
water

Article

Assessing the Benefits of Forested Riparian Zones:
A Qualitative Index of Riparian Integrity Is Positively
Associated with Ecological Status in
European Streams

Francis J. Burdon 1,* , Ellinor Ramberg 1, Jasmina Sargac 1, Marie Anne Eurie Forio 2,
Nancy de Saeyer 2, Petra Thea Mutinova 3,4, Therese Fosholt Moe 3 ,
Mihaela Oprina Pavelescu 5, Valentin Dinu 5, Constantin Cazacu 5 , Felix Witing 6,
Benjamin Kupilas 3,7, Ulf Grandin 1, Martin Volk 6 , Geta Rîşnoveanu 5,8 , Peter Goethals 2,
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Abstract: Developing a general, predictive understanding of ecological systems requires knowing
how much structural and functional relationships can cross scales and contexts. Here, we introduce
the CROSSLINK project that investigates the role of forested riparian buffers in modified European
landscapes by measuring a wide range of ecosystem attributes in stream-riparian networks.
CROSSLINK involves replicated field measurements in four case-study basins with varying levels
of human development: Norway (Oslo Fjord), Sweden (Lake Mälaren), Belgium (Zwalm River),
and Romania (Argeş River). Nested within these case-study basins include multiple, independent
stream-site pairs with a forested riparian buffer and unbuffered section located upstream, as well
as headwater and downstream sites to show cumulative land-use impacts. CROSSLINK applies
existing and bespoke methods to describe habitat conditions, biodiversity, and ecosystem functioning
in aquatic and terrestrial habitats. Here, we summarize the approaches used, detail protocols in
supplementary materials, and explain how data is applied in an optimization framework to better
manage tradeoffs in multifunctional landscapes. We then present results demonstrating the range of
riparian conditions present in our case-study basins and how these environmental states influence
stream ecological integrity with the commonly used macroinvertebrate Average Score Per Taxon
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(ASPT) index. We demonstrate that a qualitative index of riparian integrity can be positively associated
with stream ecological status. This introduction to the CROSSLINK project shows the potential for
our replicated study with its panoply of ecosystem attributes to help guide management decisions
regarding the use of forested riparian buffers in human-impacted landscapes. This knowledge is
highly relevant in a time of rapid environmental change where freshwater biodiversity is increasingly
under pressure from a range of human impacts that include habitat loss, pollution, and climate change.

Keywords: benthic invertebrates; land use; agriculture; urbanization; riparian management; riparian
buffer; nature-based solutions; blue-green infrastructure; climate-change adaptation; protocols

1. Introduction

Riparian zones are the interface between aquatic and terrestrial ecosystems that connect and help
regulate ecological functions in both habitats [1,2]. They are three-dimensional zones encompassing
hydrogeomorphic, vegetational, and food-web attributes which vary in space and time [1,3,4].
The importance of riparian zones far exceed their proportion of land cover because of their prominent
location at the boundary between aquatic and terrestrial ecosystems [1,5]. For example, riparian zones
are important habitats for maintaining biodiversity and provide multiple ecosystem services that
include water purification, carbon storage, and recreational opportunities [6,7]. In particular, stream
and terrestrial ecosystems can be highly connected by exchanges of organic matter and prey [3,8].
These ecosystem linkages include inputs of terrestrial detritus and prey that help sustain aquatic
food webs [9,10], and the emergence of adult aquatic insects form an important source of prey for
a wide range of riparian consumers that include spiders, birds, lizards, and bats [11,12]. However,
human pressures from activities such as deforestation, agriculture, and urbanization frequently degrade
stream-riparian networks [13], with potential consequences for cross-habitat linkages and ecosystem
services through impacts on aquatic and terrestrial assemblages [7,11,14].

The impacts of human land uses on stream-riparian networks typify the “Anthropocene”—the
current epoch of immense environmental upheaval caused by human activities [15,16]. These impacts
disproportionately threaten freshwater biodiversity globally [17,18], and with land-use intensification
set to continue there is a strong need for improved riparian management [19,20]. Thus, protecting and
enhancing riparian zones are often seen as the first steps towards rehabilitating degraded waterbodies
by buffering them from the impacts of adjacent human land uses. The conservation, rehabilitation,
and restoration of riparian zones fits within the concept of nature-based solutions: “living solutions
inspired and supported by nature that simultaneously provide environmental, social and economic
benefits and help build resilience” ([21]; see also Table 1) and potentially mitigate adverse effects
in catchments where human land uses have strong impacts [22]. In highly fragmented landscapes,
riparian buffers (Table 1) can preserve natural habitat features, thus helping to ensure genetic and
ecological connectivity amongst populations and communities [7,23–25]. Further, riparian buffers are
often used to filter nutrients and fine inorganic sediment from adjacent land uses, and depending on
the canopy-cover proffered, help shade stream reaches to reduce water temperatures and proliferations
of aquatic vegetation [26–28].

However, the effectiveness of riparian buffers can depend on a variety of factors. For instance,
buffers may be placed randomly on a stream network without integrated catchment management,
meaning upstream human impacts can override any benefits of riparian management at the reach
scale [29,30]. The uncertainties generated by this problem may contribute to the current situation where
few countries have extensive national regulations for buffer properties, although some countries do
require uniform riparian buffer strip widths (e.g., 5 m) [26]. Moreover, gaps in our current scientific
knowledge and legal frameworks could mean such regulations are insufficient for meeting management
goals (e.g., Water Framework Directive) or are impractical for land managers seeking to implement
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riparian buffers [26,31,32]. These challenges reflect the increased demand for knowledge on how
freshwater ecosystems respond to various levels of perturbations (e.g., human land uses) and what
level of mitigation is required for recovery to occur [33].

Here, we introduce the BiodivErSA-funded CROSSLINK project (see Table 1 for a glossary of
terms) by highlighting the key questions it addresses and the methods underpinning the extensive
data collection helping to better understand riparian zones in human-influenced landscapes (Table 2
and Supplementary Materials). CROSSLINK involves replicated field studies across four case-study
basins (Figure 1) in Norway (forested and urban stream reaches in the Oslo Fjord basin), Sweden
(forested and agricultural stream reaches in the Lake Mälaren basin), Belgium (forested, agricultural
and urban reaches in the Zwalm river basin), and Romania (forested and agricultural stream reaches
in the Argeş river basin). CROSSLINK conceptualizes stream-riparian networks as key components
of blue-green infrastructure (BGI) that are subject to multiple human pressures including water
extraction, hydropower generation, forestry, agriculture, and urbanization leading to ecological harm
and stakeholder conflicts [18,34].

In the broadest terms, CROSSLINK aims to (1) evaluate how the extent, spatial arrangement and
connectivity of riparian-stream BGI affects biodiversity, ecosystem functioning, ecosystem services, and
resilience indicators in forested, rural, and urban settings; and (2) produce an optimization framework
capable of balancing multiple values, uses and needs with longer-term adaptive capacity and resilience
in riparian-stream BGI. Underpinning the latter objective is the multifunctionality of landscapes as a
key concept for solving resource-use conflicts with an emphasis on trade-offs between agricultural
production and other values [35].

In this introduction to the CROSSLINK project, we analyze data on riparian habitats described
using the qualitative index of riparian integrity (the Riparian Condition Index—RCI) developed by
Harding et al. [36] for New Zealand conditions and adapted here for Europe. The RCI is comprised
of 13 attributes (Table 3) that are scored 1–5 (poor to good) for both banks and then averaged.
Their summed total provides an overall index that can be associated with stream ecological responses
(e.g., reference [37]). We first assessed the overall performance of the RCI for characterizing riparian
integrity in study reaches with varying levels of human impact (from reference or least impacted
to strongly impacted by adjacent and upstream agricultural and/or urban land uses). Our a priori
expectation was that buffered sites would have higher RCI scores more similar to the reference site
scores than unbuffered sites. Following Burdon et al. [37], we hypothesized that our estimates of
riparian condition would be positively associated with stream ecological status after accounting for
upstream human impacts. To test this hypothesis and thus assess the utility of the RCI for predicting
stream ecological status we used the macroinvertebrate Average Score Per Taxon (ASPT) index [38],
which is used in environmental reporting for the European Union’s Water Framework Directive
(WFD) [39–41].

Finally, we adapted the conceptual framework introduced by Burdon et al. [42] for understanding
the role of forested riparian buffers in heterogenous landscapes. This framework considers how the
extent of change in a biotic response may be determined by the magnitude of a local “transition” (here
the change from an “unbuffered” riparian state to a woody vegetation patch providing a forested
riparian buffer) or contingent on the environmental context (e.g., the level of catchment degradation).
More specifically, biotic changes in response to riparian “buffering” can be predicted to be the product
of a community’s sensitivity (or tolerance; sensu “negative resilience” [43]) and the magnitude of the
transition from an unbuffered to buffered state. In this example, the framework introduces a pivotal
question: does the quality and quantity of the riparian buffer determine the ecological response, or is it
environmentally contingent on other factors?
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Figure 1. Map of Europe showing the locations of the four case-study basins used in the CROSSLINK
project: (1) Sweden (forested and agricultural stream reaches in the Lake Mälaren basin), (2) Belgium
(forested, agricultural and urban reaches in the Zwalm river basin), (3) Norway (forested and urban
stream reaches in the Oslo Fjord basin), and (4) Romania (forested and agricultural reaches in the Argeş
river basin).

Table 1. Glossary of key terms related to the CROSSLINK project.

Term Definition

BiodivERsA

BiodivERsA is a network of national and regional funding organizations
promoting pan-European research on biodiversity and ecosystem
services, funded under the Horizon 2020 European Research Area
(ERA-NET) COFUND scheme.

CROSSLINK

The full title of the CROSSLINK project is “Understanding cross-habitat
linkages between blue and green infrastructure to optimize
management of biodiversity, ecosystem services and multiple human
uses.” The CROSSLINK project is funded under the 2015 pan-European
BiodivErSA call for international research projects on “Promoting
synergies and reducing trade-offs between food supply, biodiversity and
ecosystem services.” Specifically, CROSSLINK addresses the theme
“Understanding and managing biodiversity dynamics in land-, river-
and seascapes (habitat connectivity, green and blue infrastructures, and
naturing cities) to improve ecosystem functioning and delivery of
ecosystem services.”
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Table 1. Cont.

Term Definition

Blue-green infrastructure (BGI)

The concept of blue-green infrastructure emphasizes the importance of
both “blue” (water) and “green” (vegetation) and the interaction
between them [44]. The word infrastructure underscores the need for
these different elements to be interlinked to work as a connected web of
measures [45]. Elements of BGI are nature-based solutions that deliver
multiple co-benefits to impacted environments such as urban (“grey”)
cityscapes; benefits include water supply, flood mitigation, terrestrial
biodiversity, cooling and climate change resilience, and human
well-being [46–48].

Nature-based solution (NBS)

Nature-based solutions are “living solutions inspired and supported by
nature that simultaneously provide environmental, social and economic
benefits and help build resilience” [21]. BGI can be NBS by providing
natural ways to manage water resources and the environment [21]. The
economic benefits of NBS have been promoted by the European
Commission, as well as advocated by researchers [49].

Riparian buffer

A riparian buffer is a vegetated area (a “buffer strip”) that helps to
protect the stream from the impact of adjacent land uses [26]. A forested
riparian buffer is a buffer strip dominated by woody vegetation, which
in addition to helping protect the stream from human land-use impacts
can also provide stream shading and crucial habitat diversity in
fragmented landscapes.

Water Framework Directive (WFD)
The European Water Framework Directive (2000/60/EC; WFD) is a policy
statement that establishes a framework for water protection so that all
waterbodies in Europe reach “good ecological status” by 2021 or 2027.

2. Materials and Methods

2.1. Study Design

CROSSLINK has a tiered study design (Figure S1, Supplementary Materials). First, the “paired
approach” tested aspects of lateral and longitudinal connectivity. This approach required 10–12 streams
in each case-study basins flowing through an impacted (agricultural, urban or mixed agricultural
and urban) landscape, each with two paired sites: an upstream site with no riparian buffer (i.e.,
“unbuffered”), and a downstream “buffered” site with a riparian buffer (i.e., leading to 20–24 sites
in total). Second, the “network approach” testing aspects of longitudinal connectivity involved
10–12 additional sites distributed throughout the river network (e.g., upstream and downstream of the
site pairs). Within these sites we sought pristine or least impacted headwater sites and more degraded,
downstream longitudinal sites to help characterize the range of responses in ecosystem attributes to
cumulative impacts of catchment land uses. Hereafter, the headwater sites are described as “reference”
sites, and the downstream longitudinal sites are described as “matrix” sites because of their location
further downstream in our landscape matrices (i.e., the portion of the heterogeneous landscape in
which stream-riparian segments are “embedded”).

To ensure consistency and feasibility, streams used were wadeable, 1st–3rd order (i.e.,
approximately 2–5 m wide), and with a stable streambed (i.e., not frequently hydrodynamically
disturbed) dominated by gravels and cobbles. In the stream reaches categorized as reference,
buffered, and unbuffered, we focused on the presence and extent of woody vegetation in the riparian
zone. Reference sites typically had intact forest extending to the upstream catchment boundaries.
Both buffered and unbuffered sites were in human-impacted landscapes (i.e., impacted by urban or
agricultural land uses). Key criteria applied during site selection of buffered sites included requirements
for minimum buffer length (i.e., >50 m moving upstream from the downstream end of the sampling
reach), width (>2–3 × wetted stream width), extent (buffer on both banks of the stream segment), and
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composition (dominated by small and large trees). Unbuffered sites typically only had a few isolated
trees within the riparian zone.

The main criteria for the matrix sites were their network position, being located lower down in the
catchment and subjected to higher levels of human impacts. The matrix sites also lacked an extensive
riparian buffer as defined by the criteria outlined above. At each site, the different components of
sampling for CROSSLINK were conducted over two reaches differing in length, with a shorter effective
sampling reach nested in a longer habitat assessment reach (Figure S2, Supplementary Materials).
Key components of terrestrial and aquatic habitat sampling were conducted within the longer habitat
assessment reach (50 m long). The biological sampling (i.e., biodiversity and ecosystem functioning
measures) were conducted within the shorter effective sampling reach (30 m long), which had flowing
water (i.e., run-riffle sequence) with hard-bottomed sections (i.e., with cobble, pebble, gravel, and/or
bedrock substrates). Both reaches begun at the same point at the downstream end, which in the case of
buffered sites was located as far downstream as possible within the woody riparian buffer. See Protocol
S1, Supplementary Materials for more details.

2.2. Sampling Overview

We sampled multiple environmental, biodiversity, and ecosystem functioning attributes at sites in
our CROSSLINK stream-riparian networks (Table 2). Detailed protocols for all our measured variables
are provided in the Supplementary Materials.

Table 2. Overview of ecosystem attributes and approaches used in the CROSSLINK project to describe
the multiple ecological benefits of forested riparian buffers in human-impacted landscapes.

Group Response Description

Environmental (Protocol S2) Water quality Grab water samples and spot measurements for a wide range of
water chemistry parameters

Thermal dynamics Spot measurements and continuous logging of stream and
riparian temperatures

Instream habitat Transect measurements of channel profiles and benthic
habitat assessment

Hydromorphological impacts Assessment of human activities affecting
hydrogeomorphic integrity

Riparian habitat
Assessment of riparian condition and measurement of key
habitat properties in six 50 m2 plots (Figure S3,
Supplementary Materials)

Land use Use of CORINE land cover inventory to describe catchment
land uses

Biodiversity (Protocol S3) Microbial Environmental samples for microbial (e.g., bacterial) diversity
from stream and riparian zone in effective sampling reach (ESR)

Diatoms Semi-quantitative sampling of benthic diatoms in ESR
Macroinvertebrates Quantitative sampling of aquatic macroinvertebrates in ESR

Riparian invertebrates Semi-quantitative sampling of terrestrial arachnids and
predatory ground beetles in riparian plots

Trees Recording trees species and size (DBH) in riparian plots

Ecosystem functions (Protocol S4) Algal accrual Measurement of periphyton biomass on standardized substrates
in ESR

Sediment dynamics Measurement of near-bed organic and inorganic particulate
accrual on standardized substrates in ESR

Organic-matter processing Measuring stream and riparian organic-matter decomposition
rates using litter bags and the cotton-strip assay

Carbon sequestration Using allometric scaling relationships to estimate tree biomass
and carbon sequestration potential in riparian plots

Food webs (Protocol S5) Trophic diversity Use of stable isotopes (C and N) to describe community trophic
niche breadths

Energy flow Using Bayesian mixing models to estimate consumer diets based
on stable isotope measurements of basal resources and prey

Trophic connectivity
Use of fatty acid biomarkers (e.g., poly-unsaturated FAs) to
describe trophic connectivity between stream and riparian
food-web compartments

Societal needs (Protocol S6) Optimization framework
Applying collected data as objective functions in an
optimization framework to balance land-user needs with
biodiversity and ecosystem benefits of forested riparian buffers
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2.3. Riparian Habitat Assessment

Riparian habitat characteristics were surveyed in the riparian zones adjacent to the habitat
assessment reach (50 m) at each study site. The surveys were carried out in summer 2018, when leaf-out
was complete for all tree/shrub species, and targeted both banks. We surveyed riparian condition using
an assessment of 13 qualitative variables that could indicate poor riparian status. This assessment
follows the protocol described by Harding et al. [36] but adapted here for European conditions (Table 3).
The protocol requires observers to rank aspects of the riparian zone that might be indicative of poor
quality and integrity. Attributes were graded from poor (1) to excellent (5) on each bank over the
habitat assessment reach (50 m), and scores were summed to provide an index of riparian habitat
quality (the Riparian Condition Index—RCI). For the analysis of total riparian condition and individual
attributes, bank scores were averaged to provide a single value for riparian condition at each stream.
To ensure consistency amongst observers we ran a technical workshop for the CROSSLINK project on
field protocols where we discussed riparian attributes at representative sites in Sweden as a group to
ensure attributes were characterized in a consistent manner.

2.4. Water Quality

Grab water samples were collected in plastic containers for water quality analyses during three
different seasons (autumn 2017, spring and summer 2018). We collected water samples from just below
the water surface (i.e., 10 cm) in the channel thalweg at the downstream end of each site. Site pairs
were sampled on the same day. Water samples were stored cold and refrigerated upon return to the
laboratory whereby they were analyzed within 24 h of collection following standard methods [50].
Water samples were analyzed for total organic carbon, total nitrogen, ammonium (NH4−N), nitrite-
and nitrate-nitrogen (i.e., oxidized nitrogen, NO2−N + NO3−N), total phosphorus, dissolved reactive
phosphorus (PO4−P), specific conductivity, pH, and alkalinity. Spot water measurements for turbidity
(NTU), specific conductivity, dissolved oxygen (%), and temperature were collected at the time of water
sampling using a handheld instrument (e.g., Manta +30 probe, Eureka Water Probes, Austin, TX, USA).
Total organic carbon, alkalinity, turbidity, dissolved oxygen, and temperature were not measured at all
sites at the same time so are excluded from our statistical analyses (see below). For further details on
water quality sampling, see Protocol S2.

2.5. Macroinvertebrates

We sampled macroinvertebrates within the effective sampling reach (i.e., 30 m). The reach used
had flowing water (i.e., run-riffle sequence) with hard-bottomed sections (i.e., with cobble, pebble,
gravel, and/or bedrock substrates). The sampling area comprised the entire stream width along the
predefined reach, but we avoided sampling areas affected by flow intermittency. Quantitative sampling
requires that stream invertebrates are collected from a given area with a standard sampling effort.
We standardized methods to ensure comparable data using one of two potential sampling methods:
Surber sampling and quantitative kick-net sampling [51]. All samplers used 500 µm mesh netting, and
Surber samplers were ≈0.0625 m2 (e.g., 25 × 25 cm) in dimensions. Kick-nets used were equivalent to
the dimensions of the Surber sampler by using an area defined by a quadrat equaling the width of the
net. Sampling effort was standardized for 60 s where coarse substrate was disturbed to a maximum
depth of 10 cm from the surface of the streambed. A total of six replicate subsamples were collected
(three from erosional/riffle-run habitats, and three from depositional/run-pool habitats) using identical
protocols within the effective sampling reach. All subsamples were pooled together. Woody material
and leaves were retained separately in a plastic bag to contribute to estimates of standing coarse
particulate organic matter (CPOM). The final, pooled macroinvertebrate sample was sieved (500 µm
mesh) to remove excess water and then preserved in a 500–1000 mL container with 96% ethanol to
reach a final concentration of 70% for later sorting.
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Macroinvertebrate samples were identified to the lowest practicable taxonomic level (e.g., species
or genus) using standard identification guides. From this data, we calculated the Average Score Per
Taxon (ASPT) index [38]. The ASPT index is calculated as the ratio of the score obtained in the Biological
Monitoring Working Party (BMWP) index to the number of taxa scored in the sample (Equation (1)):

ASPT =
BMWP Index∑

Taxa
(1)

The BMWP index assigns scores from one to 10 to each macroinvertebrate taxa based on their
sensitivity to organic pollution, ranging from zero (tolerant) to 10 (sensitive) [38]. The BMWP index is
calculated as the sum of scores for all taxa present in a sample. BMWP index values greater than 100 are
associated with unpolluted (“clean”) streams, whilst scores less than 10 typify heavily polluted streams.
Similarly, a high ASPT score is considered indicative of a “clean” (i.e., unpolluted) site containing
large numbers of high scoring taxa. The ASPT index is suitable for assessing the impact of organic
pollution [38]. We calculated ASPT scores with Family-level macroinvertebrate data using the function
“calcBMWP” in the R package “biotic” [52].

2.6. Data Analysis

Here, we analyzed data from the CROSSLINK project on riparian conditions, stream
macroinvertebrates, and catchment-wide human impacts (land use and water quality) to demonstrate
the potential value of the Riparian Condition Index (RCI) for management. We used linear mixed
models (LMM) to test overall differences in the summed totals of the RCI, with site type and country and
their interaction as the fixed effects and site “Block“ (for site pairs) as the random effect. To determine
which individual attributes were contributing to impairment, we used two approaches. First, we tested
each attribute individually in an LMM with site type and country and their interaction as the fixed
effects and site “Block” (for site pairs) as the random effect. To visualize how attributes differed across
site types, we performed a Non-Metric Multidimensional Scaling (NMDS) ordination for sites using
RCI attribute scores. The function “metaMDS” in the R package “vegan” with Euclidean distances
were used for the NMDS analysis of the untransformed data matrix [53]. Each attribute was treated
as a “species” in the data matrix with a mean score between 1–5 at each site surveyed. We used the
“adonis” and “pairwiseAdonis” R functions in the “vegan” package [53] to test for differences across
all attributes between site types.

Second, we calculated log response ratios (LRR) between site pairs with the “batch_calc_ES”
function in the R package “SingleCaseES” [54] to determine which attributes were most improved
by the presence of a forested riparian buffer (i.e., compared with the upstream unbuffered reach).
The log response ratio (LRR) is a common effect size metric (i.e., the log proportional change in
the means of a treatment and control group) [55]. The LRR is particularly used in meta-analyses of
ecological research [56], and for quantifying simple two-group experimental designs (i.e., buffered (B)
vs unbuffered (U)) the calculation of LRR is straightforward (Equation (2)):

LRR = ln

 X B

X U

 (2)

Effect sizes of attributes were ranked and presented graphically at the overall European level and
for each case-study basin. The livestock access attribute was excluded in the analysis of the Norwegian
sites because it was given a constant value (5) reflecting the urban nature of the catchment. Similarly,
the soil quality attribute was excluded in the analysis of the Belgian sites because it consistently had an
intermediate value (3) at both sites. The linear mixed models were fitted with the “lmer” function in
the “lmer4” R package, and post-hoc tests conducted using the “lmertest” R function [57].

We used an indicator of stream ecological integrity (i.e., the Average Score Per Taxon index (ASPT))
to assess the utility of the Riparian Condition Index (RCI) whilst controlling for catchment-wide human
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impacts. We used Principal Components Analysis (PCA) to describe catchment-wide anthropogenic
impacts (i.e., upstream influences). The PCA decomposed log-transformed water quality variables (i.e.,
total inorganic nitrogen, ammonium, nitrite- and nitrate-nitrogen, total phosphorus, dissolved reactive
phosphorus, specific conductivity, and pH) and logit-transformed upstream land-use cover variables
(i.e., % of the catchment area covered by urban, arable cropping, orcharding and vineyards, pasture,
forest, natural features, water, wetlands, and other) into site scores (Axis 1, henceforth PC1) explaining
37% of total variation. Upstream land-cover estimates were obtained from the CORINE Land Cover
inventory [58]. First, we tested the association of the RCI with the ASPT index using a mixed model
where we included PC1 as a fixed control variable and specified “country” and “site pairs” as random
effects. We excluded forested reference sites from Sweden (n = 5) in the mixed model because these
streams went into extreme low flows (or dried completely) in the summer prior to macroinvertebrate
sampling, potentially explaining the lower than expected values for the ASPT index. This omission
did not alter the conclusions inferred from the statistical test, although it did improve the model fit.
The linear mixed model was fitted with the “lmer” R function.
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Table 3. Scores for riparian attributes used to calculate the Riparian Condition Index (RCI) (adapted for European conditions from Harding et al. [36]).

Attributes Score 1 Score 2 Score 3 Score 4 Score 5

Shading of water Little or no shading 10%–25% shading 25%–50% 50%–80% >80%

Buffer width <1 m 1–5 m 5–15 m 15–30 m >30 m

Buffer intactness Buffer absent 50%–99% gaps 20%–50% gaps 1%–20% gaps Completely intact

Vegetation comp. of
buffer and/or adjacent

land to 30 m from
streambank

Buffer Short grazed pasture grasses to
stream edge, or impervious

surfaces

Weedy shrubs or mainly long
grasses 0.3–2 m or herbs/forbs

Deciduous tree dominated; small
tree dom. (2–5 m); or forest

plantation with < 25% cover of >
5 m trees; or natural grassy veg.

Regenerating forest or woodlot
evergreens with > 25% cover

sub-canopy (>5 m) trees but <
10% canopy trees (>12 m); or

natural grassy veg.

Maturing forest including >10%
cover canopy trees (>12 m); or

natural wetland or natural grassy
vegetation

Adj. land

Bank stability
Very low: uncohesive sediments
and few roots and > 40% recently

eroded

Low: uncohesive sediments and
few roots/low veg. cover and >

15%–40% recently eroded

Moderate: stabilized by geology
(e.g., cobbles), veg. cover and/or

roots and > 5%–15% recently
eroded

High: stabilized by geology (e.g.,
bedrock), veg. cover and/or roots;

and 1%–5% recently eroded

Very high: stabilized by geology
(e.g., bedrock), veg. cover and/or

roots; < 1% recently eroded

Livestock access High: unfenced and unmanaged
with active livestock use Moderate: some livestock access

Limited: unfenced but low
stocking, bridges, troughs,

natural deterrents

Very limited: temporary fencing
of all livestock or naturally very

limited access

None: permanent fencing or no
livestock

Riparian soil
denitrification potential

Soils dry/firm underfoot or
moist–wet but frequent tile drains
bypass riparian soils (≥3 per 100

m)

1%–30% streambank soils moist
but firm or moist-wet with

infrequent bypass drains (1–2 per
100 m)

≥30% streambank soils moist but
firm underfoot. No drains.

1%–30% streambank soils
water-logged, soft underfoot with

black soil. No drains.

≥30% of streambanks
water-logged, surface moist/fluid

underfoot. No drains.

Land slope 0–30 m from
stream bank >35◦ >20–35◦ >10–20◦ >5–10◦ 0–5◦

Groundcover of buffer
and/or adjacent land to
30 m from streambank

Buffer
Bare

Short/regularly grazed pasture
(<3 cm)

Pasture grasses or crops with bare
flow paths or 2–3 cm tree litter

layer

Moderate density grass or crops
dense (>3 cm) tree litter layer

High density long grasses or
crops

Adj. land

Soil drainage
Impervious (e.g., sealed) or
extensively pugged and/or

compacted soil

Low permeability (e.g., high clay
content) or moderately
pugged/compacted soil

Low-moderate permeability (e.g.,
silt/loam) and not

pugged/compacted

Mod-high permeability (e.g.,
sandy loam) and not
pugged/compacted

Very high permeability (e.g.,
pumice/sand) and not

pugged/compacted

Rills/channels Frequent rills (>9 per 100 m) or
larger channels carry most runoff

Common rills (4–9 per 100 m) or
1–2 larger channels carry some

runoff

Infrequent rills (2–3 per 100 m)
and no larger channels

Rare rills (1 per 100 m) and no
larger channels None
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The framework introduced in Burdon et al. [42] describes how the magnitude of change in a biotic
response can be determined by the size of a local “transition” (here the change from an “unbuffered”
riparian state to a woody vegetation patch providing a forested riparian buffer) or be context-dependent,
reflecting the prevailing upstream environmental conditions. In our study, changes in response to
riparian “buffering” can be predicted to be the product of the community’s sensitivity (or tolerance;
sensu “negative resilience” [43]) and the magnitude of the transition from an unbuffered to buffered
state (Equation (3)). This approach corresponds to a (local) sensitivity analysis [42]:

∆Yi =
∂Yi

∂D
× ∆R (3)

where Y is an ecological metric characterizing the status of an ecosystem. The state of the system at i
(i.e., a point in time or space) can be defined as the ecological status Yi relative to an existing level of
perturbation D (e.g., ∂Yi/∂D). Here, ∆Yi describes the response of the ecosystem to the transition
between “impacted” and “buffered” states as defined by ∆R. By quantifying ∆Yi, ∆R, and the existing
level of impairment (e.g., ∂Yi/∂D) it is possible to test the extent to which the sensitivity (or tolerance)
varies with ecological status (i.e., environmental context). We apply the general approach described in
Equation 3 to assess stream macroinvertebrate responses using change in the ASPT index between
unbuffered and buffered sites. We hypothesized that using the RCI to measure the “magnitude of
transition” between buffered and unbuffered states would reveal the benefit conferred to the stream
invertebrate community whilst controlling for “environmental context” (i.e., the existing level of
environmental degradation at the upstream site).

To test our hypothesis regarding the magnitude of transition and environmental context, we
calculated log response ratios for the ASPT and the RCI, with the latter being the response variable
(∆ASPT) and the former a predictor (i.e., the “magnitude of transition” hypothesis, ∆RCI). We used
upstream site scores of catchment-wide human impacts (PC1) to represent the “environmental context”
hypothesis. We tested the contribution of each hypothesized driver [i.e., the magnitude of transition
(∆RCI) vs environmental context (PC1)] and their interaction to the change in stream ecological status
(∆ASPT) between site pairs using a mixed model with “country” as the random effect. To fit the mixed
models, we used the R function “blmer” and tested for significance using Wald tests. The variance
explained by the fixed and random effects was determined following Nakagawa and Schielzeth [59].
We visualized the results using the “scatter3D” function in the “plot3D” R package. All analyses were
conducted in R [60].

3. Results

3.1. Riparian Integrity across Case-Study Basins

The Riparian Condition Index (RCI) was able to distinguish buffered and forested reference sites
from the more degraded unbuffered and downstream “matrix” site types across our four case-study
basins (Figure 2). However, the differences between buffered and forested sites (“lsmeans,” t = −2.593,
P = 0.052) and unbuffered and matrix site types (t = 2.450, P = 0.074) were not significant at α = 0.05.
These differences were typically conserved across the case-study basins, with a few exceptions.
In Belgium and Romania, RCI scores for the downstream matrix sites did not differ significantly from
the buffered and forested sites (Figure S4, Supplementary Materials).
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Figure 2. Mean values (± 95% CI) of the Riparian Condition Index for site types in the CROSSLINK
project (including sites in Norway, Sweden, Belgium, and Romania). “Matrix” refers to sites that were
typically located further downstream in our catchment landscape matrices (i.e., the portion of the
heterogeneous landscape in which stream-riparian segments are “embedded”).

Overall, the Scandinavian countries generally had higher RCI scores indicating better riparian
conditions, with Sweden achieving on average a higher level of riparian integrity than the other three
countries, and Norway having overall better riparian status than Belgium (Figure S4, Supplementary
Materials). However, accounting for interactions between country and site type revealed that Norway
only had significantly better riparian status in their unbuffered sites when compared with Belgium
(t = −2.831, P < 0.05). In contrast, Sweden had significantly better riparian status in their buffered sites
when compared with Belgium (t = −3.962, P < 0.001), and the Swedish forested reference sites had
consistently higher index scores when compared to the other case-study basins (e.g., Norway–Sweden,
t = −2.713, P < 0.05).

There were differences in the 13 attributes used to calculate the RCI across site types (Figure S5,
Supplementary Materials). An NMDS ordination highlighted the key differences between forested
reference, buffered, unbuffered and downstream matrix site types (Figure 3). This analysis showed
that forested and buffered sites differed from the more degraded sites (PERMANOVA, F3125 = 13.6,
R2 = 0.26, P < 0.001) and were generally associated with high scores for shading, buffer properties
such as vegetation composition, intactness, width, groundcover, and properties of adjacent land to the
riparian zone (>30 m from the stream) including vegetation composition and groundcover. In contrast,
the more degraded unbuffered and matrix sites typically had lower scores for these attributes and
other undesirable features, such as low scores associated with increased access for livestock. The land
slope attribute showed slightly higher scores in these degraded sites, indicating riparian banks that
were less steep than the reference and buffered sites (Figure 3).

3.2. Effects of Forested Riparian Buffers

In statistics, an effect size is a quantitative measure of the size of the difference between two
groups. We used effect sizes (log response ratios) to explicitly measure which attributes most strongly
contributed to improved environmental conditions between the site pairs (i.e., unbuffered and buffered
sites). This analysis strongly reflected the differences in attributes elucidated in Figure 3, with forested
riparian buffers having a strong positive effect on channel shading (Figure 4). Attributes that responded
with a moderate effect size to the presence of a forested riparian buffer included buffer properties such



Water 2020, 12, 1178 13 of 24

as vegetation composition (including adjacent land >30 m from the stream), width, and intactness.
There were only weak positive effects sizes on the following attributes: buffer groundcover, soil
drainage and livestock access. Effects sizes were negligible for rills and channels, soil quality, bank
stability, and land slope.
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Figure 3. Unconstrained ordination (non-metric multidimensional scaling) of values for each attribute
used in the Riparian Condition Index for the four site types used in the CROSSLINK project. This plot
include data from sites in Norway, Sweden, Belgium, and Romania.

We also used this approach (i.e., comparing effect sizes between unbuffered and buffered sites) in
each case-study basin (Figure 5). Again, the dominant trends were conserved across countries, but
with some notable exceptions. The presence of a forested riparian buffer had the strongest effect on
shading in three of the case-study basins (Norway, Belgium, and Romania), with the exception of
Sweden where adjacent vegetation and buffer width showed stronger effects between unbuffered and
buffered sites (Figure 5). In the mostly urbanized catchments of the Oslo Fjord basin in Norway, effects
of buffer presence on vegetation composition and groundcover of adjacent land to the riparian zone
(>30 m from the stream) was negligible. Another interesting feature in the Oslo basin was the negative
effect for bank stability in the presence of a forested riparian buffer, yet the land slope attribute showed
a weak to moderate positive effect size. In contrast, land slope did not change with the presence of a
forested riparian buffer in the three other case-study basins.
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Figure 4. Mean log response ratios (±95% CI) showing the change between downstream sites buffered
with woody riparian vegetation (i.e., forested) and upstream sites without this type of buffer for each
attribute used in the Riparian Condition Index. This plot include data from sites in Norway, Sweden,
Belgium, and Romania.

In the more agricultural catchments of Sweden’s Lake Mälaren basin, the sites also showed weak
to moderate positive effect sizes in the presence of a forested riparian buffer for attributes typically
associated with poor land management practices such as livestock access, soil drainage, and bank
stability (Figure 5). Notably, in the agriculture-dominated Argeş basin of Romania, the presence of
a forested riparian buffer only brought a negligible improvement in livestock access with a large
uncertainty (Figure 5).

3.3. Riparian Condition and Stream Ecological Status

We found a positive, albeit weak, relationship between the Riparian Condition Index (RCI) and
stream ecological status as indicated by the Average Score Per Taxon (ASPT) macroinvertebrate index
(Figure 6A, Table 4). There was also a significant negative relationship between the level of human
impacts in the upstream catchment (PC1) and the ASPT index (Table 4). There was no significant
association between the change in stream ecological status (∆ASPT) between site pairs and the size of
the improvement in riparian condition (∆RCI) after accounting for the influence of catchment-wide
human impacts (PC1) and their interaction (Figure 6B, Table 4). The effect size for an improvement
in stream ecological status (∆ASPT) was negatively associated with the influence of catchment-wide
human impacts (PC1) after accounting for the size of riparian improvement (∆RCI) and their interaction
(Figure 6C, Table 4).
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Figure 5. Mean log response ratios (±95% CI) for each CROSSLINK case-study basin. These effect sizes
show the change between downstream sites buffered with woody riparian vegetation (i.e., forested)
and upstream sites without this type of buffer for each attribute used in the Riparian Condition Index.

Table 4. Results from mixed models testing the influence of the Riparian Condition Index (RCI) on
the macroinvertebrate Average Score Per Taxon (ASPT) index whilst controlling for catchment human
impacts (PC1). The second model use log response ratios to describe the magnitude of change in the
response (∆ASPT) and predictor (∆RCI) variables between site-pairs (i.e., unbuffered upstream sites
and downstream, buffered sites) whilst controlling for the existing level of ecological impairment (i.e.,
upstream PC1). PC1 is the Axis 1 sites scores from a Principal Components Analysis (PCA) explaining
37% variation in catchment-wide human impacts. CI, 95% confidence interval.

Response Predictors Estimates CI P Marginal R2 Conditional R2

ASPT (Intercept) 0.997 0.497–1.498 <0.001 0.278 0.887
log (RCI) 0.174 0.048–0.300 0.007

PC1 −0.267 −0.365–−0.169 <0.001
∆ASPT (Intercept) 0.265 −0.043–0.430 0.050 0.140 0.467

∆RCI −0.675 −1.387–0.206 0.093
PC1 −0.177 −0.268–0.025 0.046

∆RCI × PC1 0.531 −0.035–0.922 0.031
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Figure 6. Plot A shows the association of the Riparian Condition Index with a commonly used stream
macroinvertebrate indicator, the Average Score Per Taxon (ASPT) index. Outlier sites in grey indicate
“reference” forested sites in Sweden which went dry in the summer prior to macroinvertebrate sampling,
potentially explaining lower than expected values for the ASPT. Plots B and C show the individual
strength of the riparian “magnitude of transition” and the “environmental context” hypotheses after
accounting for other influences across our four case-study basins. These analyses use the log response
ratio for the Average Score Per Taxon index score at paired sites as the response variable (∆ASPT).
The riparian “magnitude of transition” predictor uses the log response ratio for the Riparian Condition
Index at paired sites (∆RCI). The “environment context” predictor (PC1) is the Axis 1 sites scores from a
PCA explaining 37% variation in catchment-wide human impacts (i.e., indicating the level of upstream
degradation). See Table 4 for results from mixed models testing these responses.

However, the interaction between the improvement in riparian condition (∆RCI) and
catchment-wide human impacts (PC1) was significant (Table 4), and Figure 7 shows that the “magnitude
of transition” hypothesis (i.e., ∆RCI) was contingent on the level of upstream degradation. In less
impacted sites, the improvement in riparian condition (∆RCI) had a negative relationship with
the improvement in stream ecological status (∆ASPT; Figure 7). Contrasting with this result, sites
that were more affected by upstream human activities showed that the size of the improvement in
riparian condition (∆RCI) was positively associated with the improvement in stream ecological status
(∆ASPT; Figure 7).

4. Discussion

Riparian zones hugely influence fluxes that connect aquatic-terrestrial habitats, making them
disproportionately important in terms of land area for these coupled meta-ecosystems [1,5]. For the
CROSSLINK project we adapted and developed multiple approaches for measuring environmental,
biodiversity, and ecosystem functioning attributes in stream-riparian networks (Table 2 and
Supplementary Materials). Here, we demonstrate the value of our project by analyzing data collected
for the Riparian Condition Index (RCI), a qualitative index of riparian integrity developed by
Harding et al. [36] in New Zealand and adapted for European conditions. We used the RCI to describe
the riparian ecological status of sites in four European countries (i.e., Norway, Sweden, Belgium, and
Romania). We were able to demonstrate how our site types differed and what attributes used in the
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index were contributing to those changes. Our forested reference sites and sites with a forested riparian
buffer typically had high scores for shading; buffer properties including vegetation composition,
width, and intactness; and the vegetation composition of land adjacent to the riparian zone (i.e., >30m
from the stream edge). In contrast, unbuffered sites and downstream “matrix” sites typically had
lower overall scores, with key attributes indicating poor land management practices such as increased
livestock access. Finally, we detected a weak positive association between riparian condition and
stream ecological status, based on the macroinvertebrate ASPT index. Notably, in the presence of a
forested riparian buffer, the effect size of improved stream ecological status did not scale with the effect
size of the improvement in riparian condition (“magnitude of transition”). Instead, we saw evidence
for the “environmental context” hypothesis, where improved stream ecological status in the presence
of a forested riparian buffer declined overall when the existing upstream state was more degraded.

Water 2020, 12, x FOR PEER REVIEW 17 of 24 

 

used in the index were contributing to those changes. Our forested reference sites and sites with a 

forested riparian buffer typically had high scores for shading; buffer properties including vegetation 

composition, width, and intactness; and the vegetation composition of land adjacent to the riparian 

zone (i.e., >30m from the stream edge). In contrast, unbuffered sites and downstream “matrix” sites 

typically had lower overall scores, with key attributes indicating poor land management practices 

such as increased livestock access. Finally, we detected a weak positive association between riparian 

condition and stream ecological status, based on the macroinvertebrate ASPT index. Notably, in the 

presence of a forested riparian buffer, the effect size of improved stream ecological status did not 

scale with the effect size of the improvement in riparian condition (“magnitude of transition”). 

Instead, we saw evidence for the “environmental context” hypothesis, where improved stream 

ecological status in the presence of a forested riparian buffer declined overall when the existing 

upstream state was more degraded.  

 

Figure 7. At paired sites across our four case-study basins, the size of the improvement in stream 

ecological status (ΔASPT) was positively associated with an interaction between the magnitude of the 

improvement in riparian condition (ΔRCI) and level of upstream human impacts (PC1). The result in 

this figure (see also Table 4) suggests that the riparian “magnitude of transition” effect on ΔASPT is 

dependent on the “environment context” (PC1). PC1 explains 37% variation in catchment-wide 

human impacts (i.e., indicating the level of upstream degradation). 

4.1. The Riparian Condition Index (RCI) in the European context 

Overall, the RCI was an effective means to describe characteristics among site types and was 

shown to be ecologically relevant with a positive influence on stream ecological status measured by 

a commonly used macroinvertebrate index (ASPT). We saw variation in index scores because of real 

differences in site properties between case-study basins. In the heavily urbanized streams of the Oslo 

Fjord catchment, we found that bank stability decreased in the presence of a forested riparian buffer 

(Figure 5), owing to the box culverting and impervious surfaces of upstream reaches resulting in 

higher scores indicating more stable bank habitat. Likewise, the presence of these features (i.e., box 

culverts) helped explain the shallower bank slopes recorded in the Norwegian buffered sites. Another 

real feature of the sites in Norway was the negligible effects of buffer presence on adjacent vegetation 

and groundcover, indicating that riparian buffers were typically constrained in the cityscape and did 

not “spillover” into the land >30m from the streams edge. Similarly, there were contrasting patterns 

in Sweden that reflected real differences in site characteristics. The forested reference sites in Sweden 

typically contained a mixture of mature coniferous and deciduous trees, with one of the sites located 

within an important nature reserve “Naturreservatet Fiby urskog” (Fiby primeval forest nature 

Figure 7. At paired sites across our four case-study basins, the size of the improvement in stream
ecological status (∆ASPT) was positively associated with an interaction between the magnitude of the
improvement in riparian condition (∆RCI) and level of upstream human impacts (PC1). The result in
this figure (see also Table 4) suggests that the riparian “magnitude of transition” effect on ∆ASPT is
dependent on the “environment context” (PC1). PC1 explains 37% variation in catchment-wide human
impacts (i.e., indicating the level of upstream degradation).

4.1. The Riparian Condition Index (RCI) in the European Context

Overall, the RCI was an effective means to describe characteristics among site types and was
shown to be ecologically relevant with a positive influence on stream ecological status measured by a
commonly used macroinvertebrate index (ASPT). We saw variation in index scores because of real
differences in site properties between case-study basins. In the heavily urbanized streams of the Oslo
Fjord catchment, we found that bank stability decreased in the presence of a forested riparian buffer
(Figure 5), owing to the box culverting and impervious surfaces of upstream reaches resulting in higher
scores indicating more stable bank habitat. Likewise, the presence of these features (i.e., box culverts)
helped explain the shallower bank slopes recorded in the Norwegian buffered sites. Another real
feature of the sites in Norway was the negligible effects of buffer presence on adjacent vegetation and
groundcover, indicating that riparian buffers were typically constrained in the cityscape and did not
“spillover” into the land >30m from the streams edge. Similarly, there were contrasting patterns in
Sweden that reflected real differences in site characteristics. The forested reference sites in Sweden
typically contained a mixture of mature coniferous and deciduous trees, with one of the sites located
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within an important nature reserve “Naturreservatet Fiby urskog” (Fiby primeval forest nature reserve)
that has had relatively little human intervention since the end of the 18th century. For these reasons,
the Swedish forested reference sites on average recorded better ecological status than the reference
sites in the other European countries. Within the Lake Mälaren basin, the greater difference between
the Swedish forested reference sites and buffered sites was influenced by differences in vegetation
composition, with the forested riparian buffers strongly dominated by a mixture of deciduous tree
species and a conspicuous absence of conifers. In contrast, the negligible difference between forested
reference sites and buffered sites of the Argeş River basin in Romania was likely due to logging activity
and the presence of livestock in both site types.

Indices that rely on observer-based judgements have obvious weaknesses but can be very useful
for efficiently capturing the “gestalt” characteristics of an environment (i.e., an overall summation
better perceived than the individual parts). Perhaps the most well-known observer-based index in
stream ecology is the Stream Reach Inventory and Channel Stability Evaluation [61], also referred
to as the Pfankuch Stability Index (PSI). The PSI is used extensively for catchment assessment
and studies investigating relationships between channel stability and biota in North America and
internationally [62,63]. The PSI is calculated by summing the scores assigned to 15 attributes (weighted
in relation to their perceived importance) in three regions of the stream channel (i.e., upper banks,
lower banks, and stream bottom), according to the observer’s evaluation of predetermined criteria [61].
The PSI has been shown to be a highly efficient means of describing bed-stability characteristics, but
is prone to observer bias [64]. Despite using a technical workshop on field protocols to help ensure
consistency in the determination of the RCI across case-study basins, we still detected evidence for
differences in scoring arising from observer-specific judgements. For instance, field workers in Belgium
were unable to perceive differences between buffered and unbuffered sites in the soil quality attribute,
meaning we excluded this variable from our analyses of effect sizes (Figure 5). Other problems included
anthropogenic features in urban landscapes indicating that some attributes of the RCI (e.g., “bank
stability”) could be further modified to account for these properties. Overall, the RCI is an efficient and
useful measure of riparian ecological integrity as demonstrated here, but not without some limitations
(e.g., urban features, observer-specific biases). Despite these problems, the benefits for rapid habitat
assessment are evident, and the RCI could be used widely by practitioners and citizen scientists to
help monitor riparian ecological status.

4.2. Effects of Shading by Forested Riparian Buffers

A clear outcome from our analysis was the importance of forested riparian buffers for channel
shading (Figure 4). Whilst unsurprising, this is a non-trivial result because management of shade is
often seen as a key element in rehabilitating and restoring degraded streams [65,66]. Shading can
reduce proliferations of filamentous green algae and macrophytes that contribute to impaired ecological
status [67,68]. For example, excessive autotrophic biomass can increase ecosystem respiration in the
water-column and interstitial spaces of the streambed [69,70], potentially leading to adverse impacts
on pollution-sensitive EPT (Ephemeroptera, Plecoptera, Trichoptera) species through reductions in
dissolved oxygen concentrations [71]. Excessive algal growth can also smother benthic substrate, thus
reducing habitat availability for sensitive grazing mayflies and increasing abundances of tolerant taxa
that include oligochaetes and chironomids [72]. Consequently, negative effects of shading on aquatic
autotrophs may help explain why we saw a positive association between the RCI and ASPT indices
after accounting for upstream impacts that included nutrient concentrations (i.e., PC1).

Further, a central tenet of the CROSSLINK project is that riparian buffers help rehabilitate stream
habitats and enhance resilience for the impending problems posed by climate change [73]. Streams and
river ecosystems are sensitive to climate change because they are intimately linked with the global
hydrological cycle, are strongly influenced by atmospheric thermal regimes, and are frequently at
risk from interactions between warming and existing anthropogenic stressors [42,74,75]. The strong
influence of our forested riparian “buffers” in providing shade potentially also helps moderate stream
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temperatures; a pattern well supported by evidence [76–78]. For instance, planting deciduous riparian
trees along temperate streams as an adaptation to climate change can reduce temperatures by 2–3 ◦C
through channel shading [79]. Thus, our future analyses will be geared towards better understanding the
magnitude of temperature regulation in the presence of forested riparian buffers and the environmental
contingencies (e.g., water residence times) that influence this moderating influence.

4.3. Magnitude of Transition and Environmental Context

Cost effective ecosystem management requires consideration of additional stressors, both locally
and at whole catchment scales, that might limit or enhance the success of any given mitigation or
restoration measure, including the rehabilitation of riparian buffers [80]. In our example (Figure 6B,C),
the effect size of improved stream ecological status did not scale with the effect size of the improvement
in riparian condition (i.e., the magnitude of transition hypothesis). Instead, we saw evidence for
the overall effect size of improved stream ecological status by “buffering” becoming smaller when
the existing upstream state was more degraded, supporting the environmental context hypothesis.
However, adding another layer of complexity, we also detected a significant interaction between the
drivers representing the magnitude of transition and environmental context hypotheses. This result
indicated that the relationship between improved stream ecological status and the magnitude of
transition (i.e., the improvement in riparian condition) was dependent on the level of upstream human
impacts. Thus, although the maximum possible improvement in stream ecological status declined
overall with increasing upstream degradation, the potential for a larger relative improvement with
enhanced riparian management was more likely in degraded sites. Intriguingly, the negative influence
of improving riparian condition on the ASPT index at low levels of upstream degradation (Figure 7)
may have reflected a “subsidy-stress”-type response, where increased light availability in the more
open unbuffered sites conferred a benefit (sensu “subsidy”) to normally sensitive invertebrate taxa [81].
The subsidy-stress relationship describes how at low levels, anthropogenic perturbations may enhance
ecosystem functioning and species responses, whereas higher levels depress these responses [82].
Nonetheless, the pattern in our study (low upstream stress, negative response to riparian afforestation)
may also have reflected the distribution of data points, and a study in small Danish streams showed
there was no difference in invertebrate community composition between forested streams and sites in
open landscapes [83].

As a caveat, we only used one metric (i.e., the ASPT) as a response in our example.
In Burdon et al. [42], we found that ecological responses to the same environmental driver (i.e.,
here forested riparian buffers) was not only dependent on the environmental context but also the
community metrics used. Thus, remediation strategies aiming to improve stream ecological status by
rehabilitating degraded reaches not only need to consider upstream anthropogenic influences but also
the most appropriate indicators [42]. Future research will consider other ecological responses and better
describe riparian buffer properties and the key environmental contingencies that may alter responses
(e.g., catchment size, network position, etc.). However, our findings here as a proof of concept should
interest managers, because it suggests that the potential for improvement in stream ecological status
using forested riparian buffers may be greater in more degraded streams for certain ecological metrics,
provided sufficient effort goes into improving riparian conditions.

5. Conclusions

Acquiring a general, predictive understanding of ecological systems requires knowing how much
structural and functional relationships can cross scales and contexts to form broader patterns. Here we
introduced the BiodivERsA-funded project CROSSLINK that investigates questions about the role
of forested riparian buffers in human-impacted landscapes by measuring a wide range of ecosystem
attributes in stream and riparian habitats at a continental scale. Riparian zones are important because
they provide habitat for biodiversity and act as the interface between land and water, thus influencing
cross-habitat food-web interactions, system functioning, and the provision of ecosystem services



Water 2020, 12, 1178 20 of 24

in heterogenous landscapes. Our results have highlighted important attributes of forested riparian
buffers, which include the provision of habitat and shading of the stream channel. We also saw
evidence for improving stream ecological status through the presence of these landscape features,
and the potential for improvement in certain metrics (i.e., ASPT) may be greater in more degraded
streams, provided sufficient effort goes in to improving riparian conditions. Enhancing existing and
planting new forested riparian buffers as “nature-based solutions” is increasingly required in modified
catchments, where multiple pressures are causing ecological degradation and decreased resilience to
climate change. However, evidence for the multifunctionality of riparian buffers is needed to inform
and persuade regulators and land managers to implement effective nature-based solutions and devote
greater resources towards this goal [84]. Our introduction to CROSSLINK highlights the potential for
this project with its broad portfolio of ecosystem attributes to help improve management of forested
riparian buffers in human-impacted landscapes.
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