may find the changes after
exploring some waterlogging points. This will cause extra loss due to the postponement of information.

(3) Individuals will enhance their abilities of risk perception according to their dynamic learning
from past experience. However, based only on the previous experiences, they cannot find the best
strategy to cope with the risk. In addition, individuals may have a slow response to dynamic risk.
To solve this problem, a simulation environment can be developed based on actual decision-making
scenarios to effectively train residents and improve decision-making skills.

Author Contributions: All the authors contributed to the research design, manuscript development, editing,
and completion of the manuscript. conceptualization, Q.Y.; methodology, X.L. and X.S.; software, X.S. and
J.W.; validation, Q.Y. and X.L.; formal analysis, X.L. and X.S.; resources, J.W.; data curation, X.S. and J.W.;
writing—original draft preparation, Q.Y.; writing—review and editing, Q.Y.; visualization, X.S.; supervision, X.L.,
X.S. and J.W. All authors have read and agreed to the published version of the manuscript.



Water 2020, 12, 1190 15 of 17

Funding: This research was supported in part by National Natural Science Foundation of China (Grant No.
71603197) and “the Fundamental Research Funds for the Central Universities” (WUT: 195203001).

Acknowledgments: The authors would like to thank Wei Zhou, Tianyu Wan for their helpful suggestions and
technology support. Special thanks to the anonymous reviewers and the editors whose suggestions and comments
have significantly improved the article.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

1. Hegger, D.L.T.; Driessen, P.P.J.; Dieperink, C.; Wiering, M.; Raadgever, G.T.T.; van Rijswick, H.F.M.W.
Assessing stability and dynamics in flood risk governance: An empirically illustrated research approach.
Water Resour. Manag. 2014, 28, 4127–4142. [CrossRef]

2. Shi, Y. Risk analysis of rainstorm waterlogging on residences in Shanghai based on scenario simulation.
Nat. Hazards 2012, 62, 677–689. [CrossRef]

3. Quan, R.S. Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple
scenario simulation. Nat. Hazards 2014, 73, 1569–1585. [CrossRef]

4. Su, Y.; Zhao, F.; Tan, L. Whether a large disaster could change public concern and risk perception: A case study
of the 7/21 extraordinary rainstorm disaster in Beijing in 2012. Nat. Hazards 2015, 78, 555–567. [CrossRef]

5. Su, B.; Huang, H.; Li, Y. Integrated simulation method for waterlogging and traffic congestion under urban
rainstorms. Nat. Hazards 2016, 81, 23–40. [CrossRef]

6. Yin, Z.; Yin, J.; Xu, S.; Wen, J. Community-based scenario modelling and disaster risk assessment of urban
rainstorm waterlogging. J. Geogr. Sci. 2011, 21, 274–284. [CrossRef]

7. Hu, H.B. Rainstorm flash flood risk assessment using genetic programming: A case study of risk zoning in
Beijing. Nat. Hazards 2016, 83, 485–500. [CrossRef]

8. Chen, P.; Zhang, J.; Zhang, L.; Sun, Y. Evaluation of resident evacuations in urban rainstorm waterlogging
disasters based on scenario simulation: Daoli district (Harbin, China) as an example. Int. J. Environ. Res.
Public Health 2014, 11, 9964–9980. [CrossRef]

9. Sugiura, K. Masahiro Arakawa Evaluation of Behavior of Evacuees on a Floor in a Disaster Situation Using
Multi-agent Simulation and Mixed Reality Game: Effectiveness of the Field of Vision and Priority of Referred
Objects. Comput. Technol. Appl. 2016, 7, 227–235.

10. Lomnitz, C.; Castaños, H. Unplanned and Unforeseen Effects of Instabilities in the Nature-Society System as
Possible Causes of Earthquake Disasters. Nat. Hazards 1995, 11, 45–56.

11. Gao, L.; Durnota, B.; Ding, Y.; Dai, H. An agent-based simulation system for evaluating gridding urban
management strategies. Knowl. Based Syst. 2012, 26, 174–184. [CrossRef]

12. Chen, X.; Zhan, F.B. Agent-based modelling and simulation of urban evacuation: Relative effectiveness of
simultaneous and staged evacuation strategies. J. Oper. Res. Soc. 2008, 59, 25–33. [CrossRef]

13. Uno, K.; Kashiyama, K. Development of Simulation System for the Disaster Evacuation Based on Multi-Agent
Model Using GIS. Tsinghua Sci. Technol. 2008, 13, 348–353. [CrossRef]

14. Takahashi, T.; Tadokoro, S.; Ohta, M.; Ito, N. Agent Based Approach in Disaster Rescue Simulation-From
Test-Bed of Multiagent System to Practical Application. In Robot Soccer World Cup; Springer: Berli/Heidelberg,
Germany, 2002; pp. 102–111.

15. Lai, W.Z.; Li, W.B.; Huang, Y.L.; Wang, W.X.; Xiao, D. Rainstorm flood building risk dynamic assessment
conceptual model utilization agent based modeling. In Proceedings of the 2015 International Conference on
Computer Science and Applications (CSA), Wuhan, China, 20–22 November 2015; pp. 191–195.

16. Yu, J.; Zhang, C.; Wen, J.; Li, W.; Liu, R.; Xu, H. Integrating multi-agent evacuation simulation and
multi-criteria evaluation for spatial allocation of urban emergency shelters. Int. J. Geogr. Inf. Sci. 2018, 32,
1884–1910. [CrossRef]

17. Harris, D.; Beach, L.R.; Lipshitz, R. Why Classical Decision Theory is an Inappropriate Standard for Evaluating
and Aiding Most Human Decision Making. Decis. Mak. Aviat. 2018, 85, 835–847.

18. Abustan, M.S.; Rahman, N.A.; Gotoh, H.; Harada, E.; Talib, S.H.A. Numerical Simulation of Evacuation
Process in Malaysia by Using Distinct-Element-Method Based Multi-Agent Model. In IOP Conference Series:
Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 136.

http://dx.doi.org/10.1007/s11269-014-0732-x
http://dx.doi.org/10.1007/s11069-012-0099-3
http://dx.doi.org/10.1007/s11069-014-1156-x
http://dx.doi.org/10.1007/s11069-015-1730-x
http://dx.doi.org/10.1007/s11069-015-2064-4
http://dx.doi.org/10.1007/s11442-011-0844-7
http://dx.doi.org/10.1007/s11069-016-2325-x
http://dx.doi.org/10.3390/ijerph111009964
http://dx.doi.org/10.1016/j.knosys.2011.07.018
http://dx.doi.org/10.1057/palgrave.jors.2602321
http://dx.doi.org/10.1016/S1007-0214(08)70173-1
http://dx.doi.org/10.1080/13658816.2018.1463442


Water 2020, 12, 1190 16 of 17

19. Klein, G. Naturalistic Decision Making. Hum. Fact. J. Hum. Factors Ergon. Soc. 2008, 50, 456–460. [CrossRef]
20. Fan, X.; Sun, S.; McNeese, M.; Yen, J. Extending the recognition-primed decision model to support

human-agent collaboration. In Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems (ACM), New York, NY, USA, 25–29 July 2005; pp. 945–952.

21. Patrix, J.; Mouaddib, A.-I.; Gatepaille, S. Detection of Primitive Collective Behaviours in a Crowd Panic
Simulation Based on Multi-Agent Approach. Int. J. Swarm Intell. Res. 2012, 3, 50–65. [CrossRef]

22. Macal, C.M.; North, M.J. Tutorial on Agent-based Modeling and Simulation Agent-based Modeling and
Simulation Initiative at Argonne National Laboratory View project Agent-Based Modeling and Simulation.
In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; p. 14.

23. Linghu, B.; Chen, F.; Guo, X.; Li, W. A conceptual model for flood disaster risk assessment based on agent-based
modeling. In Proceedings of the International Conference on Computer Sciences and Applications,
Wuhan, China, 14–15 December 2013; pp. 369–373.

24. Macal, C.M.; North, M.J. Tutorial on agent-based modeling and simulation part 2: How to model with
agents. In Proceedings of the 38th conference on Winter simulation. Winter Simulation Conference,
Monterey, CA, USA, 3–6 December 2006; pp. 73–83.

25. Wang, F.Y.; Zeng, D.; Carley, K.M.; Mao, W. Social computing: From social informatics to social intelligence.
IEEE Intell. Syst. 2007, 22, 79–83. [CrossRef]

26. Wang, F.Y.; Wang, X.; Li, L.; Li, L. Steps toward Parallel Intelligence. IEEE/CAA J. Autom. Sin. 2016, 3,
345–348.

27. Dawson, R.J.; Peppe, R.; Wang, M. An agent-based model for risk-based flood incident management.
Nat. Hazards 2011, 59, 167–189. [CrossRef]

28. Aven, T. The risk concept-historical and recent development trends. Reliab. Eng. Syst. Saf. 2012, 99, 33–44.
[CrossRef]

29. Dave, D.; Saffer, H. Alcohol demand and risk preference. J. Econ. Psychol. 2008, 29, 810–831. [CrossRef]
[PubMed]

30. Chen, Y.; Liu, R.; Barrett, D.; Gao, L.; Zhou, M.; Renzullo, L.; Emelyanova, I. A spatial assessment framework
for evaluating flood risk under extreme climates. Sci. Total Environ. 2015, 538, 512–523. [CrossRef] [PubMed]

31. Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Li, X.; Li, L.; Huang, C.; Yu, J. Integrating Entropy-Based
Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard. Risk Anal. 2017, 37, 756–773. [CrossRef]

32. Huang, Z.Y.; Peng, T.; Zhang, H.Y.; Yao, W.L. Study of risk and early warning index of rainstorm waterlogging
in Wuhan City. IOP Conf. Ser. Earth Environ. Sci. 2017, 82. [CrossRef]

33. Haer, T.; Botzen, W.J.W.; de Moel, H.; Aerts, J.C.J.H. Integrating Household Risk Mitigation Behavior in
Flood Risk Analysis: An Agent-Based Model Approach. Risk Anal. 2017, 37, 1977–1992. [CrossRef]

34. Li, B. The Classical Model of Decision Making Has Been Accepted as not providing an Accurate Account of
How People Typically Make Decisions. Int. J. Bus. Manag. 2009, 3, 151–154. [CrossRef]

35. Lipshitz, R.; Klein, G.; Orasanu, J.; Salas, E. Focus article: Taking stock of naturalistic decision making.
J. Behav. Decis. Mak. 2001, 14, 331–352. [CrossRef]

36. Klein, G.A.; Calderwood, R.; Clinton-Cirocco, A. Rapid Decision Making on the Fire Ground. Proc. Hum.
Factors Soc. Annu. Meet. 1986, 30, 576–580. [CrossRef]

37. Eisenberger, R. Decision Making in Action: Models and Methods, Klein, G.A., Orasanu, J., Calderwood, R.,
Zsambok, C.E. (eds). Norwood, NJ: Ablex, 1993, 480 pp. ISBN 0–89391–794–X (pb). J. Behav. Decis. Mak.
2007, 8, 218–219. [CrossRef]

38. Klein, G. A naturalistic decision making perspective on studying intuitive decision making. J. Appl. Res.
Mem. Cogn. 2015, 4, 164–168. [CrossRef]

39. Ross, K.G.; Klein, G.A.; Thunholm, P.; Schmitt, J.F.; Baxter, H.C. The Recognition-Primed Decision Model;
Army Combined Arms Center: Fort Leavenworth, KS, USA, 2004; pp. 6–10.

40. Martin-Clouaire, R. Modelling Operational Decision-Making in Agriculture. Agric. Sci. 2017, 08, 527–544.
[CrossRef]

41. Ding, J.; Cai, J.; Guo, G.; Chen, C. An emergency decision-making method for urban rainstormwater-logging:
A China study. Sustainability 2018, 10, 3453. [CrossRef]

42. Raudkivi, A.J.; Lawgun, N. Synthesis of urban rainfall. Water Resour. Res. 1970, 6, 455–464. [CrossRef]

http://dx.doi.org/10.1518/001872008X288385
http://dx.doi.org/10.4018/jsir.2012070104
http://dx.doi.org/10.1109/MIS.2007.41
http://dx.doi.org/10.1007/s11069-011-9745-4
http://dx.doi.org/10.1016/j.ress.2011.11.006
http://dx.doi.org/10.1016/j.joep.2008.03.006
http://www.ncbi.nlm.nih.gov/pubmed/19956353
http://dx.doi.org/10.1016/j.scitotenv.2015.08.094
http://www.ncbi.nlm.nih.gov/pubmed/26318687
http://dx.doi.org/10.1111/risa.12698
http://dx.doi.org/10.1088/1755-1315/82/1/012048
http://dx.doi.org/10.1111/risa.12740
http://dx.doi.org/10.5539/ijbm.v3n6p151
http://dx.doi.org/10.1002/bdm.381
http://dx.doi.org/10.1177/154193128603000616
http://dx.doi.org/10.1002/bdm.3960080307
http://dx.doi.org/10.1016/j.jarmac.2015.07.001
http://dx.doi.org/10.4236/as.2017.87040
http://dx.doi.org/10.3390/su10103453
http://dx.doi.org/10.1029/WR006i002p00455


Water 2020, 12, 1190 17 of 17

43. Pan, X.; Han, C.S.; Dauber, K.; Law, K.H. A multi-agent based framework for the simulation of human and
social behaviors during emergency evacuations. AI Soc. 2007, 22, 113–132. [CrossRef]

44. Sugiura, K.; Arakawa, M.; Yokoi, N. Evaluation of the Behavior of Evacuees on Dynamic Floor Condition by
Using Multi-agent Simulation. J. Electr. Eng. 2017, 5, 275–287.

45. Gibbons, A. Becoming human. New fossils raise molecular questions. Science 2002, 295, 1217. [CrossRef]
46. Arend, I.; Botella, J.; Contreras, M.J.; Hernández, J.M.; Santacreu, J. A betting dice test to study the interactive

style of risk-taking behavior. Psychol. Rec. 2003, 53, 217–230. [CrossRef]
47. Papagiannaki, K.; Kotroni, V.; Lagouvardos, K.; Bezes, A. Perspectives on Atmospheric Sciences; Springer:

Berlin, Germany, 2017; pp. 217–223.
48. Lilford, R.J.; Chilton, P.J. Does the internet limit or extend the human mind? Probably both. BMJ 2011, 343.

[CrossRef]
49. Gonzalez, C. Learning to make decisions in dynamic environments: Effects of time constraints and cognitive

abilities. Hum. Fact. 2004, 46, 449–460. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00146-007-0126-1
http://dx.doi.org/10.1126/science.295.5558.1217
http://dx.doi.org/10.1007/BF03395441
http://dx.doi.org/10.1136/bmj.d5360
http://dx.doi.org/10.1518/hfes.46.3.449.50395
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Framework of Multi-Agent Simulation 
	Recognition-Primed Decision Model 
	Dynamic Recognition-Primed Decision Model 
	Model of Individuals’ Escape in the Urban Rainstorm Context 
	Agent Attributes 
	Agent Interaction Rule 


	Result and Discussion 
	Individual’s Perception of Risk 
	Influences of Individuals’ Experience Pool Size 
	Influences of the Regulation Parameter on Individuals’ Behavior 

	Conclusions 
	References

