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Abstract: The application of statistical and Machine Learning models plays a critical role in planning 
and decision support processes for efficient and reliable Water Distribution Network (WDN) 
management. Failure models can provide valuable information for prioritizing system 
rehabilitation even in data scarcity scenarios, such as developing countries. Few studies have 
analyzed the performance of more than two models, and examples of case studies in developing 
countries are insufficient. This study compares various statistical and Machine Learning models to 
provide useful information to practitioners for the selection of a suitable pipe failure model 
according to information availability and network characteristics. Three statistical models (i.e., 
Linear, Poisson, and Evolutionary Polynomial Regressions) were used for failure prediction in 
groups of pipes. Machine Learning approaches, particularly Gradient-Boosted Tree (GBT), Bayes, 
Support Vector Machines and Artificial Neuronal Networks (ANNs), were compared in predicting 
individual pipe failure rates. The proposed approach was applied to a WDN in Bogotá (Colombia). 
The statistical models showed an acceptable performance (R2 between 0.695 and 0.927), but the 
Poisson Regression was the most suitable for predicting failures in pipes with lower failure rates. 
Regarding Machine Learning models, Bayes and ANNs exhibited low performance in the prediction 
of pipe failure condition. The GBT approach had the best performing classifier. 

Keywords: water distribution network; deterioration; pipe failure prediction; statistical and 
machine learning models; rehabilitation 

 

1. Introduction 

The main purpose of Water Distribution Networks (WDNs) is to supply water to the population 
in the required quantity and quality [1]. Factors such as climate change, deterioration of system 
components, uncertainty regarding the physical condition of the pipes, growing water demand, and 
economic restrictions increase the complexity of their management [2]. A proper strategy for 
operation, maintenance, and rehabilitation of WDNs needs to be developed to ensure efficient and 
reliable management. Therefore, improving the efficiency in water supply and leakage reduction in 
WDNs should be strategic priorities for the sustainable development of water resources [3,4].  

Pipe failures in WDNs may cause economic, environmental, and social costs resulting from 
water supply and traffic interruption, contaminant intrusion through the network, and loss of 
resources such as water and energy [5,6]. According to the United Nations, water utility assets in 
developing countries are more likely to be poorly managed due to inappropriate political 
administration and the increased pressure on the available water resources. Thus, the general lack of 
preventive maintenance plans has led to low-performing WDNs [7]. In Bogotá, Colombia’s capital 
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city, the water loss rate ranges between 40% and 50% [8]. The WDNs renewal plans have focused on 
replacing asbestos-cement, galvanized iron, and ductile iron pipes with new plastic materials such as 
polyvinyl chloride (PVC). However, an adequate renewal prioritization strategy has not being 
implemented. Instead, a reactive strategy is adopted in which a pipe is rehabilitated or replaced after 
the failure is detected, implying low efficiency and poor service quality. The effective renovation 
planning of the WDNs requires, among other things, an accurate quantification of the pipes’ 
structural deterioration. Pipeline inspection is frequently a difficult and expensive task. Hence, the 
application of statistical and ML models for pipe failure modeling constitutes an important tool for 
planning proactive rehabilitation strategies of WDNs. Even in limited data availability, predictive 
failure models can provide valuable information, helping to prioritize system rehabilitation [9].  

Predictive models can be classified into physical [10], statistical [11], and data-driven models [6]. 
In order to predict pipes’ propensity to breakage, physical models analyze the load applied to the 
pipes and their capacity to resist it along with the corrosion that appears on the internal and external 
walls [10,12]. Despite their accuracy, physical models compared with other approaches have 
significant data demands and require considerable economic resources for the quantification of pipe 
deterioration processes. Statistical models use available historical breakage data to identify pipe 
failure patterns [13]. These models are capable of linking failure patterns to the pipe descriptive 
variables (e.g., diameter, age, and length) [14]. Particularly, Alvisi and Franchini [15] used two 
probabilistic models, namely the Weibull Exponential model and the Weibull Proportional Hazard 
model, to predict the number of failures in a pipe over an observation period using pipe diameter, 
age, and length. The results showed that both models correctly estimated the number of failures. 

Wilson et al. [16] reviewed different statistical models (e.g., Logistic Regression and Proportional 
Hazard Model) for failure prediction in large-diameter pipes (i.e., greater than 500 mm). The authors 
concluded that the models were able to predict the failures of individual pipes or pipe segments with 
acceptable accuracy. Motiee and Ghasemnejad [17] used different variables, such as material, age, 
length, diameter, and hydraulic pressure, for implementing four statistical models (i.e., Linear 
Regression, Poisson Regression, Exponential Regression, and Logistic Regression) to generate 
relationships for pipe failure prediction. The results demonstrated that Logistic Regression exhibited 
the best performance accuracy in comparison to the other regression methods. 

Machine Learning (ML) methods, such as Artificial Neuronal Networks [18,19], Support Vector 
Machines [20], Fuzzy Logic [1], and boosting algorithms [21], have recently been used for pipe failure 
detection due to their ability to produce accurate results and simulate complex relationships between 
the variables that explain the pipe failure process [6]. Winkler et al. [9] proposed an approach to 
predict pipe failures based on boosted techniques (e.g., RUSboost, Adaboost, Random Forest, and 
Decision Trees), based on existing pipe attributes and historical failure records in a medium-sized 
city. While all the models showed high accuracy in predicting the condition of the pipe, the RUSboost 
algorithm was the best performing. Robles-Velasco et al. [22] compared Logistic Regression and 
SVMs to predict pipe failure in WDNs based on pipe material, length, age, number of connections in 
the pipe, pressure fluctuation, and the total number of failures. The results obtained showed that 
Linear Regression presented better performance than SVMs. Harvey et al. [23] used Artificial 
Neuronal Networks to predict the time to failure for individual pipes using pipe diameter, length, 
soil type, construction year, and the number of previous failures. The trained models exhibited 
correlation coefficients ranging from 0.7 to 0.82. 

In recent decades, several techniques have been applied to evaluate pipe failure in WDNs, but 
no considerable research effort has been devoted to finding a suitable model for pipe failure 
prediction according to the availability of information. To improve the understanding of the 
performance and limitations of pipe failure models, this study compares various statistical and 
Machine Learning models for a more comprehensive and accurate prediction of pipe failure. Three 
statistical models (Linear Regression, Poisson Regression, and Evolutionary Polynomial Regressions 
(EPR)) were used for pipe failure prediction based on diameter, pipe age, and pipe length as 
explanatory variables. The K-means clustering approach was considered to create pipe groups. ML 
approaches (i.e., Gradient-Boosted Tree (GBT), Bayes, Support Vector Machines (SVMs), and 
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Artificial Neuronal Networks (ANNs)) were compared in terms of predicting individual pipe failure 
rates. The pipe attributes, and environmental and operational variables were included as input 
variables. The proposed approach was applied to a WDN in Bogotá (Colombia). 

2. Materials and Methods 

2.1. Methodology 

2.1.1. Statistical Models 

Three statistical models, including Linear Regression, Poisson Regression, and EPR are used to 
estimate the number of expected failures in pipe groups. These models are selected because they 
produce explicit polynomial expressions, which provide a high level of correlation between input 
variables and the dependent variable [11,14]. Linear Regression is an extension of regression analysis 
that includes independent variables as explanatory in a predictive equation. In the linear regression 
model, the value of the dependent variable ranges at a constant rate as the value of the independent 
variable increases or decreases. Thus, the equation of a straight line exhibits the relationship between 
the true value of Y and Xi, as shown in Equation (1) [24]. 

 Y = βo + β1X1 + ... + βjXj + ϵi (1) 

where Yi is the dependent variable, Xj  are the independent variables, βj are the coefficients to be 

estimated, and ϵ  is the error term that represents the deviation of the conditional mean to the 
observation.  

Poisson Regression is a count data model which describes the number of failures for a given time 
and can consider the non-negativity integer nature of the dependent variable [25]. It is assumed that 
the failures at a year (t) for a pipe i follow a Poisson distribution with mean intensity λi,t . The 
probability of having ki,t failures can be estimated as follows [26]. 

P ki,t =
λi,t

ki,t  * exp(-λi,t)
ki,t!  (2) 

where λi,t = exp (βo + β1X1 + … + βjXj), Xj  are the independent variables, βj are the coefficients to be 

estimated, and ki,t is the number of failure events. 
EPR is a hybrid regression method that combines conventional regression techniques and 

genetic programming, producing a range of equations in trade-off between the number of polynomial 
terms and accuracy [14]. EPR consists of two main stages: (1) the exploration of the best model 
structure using a multiobjective genetic algorithm and (2) the estimation for parameters for an 
assumed model structure using the least-squares method [5]. The general form of the ERP model is 
expressed in Equation (3) [27]. 

y = F Xk , f Xk , aj  + ao

m

j=1

 (3) 

where y is the dependent variable, Xk are the independent variables, aj are the parameters to be 
estimated, ao is an optional bias, F is the function constructed by the EPR model, f is the function 
selected by the user, and m is the maximum number of polynomial terms. 

The pipes’ data is processed by removing attributes considered irrelevant to the prediction task 
(e.g., pipe ID) and those with missing values (e.g., pipe depth). The K-means clustering approach is 
applied to create pipe groups with similar characteristics. Following this approach, K clusters are 
created assigning n data samples to them. The required inputs are the data samples, the number of k 
clusters, and the stopping condition. The formulation of the clusters is based on the principle of 
maximizing intracluster similarity and minimizing intercluster similarity [14]. Therefore, the 
algorithm starts from an initial distribution of clusters’ centroids, such that they are as distant as 
possible from each other, and determines which centroid is closest to each data point. All data points 
are assigned to its nearest cluster. Then, the clusters’ centroids are recalculated as the arithmetic mean 
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of all its assigned data points. This process is replicated either until no data points can be assigned to 
a closer cluster or until the stopping condition is achieved [28]. 

The Euclidean distance is selected as the objective function of the dissimilarity measure. This 
function, based on the Euclidean distance between a vector xk in a group Gi, and the corresponding 
cluster center ci, is defined in Equation (4) [29]. Further, the optimal center that minimizes Equation 
(4) is expressed in Equation (5). 

J = Ji = ‖xk - ci‖2

k,xk∈Gi

c

i=1

C

I=1

 (4) 

ci = 1|Gi| xk
k,xk∈Gi

 (5) 

where Ji = ∑ ∑ ‖xk - ci‖2
k,xk∈Gi

c
i = 1  is the objective function within group Gi and |Gi| is the size of 

Gi. 
Data are grouped using pipe diameter, age, and length based on the premise that pipes with 

similar characteristics are expected to have the same breakage pattern [13]. Consequently, each pipe 
takes a number of failures and a length equal to the total lengths and the total number of failures for 
the individual pipes of the same group. The Davies–Bouldin criterion is used to select the optimal 
number of clusters (K). This criterion is based on the ratio between the distances within-clusters and 
between-clusters. The Davies–Bouldin Index (DBI) is a measure that evaluates the separation 
between the ith and the jth cluster. The DBI has proven a suitable measure to evaluate the clustering 
performance [30,31]. It can be calculated by means of Equation (6) [32]. According to the Davies–
Bouldin criterion, the best clustering partition is the one that minimizes the DBI. 

DBI = 
1
K maxi≠j 

di + dj

di,j

K

i=1

 (6) 

where K is the number of clusters, di is the average distance between each data point of the ith cluster 
and the centroid of the respective cluster (similarly to dj), and di,j is the Euclidean distance between 
the centroids of the clusters i and j.  

Training and test datasets are built randomly. The models are trained on 70% of the available 
data and tested on the remaining 30%. The K-fold cross-validation technique is used to minimize the 
risk of overfitting [14]. This technique divides the dataset randomly into k-partitions and, at each step, 
it uses one partition for testing and the rest for training [33]. The explanatory variables of the models 
are pipe diameter (in mm), total length (in m), and pipe age (in years), while the dependent variable 
is the total number of failures (FR). The performance of each model is compared using the coefficient 
of determination (R2) and the root mean square error (RMSE), defined as follows. 

R2 = ∑ (yp,i - yi
n
i=1 ) yo,i - yo

2

∑ yp,i - yp

2 ∑ (yo,i - n
i=1

n
i=1 yo)2  

 (7) 

RMSE = ∑ yp,i - yo,i

2
 n

i=1

n  
(8) 

where yp,i =  prediction value for the sample i, yo =  mean value of measurements, yo,i = 
measurement value for the sample i, yp = mean value of predictions, and n = number of data 

samples. 

2.1.2. Machine Learning Models 

ML approaches, namely GBT, Bayes, SVMs, and ANNs, are compared in predicting individual 
pipe condition. ML techniques are classified into two main categories: supervised learning and 
nonsupervised learning. The selected models are categorized as supervised learning. Within such 
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learning, the ML algorithm receives the inputs and intends to converge to the best classifier. These 
methods can learn the patterns of the underlying process from past data and generalize the 
relationships between input and output data to predict or estimate an output given a new set of input 
variables [34]. Inputs capture the application of concepts, instances, and variables. An instance then 
is an independent example of the concept, and comprises a set of variables. 

GBT is a forward-learning ensemble method that obtains predictive results through gradually 
improved estimations, which combines the performance of many weak classifiers from previous 
iterations to produce a powerful one [35]. After each boosting iteration, misclassified data have their 
weights increased and, for correctly classified data, their weights decreased. The output of the GBT 
model can be written as shown below [36]. 

T x;Θ = ∑ yjχ
J
j = 1 Rj(x) (9) 

where j is the size of the tree, Rj is the region associated with the jth leaf after space partition imposed 
by the tree, yj is the label associated with Rj, χ is the characteristic function, and Θ, consisting of 

(yj, Rj), are the estimated parameters during training. 

Bayes is a graphic approach that represents a probabilistic relationship between a set of variables 
utilized to forecast the behavior of a system based on an observed process [37,38]. This model is 
composed of (a) a set of variables and links between the variables, (b) a set of states for each variable, 
and (c) an assigned conditional probability for each variable. This model has the advantage of 
demanding less estimated parameters. Given a scenario comprising Ai (i = 1, 2, …, n) independent 
variables and an observed data Y, the Bayes formula can be written as shown in Equation (10) [38]. 

P Ai|Y  = p Y|Ai *p(Ai)∑ p Y Aj  p Ajj
 (10) 

where P Ai|Y  is the posterior occurrence of the probability of A given the condition that Y occurs, 
p(Ai)  is the prior occurrence of the probability Ai , and p Y Aj  the conditional occurrence 
probability of Y given that A occurs. 

In addition, SVM is a supervised learning technique based on the principle of optimal separation 
classes. The SVM method builds a linear model called maximum margin hyperplane, which provides 
the greatest separation between instances with different values of the dependent variable [39]. 
Datasets containing instances that cannot be separated with a straight line are projected into a higher-
dimensional space through a kernel function. Common kernels are the polynomial, hyperbolic 
tangent, and radial basis functions. The SVM model is presented in Equations (11)–(13) [22]. 

min
w,b,e

 w2

2  + Csvc ϵi

N

i=1

 (11) 

Subject to the constrains: yi wT, ⦰ xi  + b  ≥ 1 - ∈i, i = 1,…, N (12) 

and ∈i ≥ 0, i = 1,…, N (13) 

where ⦰ xi  is the kernel used to transform the data from the input to the high-dimensional space, 
Csvc is a regularization parameter, w is the weight vector to the hyperplane, and b is the hyperplane 
offset parameter. ∈i represents the slack variables measuring the degree of misclassification, and x 
and y are the data points of the dataset with N points. 

ANNs are parametric regression estimators that use an iterative process to adjust weights and 
biases within their layers to recognize patterns between inputs and outputs [1]. Particularly, 
Multilayer Perceptron Networks (MLP) are fully connected networks comprised of several nodes or 
neurons organized in input and output layers, as well as hidden layers. The principle of MLP is based 
on summarizing input signals with a suitable weight, considering that each neuron is activated by a 
function. Common activation functions are the sigmoid logistic, tangent sigmoid, and linear 
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functions. The signals are transferring from node i to node j and the output signal (e.g., pipe condition 
or failure rate) is described by the relation shown below [40].  

yi= f  ∑ wij * xi + bi
N
j = 1    where i,j = 1, 2, …, N (14) 

where xi  are the input signals or the explanatory variables, wij are the synaptic weights, and f is the 
neuron activation function that simulates the information transmission.  

The pipes’ data is processed as described above. Table 1 provides an overview of the explanatory 
variables adopted for the models’ training. The selected variables are separated into nominal and 
numerical, and the nominal are changed to a numeric type. In the process, the nominal variables 
become into real-valued attributes. For example, land use can be classified as (a) residential, (b) 
commercial, (c) industrial, and (d) institutional. The four categories of the variable are converted into 
one variable coded as (a) 0 for residential use, (b) 1 for commercial use, (c) 2 for industrial use, and 
(d) 3 for institutional use. Then, land use is converted to a variable with numeric integer values from 
0 to 3. The dataset is divided randomly into training and test datasets, as is described previously. K-
fold cross-validation technique is also applied to decrease the risk of overfitting.  

Table 1. Explanatory variables for Machine Learning (ML) models. 

Variable Name Type Description 
Physical Diameter Numerical Pipe diameter in mm 

 Age Numerical Pipe age in years 
 Length Numerical Pipe length in m 

Environmental Moisture content Nominal Soil moisture content (continually wet, 
generally moist and generally dry) 

 Soil contraction and 
expansion potential 

Nominal 
Soil contraction and expansion 

potential (very low, low, moderate, and 
high) 

 Precipitation Numerical Precipitation in m 

Operational Land use Nominal Land use (residential, commercial, 
industrial, and institutional) 

 Valves Numerical Number of valves on the pipe 

 Hydrants Numerical 
Number of hydrants connected to the 

pipe 

 Previous failures Numerical 
Number of previous failures recorded 

on the pipe 

The models are used to establish the predictions of pipe condition (i.e., failure or nonfailure). 
For the GBT model, the parameters that must be established are the number of boosting iterations 
(M), the size of each tree (J), and the learning rate (λ). Experiences suggest that values of J ranging 
between 4 and 8 work properly in the context of boosting, with results being insensitive to particular 
choices in this range [41]. In addition, the learning rate varies between 0 and 1. Empirically, it has 
been found that smaller values of λ (lead to larger values of M) can decrease the test error. An 
automated trial and error approach is adopted to select the best tree configuration [35]. To select the 
parameters, a 10-fold cross-validation is carried out varying J between 4 and 8, and the learning rate 
between 0.1 and 0.5.  

Concerning the SVMs, the parameters that must be defined are the capacity (C), gamma (γ), and 
epsilon (ε). The capacity (C) is a coefficient that regulates the trade-off between the training errors 
and the prediction risk minimization. Higher values of C lead to higher weights assigned to 
misclassifications [34]. The γ parameter is a coefficient that controls the complexity of the solution 
and ε is the loss function that describes the regression vector without all the input data [42]. Thus, an 
automated trial and error approach is adopted for testing polynomial, radial, and neural kernel 
functions. A 10-fold cross-validation is carried out varying the capacity from 0.1 to 50, and γ between 
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0.1 and 20. The radial kernel is implemented as the kernel function, and the combination of 
parameters that produce the best classification is selected.  

Regarding the ANNs, the parameters that must be defined are the number of input layers, the 
number of hidden layers, the neurons in the hidden layers, the training cycles, the learning rate, and 
the activation function. Thus, the number of input layer is defined as the number of explanatory 
variables. The number of hidden layers is selected on the basis that additional layers produce 
additional errors. The literature suggests using one or two hidden layers [43,44]. The typical sizes of 
the learning rate range between 0.01 and 0.6 and the most common activation functions are logistic 
and sigmoid [44]. Furthermore, the number of neurons can be calculated using the following 
equation. 

HL = 
Ni  + Nc

2  + 1  (15) 

where HL is the number of hidden layers, Ni is the number of input variables, and Nc is the number 
of classes. An automated approach is adopted to choose the best ANN configuration considering one 
or two hidden layers with eight neurons. Several activation functions are tested (i.e., exponential, 
logistic, sigmoid, and hyperbolic tangent). For each model, the selected values of the parameters are 
presented in Appendix A.  

The performance of the ML methods is evaluated using accuracy, confusion matrices, and 
receiver operating characteristic (ROC) curves. Accuracy is estimated as the fraction of correct 
predictions to the total predictions [9], as shown in Equation (16). The confusion matrix, presented in 
Table 2, provides more information on model performance because it categorizes the results 
according to predictions and observations. Pipes that are correctly classified as fail are represented 
by true positive (TP) and pipes correctly classified as not fail, by true negative (TN). Incorrect 
classifications are described by false negative (FN), which occurs when the model predicts that the 
pipe does not fail, but is broken, and false positive (FP), when a pipe does not fail, but is predicted to 
fail. 

Accuracy = (TP + TN)
(TP + TN + FP + FN) (16) 

Table 2. Confusion matrix for a binary classification task. 

  Predicted Condition 
  Yes No Recall 

Actual condition 

Yes True positive (TP) False negative (FN) TP/P 
No False positive (FP) True negative (TN) TN/N 

Precision  TP/(TP + FP) TN/(TN + FN)  
 Total positive  Total negative   

A set of alternative metrics, particularly true positive rate (TPR), true negative rate (TNR), false 
positive rate (FPR), false negative rate (FNR), and the F-measure, can be used for assessing the 
predictive capability of the models. The TPR, or recall, measures the percentage of right predictions 
made from the class of interest (i.e., the failed pipes). The TNR gives the percentage of correct 
classification of the other class (i.e., the pipes that do not fail). Similarly, the FPR represents the 
proportion of all negatives incorrectly classified as positive, and the FNR evaluates the positives 
incorrectly classified as negatives. The rates presented are related to each other thought the equations 
FNR + TPR = 1 and FPR + TNR = 1 [45]. Finally, the F-measure compares the models’ performance in 
terms of recall and precision (i.e., a measure of exactness) using a factor that controls their relative 
importance. The F-measure, precision, and recall tend to 1 as the models’ performance increases [46]. 
The metrics are defined below. 

TPR = Sensitivity = Recall = 
TP

TP + FN (17) 
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TNR = Specificity = TN
TN + FP (18) 

FPR = 1 - Specificity (19) 

FNR = 1 - Sensitivity (20) 

F-measure =
2 × Precision × Recall

Precision + Recall  (21) 

The ROC curve is a helpful technique for visualizing and selecting the most suitable model based 
on performance [47]. This curve is obtained by plotting the TPR as a function of the FPR (Figure 1), 
considering different probability thresholds to make class predictions [39]. The ROC curve is 
considered reliable when the curve is over the 45° line. Perfect classification is graphically defined by 
the union of two lines, corresponding to FPR equal to 1 and TPR equal to 1 [9]. 

 
Figure 1. The receiver operating characteristic (ROC) curve. 

Generally, a baseline probability threshold, where any pipe with a predicted probability of 
failure greater than 50% will be assigned as failed, is used to train the models. A new threshold can 
be determined using Youden’s J index. 

J = Sensitivity + Specificity - 1 = TPR + TNR −  1  (22) 

This index allows a new threshold that is closest to the optimal model. Youden’s J index does 
not modify the trained model as the same parameters are being used, and it is only employed to 
increase the sensitivity of the model to the minority class of interest [48].  

2.2. Case Study 

The proposed models were applied to a WDN in Bogotá (Colombia), presented in Figure 2. The 
WDN has 61,251 pipes with an overall network length of 1819 km and 28,671 house connections. The 
network has different pipe materials, distributed as follows: polyvinyl chloride (70.6%), asbestos-
cement (24.2%), high-density polyethylene (2.7%), cast iron (0.9%), and others (1.6%). The average 
pipe is 29 years old, including the 11,442 pipes that have been in operation for over 40 years. The 
oldest pipes on the network are asbestos-cement (see Figure 2), and the majority of the pipes installed 
within the past 10 years are made of polyvinyl chloride (PVC). Pipe diameters range from 50.8 to 
609.6 mm and approximately 51% of the pipes have a diameter ranging between 50.8 and 76.2 mm. 
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Figure 2. Case study area in southern Bogotá (Colombia). 

Pipe failure records, available from 2012 to 2018, were provided by the city’s water utility service 
(EAB). Figure 3 shows the relationship between failures and the pipes’ characteristics. A preliminary 
analysis showed that pipes with diameters of between 50.8 and 76.2 mm exhibited the highest failure 
rate (see Figure 3a). Commonly, the number of failures in small diameter pipes exceeds that of larger 
diameter pipes [5,49]. The main reason for the higher frequency of failure in small diameter pipes has 
been attributed to decreased pipe strength to ground movement and corrosion because of reduced 
wall thickness [50]. As presented in Figure 3b, the older pipes showed a higher number of failures. 
Failure rates can be expected to be higher in the months following the installation. Then, the rates are 
lower for several years, before increasing with the age of the pipe [50]. Pipe deterioration with age is 
known to occur. Nevertheless, the relationship between the pipe age and the failure rate is not clear 
due to manufacturing process, installation and operational practices, and environmental conditions. 
In the network, the average age of pipe failure is 34 years. The analysis also exhibited that the failure 
rate increased with the pipe length (see Figure 3c). Boulos et al. [51] concluded that short pipes broke 
less than longer pipes because a short pipe length limits the effects of transient surge pressure because 
junctions cause pressure wave reflections.  

In addition, Figure 3d shows the number of failures per material normalized by the total number 
of pipes of each material. Failure records revealed that 67.8% of the failed pipes are made of asbestos-
cement and 28.3% of PVC. The failure rate of pipe materials is determined by the material’s flexibility, 
method of manufacture, and manufacturing processes [50]. It was expected that PVC pipes have a 
lower failure rate than asbestos-cement pipes because plastic materials were the last to be introduced, 
and their quality has improved significantly over the years. The higher number of failures exhibited 
by asbestos-cement and PVC pipes also depends on the material distribution, which is described 
above. Based on these findings, only asbestos-cement and PVC pipes are considered for the analysis. 
As each type of material has a specific deterioration pattern [9,52], independent (per material) 
analyses were carried out for each.  
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(a) (b) 

 

(c) 

 

(d) 

Figure 3. Relationship between: (a) Pipe diameter and failures normalized by the number of pipes of 
each diameter; (b) Pipe age and failures normalized by the number of pipes of each age range; (c) Pipe 
length and failures normalized by the number of pipes of each length range; (d) Pipe material and 
failures normalized by the total of pipes of each material. 

3. Results and Discussion 

3.1. Statistical Models 

Regarding the statistical models, the K-means clustering approach was applied to separate the 
data into a number of specified clusters based on pipe diameter, length, and age. Other variables 
were excluded as using the pipes’ attributes helps to obtain models with greater statistical 
significance [5,53]. To determinate the optimal number of clusters, the Davies–Bouldin criterion was 
applied. Thus, the data were divided into six groups for asbestos-cement pipes and four groups for 
PVC pipes. The DBI calculated for the clustering was 0.6478 and 0.6322 for asbestos-cement and PVC 
pipes, respectively. The K-means algorithm was run using different initializations of centroids, and 
the partition that produced the lower sum of squared distance was chosen. Optimal partitions results 
and the distribution of the data set for the number of clusters calculated are shown in Figure 4. The 
diameter was the variable that most influenced the partition, followed by the length. The data points 
of each cluster have a high similarity to each other in terms of diameter and length. As shown in 
Figure 4, the clusters are composed of pipes with different ages, which could mean that age is not 
being a good indicator of the pipe condition. 
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Figure 4. Data clustering: (a) Asbestos-cement pipes and (b) polyvinyl chloride (PVC) pipes. 

Tables 3 and 4 summarize the obtained results for the statistical models. By comparison, the 
regression coefficients associated with the explanatory variables are relatively different among 
materials. The latter is because the pipe deterioration process is different among materials. Factors 
such as construction methods, corrosion processes, and environmental conditions can affect the 
relationship between pipe age, diameter, length, and number of failures for each material. Other 
authors have also observed differences in the fitted values of the variables from one to another 
material [49,54]. From the reported values, pipe length proved to be highly relevant in the observed 
failure events. The applied methods showed an inverse relationship between the diameter and the 
number of failures. Furthermore, pipe length has a positive relationship with the number of failures. 
These relationships are consistent with previous research [5,49,53]. In contrast, three of the equations 
exhibited a positive relationship between pipe age and the failures, while the remaining presented 
an inverse relationship. This is a counterintuitive result, considering that older pipes are most likely 
to fail. However, this can be explained by the fact that many pipes are older than the point in time 
when pipe failures began to be recorded [14]. Other authors have attributed this result to the fact that 
only measurable variables are included in the models. Variables such as quality and strength of the 
material are not measured, but their change can produce variations in pipe performance from one 
age to another [14,55].  

Table 3. Results for Linear and Poisson regression. 

Variable 

Asbestos-Cement PVC 
Linear 

Regression 
Poisson 

Regression Linear Regression Poisson Regression 𝜷 p-Value 𝜷 p-Value 𝜷 p-Value 𝜷 p-Value 
Diameter (mm) −0.457 0.000 −0.074 0.000 −0.401 0.000 −0.009 0.000 

Length (km) 2.707 0.000 0.034 0.000 0.919 0.000 0.002 0.000 
Age (years) 0.162 0.000 −0.001 0.008 0.679 0.000 −0.001 0.000 

Intercept n/a n/a 4.466 0.001 n/a n/a 5.810 0.000 
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Table 4. Results for Evolutionary Polynomial Regressions (EPR). 

Material Equation 
Asbestos-cement FR = 0.202 L1.5 / DA2  

PVC FR = 0.00795 LA0.5/ D0.5 
L = Length (m), A = Age (years) and D = Diameter (mm). 

Table 5 presents a summary of the statistical models’ performance. All the models showed 
acceptable performance on both training and testing datasets. Poisson Regression performs best 
according to R2 and RMSE. These results confirmed that the Poisson Regression’s ability for 
generalization (i.e., the model’s ability to adapt properly to a new range of inputs) is better than that 
of the other techniques. The advantage of the Poisson Regression is to recognize the non-negative 
nature of the predicted variable. The application of this model is suitable for predicting failures in 
pipes with lower failure rates, such as pipes with large diameters and small lengths. 

Table 5. Comparison of model performance. 

Performance Metric Dataset Linear Regression Poisson Regression EPR 
R2 Train data 0.693 0.923 0.877 
 Test data 0.695 0.927 0.885 

RMSE Train data 45.31 22.87 31.12 
 Test data 44.93 22.09 31.10 

Because the number of failures should be assessed for each pipe over a certain period, the models 
trained cannot be used directly for calculating the failure rate for an individual pipe because they are 
aggregated. The individual failure rate (λi) for a given observation period (T) is calculated by 
considering the pipe length (Li), the total class length (Lgroup), and the failures predicted for the group 
(FRgroup) [5]. 

λi  = 
FRgroup

T *
Li

Lgroup
   (23) 

It is important to clarify that the failure rate does not consider the burst history of the individual 
pipe but the group of pipes. The accuracy of the individual failure rate predictions based on different 
pipe characteristics is compared in Figure 5. For the asbestos-cement pipes, Linear Regression 
underestimated the failure rate in most cases. The limitation of this model is more evident in younger 
pipes and pipes with larger diameters (see Figure 5a,b). Additionally, Poisson Regression and EPR 
showed adequate precision when calculating the failure rate in different age ranges and pipe 
diameters. Regarding the PVC pipes, the predicted capability of EPR is limited for the small pipe 
diameters (i.e., 76.2 mm), as shown in Figure 5c. This prediction has substantially improved for 
Poisson and Linear Regression. All the models show reasonable accuracy when calculating the failure 
rate in the different age ranges (see Figure 5d). Based on the results, the Poisson Regression is better 
than the two other models, while the quality of the Linear Regression and EPR are similar.  
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Figure 5. Average observations and predictions of failure rate based on: (a) Asbestos-cement pipe 
diameter; (b) Asbestos-cement pipe age; (c) PVC pipe diameter; (d) PVC pipe age. 

Based on the results, the best performance models were used to represent pipe failure rates in 
the WDN and classify them in different ranges to identify more vulnerable regions. Figure 6 shows 
the spatial distribution of the failure rates. The results showed that 4% and 5% of the pipes have a 
high failure rate in the current and predicted condition, respectively. The water utility service must 
pay attention to those pipes and take an appropriate preventive approach (e.g., maintenance or 
replacement after inspection). Further, for both current and predicted conditions, most of the pipes 
exhibit low failure rates. The approach presented above is useful for pipe failure prediction when 
information about other variables different from pipe attributes (e.g., environmental and operational 
variables such as water pressure and temperature) is not available. It is recommended to determine 
an appropriate group size according to the data characteristics to ensure that the aggregation process 
has statistical significance.  
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Figure 6. Failure rate prediction in asbestos-cement and PVC pipes. 

3.2. Machine Learning Models 

With respect to ML models, Table 6 summarizes the accuracy and the F-measure for the trained 
models evaluated on the test data. Tables 7 and 8 summarize the confusion matrices for the trained 
models. All the models used a baseline probability threshold where any pipe with a predicted failure 
probability of greater than 50% would be assigned as failed. Although the accuracy was higher than 
93%, the confusion matrices revealed that ANNs focused on correctly classifying the majority class, 
namely the pipes that do not fail. Thus, ANNs gave only 39% of correct classifications for asbestos-
cement failing pipes and 7.14% for PVC failing pipes. Overall accuracy may not afford a reliable 
performance indicator for models trained using an imbalanced dataset (i.e., when most of the pipes 
do not fail) because it can provide an incorrect impression of the capabilities to predict the minority 
class condition, in this case, the failing pipes. In contrast, the F-measure has demonstrated its 
usefulness to test the models’ performance when an imbalanced dataset is used for training. 
According to this metric, GBT and SVM showed acceptable performance. 

Table 6. Accuracy and the F-measure. 

Model 
Accuracy F-measure 

Asbestos-Cement PVC Asbestos-Cement PVC 
Bayes 94.83% 93.69% 25.66% 6.26% 
GBT 99.52% 99.79% 72.00% 46.43% 
SVM 99.47% 99.83% 66.67% 52.18% 
ANN 98.99% 99.61% 42.10% 7.40% 

In contrast, Bayes and GBT exhibited the best performance considering the TPR (e.g., 0.894 and 
0.546 for asbestos-cement, respectively). The models with the lowest FPR were SVMs (0.179 for 
asbestos-cement and 0.333 for PVC) and GBT (0.265 for asbestos-cement and 0.535 for PVC). For 
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failure prediction, conservative models are preferred because they reduce the pipes replacement cost 
before the end of their service life [9]. Although SVMs and GBT have a lower TPR compared to Bayes, 
using these models does not affect the rehabilitation strategies because not all pipes predicted to fail 
would be replaced immediately. 

Table 7. Confusion matrices for the asbestos-cement pipes test sample. 

Bayes 
Predicted 

GBT 
Predicted 

Yes No Recall 
(%) 

Yes No Recall 
(%) 

Actual 

Yes 39 6  

Actual 

Yes 27 14  
No 220 4106 86.67 No 7 4323 65.85 

Precision 
(%) 15.06 99.85 94.91 Precision (%) 79.41 99.68 99.84 

SVM 
Predicted 

ANN 
Predicted 

Yes No 
Recall 

(%) Yes No 
Recall 

(%) 

Actual 

Yes 23 18 56.10 

Actual 

Yes 16 25 39.02 
No 5 4325 99.88 No 19 4311 99.56 

Precision 
(%) 

82.14 99.59  Precision (%) 45.71 99.42  

Table 8. Confusion matrices for the PVC pipes test sample. 

Bayes 
Predicted 

GBT 
Predicted 

Yes No Recall 
(%) 

Yes No Recall 
(%) 

Actual 
Yes 27 1 96.69 

Actual 
Yes 13 15 46.43 

No 807 11977 96.43 No 15 12769 99.88 
Precision (%) 3.24 99.99  Precision (%) 46.43 99.88  

SVM 
Predicted 

ANN 
Predicted 

Yes No Recall 
(%) Yes No Recall 

(%) 

Actual 
Yes 2 26 7.14 

Actual 
Yes 12 16 42.86 

No 24 12760 99.81 No 6 12778 99.95 
Precision (%) 7.69 99.80  Precision (%) 66.67 99.87  

Figure 7 shows the ROC curves for the trained models. The caption provides information about 
the area under the curve (AUC), which is a quantity that falls in the range between zero and one that 
integrates over the respective ROC function [9]. Thus, if a comparison is made between models, the 
most effective model is the one with the largest AUC. For asbestos-cement pipes, the ROC curves for 
the four selected models are relatively close. GBT achieves the highest AUC (0.998), which indicates 
that this method is well suited for pipe failure prediction, and ANNs exhibit the lowest AUC (0.984). 
Concerning PVC pipes, ROC curves for GBT and Bayes are notably close, with the most reliable 
prediction model being GBT (see Figure 7). The results showed that these models discriminate better 
between failing pipes and nonfailing ones because its curve is always above the 45° line. Additionally, 
GBT exhibited the highest AUC and ANNs, the lowest.  

As previously mentioned, all the trained models use a baseline probability of 50%. A new 
threshold can be determined using Youden’s J index. The value of the index for the GBT method was 
0.57 and 0.54 for asbestos-cement and PVC pipes, respectively. The result suggested that, when 
applying GBT, acceptable predictions can be obtained for the failing pipes without sacrificing a 
reasonable level of accuracy for the pipes that do not fail. 



Water 2020, 12, 1153 16 of 22 

 

 

(a) 

 

(b) 

Figure 7. ROC curve for failure pipes: (a) Asbestos-cement pipes; (b) PVC pipes. 

By comparison, GBT exhibited better performance than the other models. This approach has the 
advantage of providing greater importance to the misclassified pipes in each iteration, so it not only 
focuses on correctly classifying the pipes that do not fail. As compared to SVM, GBT provides a higher 
level of readability and transparency of the result, and identifies the relevance of the explanatory 
variables. Additionally, Bayes was demonstrated to be an effective model for classifying the failing 
pipes. Despite this, the model showed the highest FNR (0.848 and 0.967 for asbestos-cement and PVC 
pipe datasets, respectively) and the lowest F-measure (25.66% and 6.26% for asbestos-cement and 
PVC pipe datasets, respectively). As mentioned earlier, the application of models with low FNR is 
preferable.  

Results also showed that the imbalance dataset significantly compromised the ability of ANNs 
to correctly classify the failing pipes. The low predictive capability is most evident in PVC pipes (F-
measure of 7.40%), as these pipes are less likely to fail, and they have been installed more recently. 
St. Clair et al. [56] and Wu et al. [6] mention that the data requirement is the main limitation of the 
ANNs. 

Figure 8 shows the importance of the variables for the GBT model, where high values indicate 
high relevance for the prediction process. The most important variables were the number of previous 
failures, length, and precipitation. Some authors found that the number of previous failures was a 
significant variable for predicting future failure rates and demonstrated their impact on the 
occurrence of new pipe failures [37,47,57]. Oliveira et al. [58] concluded that inadequate repairs of 
breaks might produce new failures close to the previous ones. Besides, Debón et al. [47] and Winkler 
et al. [9] also observed that pipe attributes, such as age, length, and diameter, are significant variables 
for failure prediction. The other environmental and operational selected variables were not 
particularly significant in the modeling process (see Figure 8). It is necessary to consider that because 
of the procedure’s data dependency, the importance of the variables is representative of this case 
study and not for the pipe failure process.  



Water 2020, 12, 1153 17 of 22 

 

 
Figure 8. Comparison of explanatory variable relative importance. 

Because the other selected approaches cannot identify the significant variables in the modeling 
process, the backward elimination technique was used to recognize the relevance of the variables. 
This technique begins with a full model that contains all the selected variables for the modeling 
process. Variables are then removed one by one from the full model until all remaining variables are 
considered to have some significant contribution to the outcome [59]. The soil moisture content, soil 
contraction and expansion potential, and number of valves and hydrants connected to the pipe were 
the variables not considered for the asbestos-cement trained models. For the PVC pipes, the soil 
moisture content and soil contraction and expansion potential were eliminated from the SVM model. 
Further, the land use, soil moisture content, and soil contraction and expansion potential were 
excluded from the ANN model. In general, the results showed that environmental variables, such as 
the soil moisture content, land use, and soil contraction and expansion potential, have no pleasing 
effect on pipe failure modeling.  

The GBT models trained were selected as the final classifiers due to their performance. A 
sensitivity analysis of GBT to the input variables was performed to provide information on its 
generalizability. The analysis was carried out considering the effects of variation in values of only 
one input, while the others remained constant. The results showed that the GBT model trained for 
asbestos-cement pipes is more sensitive to changes in the diameter, age, and the number of previous 
failures. An increase in the diameter, precipitation, and number of valves generates an increment in 
the number of failing pipes. The GBT model trained for PVC pipes is more sensitive to the number 
of previous failures, precipitation, and the number of hydrants. Modification of the other variables 
does not affect the outcome of pipes predicted to fail.  

Based on the results, the final GBT models trained are used to predict the failure probability of 
individual pipes in the WDN. This prediction focuses on a specific pipe and its characteristics, which 
enables an understanding of a single pipe failure pattern. Figure 9 shows the pipes’ deterioration 
pattern in the WDN. The results revealed that around 0.17% of the pipes have a high probability of 
failure in the present condition. For those pipes, it is necessary to use the appropriate maintenance or 
replacement strategies to avoid failure. Likewise, for both current and predicted conditions, most of 
the pipes exhibit low failure probability. The analysis of the probability values made it possible to 
establish that, when comparing the current condition with the predicted condition, there was a 28% 
increase in the number of pipes with failure probabilities of between 0.6 and 0.8, and an 18% increase 
in the pipes with failure probabilities of between 0.8 and 1.0.  

According to Figure 9, it is important to highlight that some pipes do not deteriorate as expected, 
as their condition improves with age. This can be explained by the fact that, when the age of the pipe 
is increased, observations outside of the training data are generated. Thus, the model requires an 
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extrapolation of the predictions [9]. Although it is not intuitive, a decrease of the failure probability 
can be observed in reality. Some authors associate a higher failure rate with a pipe’s initial service 
life. [9,60]. Martinez-Codina et al. [61] performed a study to determine the relationship between pipe 
failure causes and processes. Based on the experimental analyses, they observed that the failure 
probability amounted to a higher rate in the first years of service life than in the later years. 

 
Figure 9. Predictions of the failure probability in asbestos-cement and PVC pipes. 

The best performance models (i.e., Poisson regression for group pipe analysis and the GBT 
approach for individual pipe analysis) were applied to another WDN in Bogotá (Colombia). The 
WDN has 20,793 pipes with an overall network length of 652 km. The network has different pipe 
materials, distributed as follows: polyvinyl chloride (74.5%), asbestos-cement (25%), and concrete 
cylinder pipes (0.19%). Pipe diameters range from 50.8 to 406.4 mm, and 40% of the pipes have a 
diameter of 76.2 mm. In addition, approximately 75% of the pipes have an age ranging between 41 
and 50 years. Pipe failure records are available from 2015 and 2017. A preliminary analysis showed 
that pipes with a diameter of 76.2 mm and an age of over 40 years exhibited the highest failure rate. 
Failure records revealed that 65% of the failed pipes are made of asbestos-cement and 34% of PVC. 

Regarding the group pipe analysis, data were divided into four groups for both asbestos-cement 
and PVC pipes. Results show an R2 of 0.452 for asbestos-cement pipes and 0.724 for PVC pipes. For 
the individual pipe analysis, results gave only 4% correct classifications for asbestos-cement pipe 
failure and 15% for PVC pipe failure. These results and other findings in previous studies underline 
the need for each WDN to develop its own failure model [1,62]. All the networks have substantive 
differences, and the effect of specific variables in the models is dependent on the WDN characteristics. 

4. Conclusions 

In this paper, the performance of several statistical and ML models in predicting pipe failure in 
WDNs was evaluated. Three statistical models, including Linear Regression, Poisson Regression, and 
Evolutionary Polynomial Regressions, were used for failure prediction based on pipe diameter, pipe 
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age, and length as explanatory variables. ML approaches, including Gradient-Boosted Tree (GBT), 
Bayes, Support Vector Machine, and Artificial Neuronal Networks (ANNs), were compared in terms 
of their capability to predict individual pipe condition. Pipe attributes, and environmental and 
operational variables were included as input variables. The selected case study was a highly 
populated area in Bogotá with a large WDN. 

The results of the statistical models showed that the cluster-based prediction approach reduces 
the prediction error for pipe failure when information about variables other than pipe attributes is 
not available. All the models demonstrated acceptable results in terms of their performance (R2 
between 0.695 and 0.927 and RMSE between 45 and 22 for the test sample), but the application of 
Poisson Regression was the most suitable for predicting failures in pipes with lower failure rates. 
Regarding ML models, all methods but the ANNs presented acceptable performance. The GBT 
approach presented the best performing classifier (ACU of 0.998 and 0.990 for the test sample of 
asbestos-cement and PVC pipes, respectively). The GBT model has a greater ability to accurately 
predict pipe failure when an imbalanced database is used. Furthermore, the assumptions and trade-
offs of the GBT model are more transparent than in other artificial intelligence techniques.  

Using the abovementioned predictive models earlier could significantly reduce the time and 
money allocated to the identification of deteriorated pipes. The group-pipe failure analysis is useful 
when the available data is limited. In contrast, the individual-pipe approach makes it possible to 
consider the single pipe failure history, which is of great importance for establishing an individual 
pipe’s propensity to fail. The knowledge provided by this study is especially important for water 
utility as it provides information that helps to prioritize a proactive rehabilitation strategy, making it 
more efficient and profitable. Future work will include the application of the modeling approach to 
a more detailed dataset that incorporates other variables such as water pressure and temperature, 
which affect the pipe failure process [63,64]. It is also recommended to evaluate the effect of the 
failures’ spatial correlation [65]. 
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Appendix A 

Table A1. GBT parameters. 

Parameter 
Value 

Asbestos-Cement pipes PVC Pipes 
Number of trees 300 300 
Maximal depth 5 4 
Learning rate 0.3 0.1 

Table A2. SVM parameters. 

Parameter 
Value 

Asbestos-Cement pipes PVC Pipes 
Gamma  5.0 10.0 

C 10.0 30.0 
Epsilon 0.001 0.001 
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Table A3. ANNs parameters. 

Parameter 
Value 

Asbestos-Cement Pipes PVC Pipes 
Input layers 10 10 

Hidden layers 2 1 
Hidden layer neurons 8 8 

Training cycles 2000 2000 
Learning rate 0.2 0.2 

Activation function of hidden layers Sigmoid Sigmoid 
Activation function of the output layer Sigmoid Sigmoid 

References 

1. Tabesh, M.; Soltani, J.; Farmani, R.; Savic, D. Assessing pipe failure rate and mechanical reliability of water 
distribution networks using data-driven modeling. J. Hydroinform. 2009, 11, 1–17. 

2. Martins, A.; Leitão, J.P.; Amado, C. Comparative study of three stochastic models for prediction of pipe 
failures in water supply systems. J. Infrastruct. Syst. 2013, 19, 442–450. 

3. Giudicianni, C.; Herrera, M.; di Nardo, A.; Carravetta, A.; Ramos, H.M.; Adeyeye, K. Zero-net energy 
management for the monitoring and control of dynamically-partitioned smart water systems. J. Clean. Prod. 
2020, 252, 119745. 

4. Ilaya-Ayza, A.E.; Martins, C.; Campbell, E.; Izquierdo, J. Implementation of DMAs in intermittent water 
supply networks based on equity criteria. Water 2017, 9, 851. 

5. Berardi, L.; Giustolisi, O.; Kapelan, Z.; Savic, D.A. Development of pipe deterioration models for water 
distribution systems using EPR. J. Hydroinform. 2008, 10, 113–126. 

6. Wu, Y.; Liu, S. A review of data-driven approaches for burst detection in water distribution systems. Urban 
Water J. 2017, 14, 972–983. 

7. Nogueira Vilanova, M.R.; Filho, P.M.; Perrella Balestieri, J.A. Performance measurement and indicators for 
water supply management: Review and international cases. Renew. Sustain. Energy Rev. 2014, 43, 1–12. 

8. El Tiempo El 36% del Agua Que se Consume en Bogotá No se Factura. Available online: 
https://www.eltiempo.com/bogota/empresa-de-acueducto-y-alcantarillado-de-bogota-habla-de-la-las-
facturas-que-no-se-pagan-99578 (accessed on 22 June 2018). 

9. Winkler, D.; Haltmeier, M.; Kleidorfer, M.; Rauch, W.; Tscheikner-Gratl, F. Pipe failure modelling for water 
distribution networks using boosted decision trees. Struct. Infrastruct. Eng. 2018, 14, 1402–1411. 

10. Rajani, B.; Kleiner, Y. Comprehensive review of structural deterioration of water mains: Physically based 
models. Urban Water 2001, 3, 151–164. 

11. Scheidegger, A.; Leitão, J.P.; Scholten, L. Statistical failure models for water distribution pipes—A review 
from a unified perspective. Water Res. 2015, 83, 237–247. 

12. Pelletier, G.; Milhot, A.; Villeneuve, J.P. Modeling water pipe breaks—Three case studies. J. Water Resour. 
Plan. Manag. 2003, 129, 115–123. 

13. Rajani, B.; Kleiner, Y. Comprehensive review of structural deterioration of water mains: Statistical models. 
Urban Water 2001, 3, 131–150. 

14. Kakoudakis, K.; Behzadian, K.; Farmani, R.; Butler, D. Pipeline failure prediction in water distribution 
networks using evolutionary polynomial regression combined with K-means clustering. Urban Water J. 
2017, 14, 737–742. 

15. Alvisi, S.; Franchini, M. Comparative analysis of two probabilistic pipe breakage models applied to a real 
water distribution system. Civ. Eng. Environ. Syst. 2010, 27, 1–22. 

16. Wilson, D.; Filion, Y.; Moore, I. State-of-the-art review of water pipe failure prediction models and 
applicability to large-diameter mains. Urban Water J. 2017, 14, 173–184. 

17. Motiee, H.; Ghasemnejad, S. Prediction of pipe failure rate in Tehran water distribution networks by 
applying regression models. Water Sci. Technol. Water Supply 2019, 19, 695–702. 

18. Jafar, R.; Shahrour, I.; Juran, I. Application of Artificial Neural Networks (ANN) to model the failure of 
urban water mains. Math. Comput. Model. 2010, 51, 1170–1180. 

19. Zangenehmadar, Z.; Moselhi, O. Assessment of Remaining Useful Life of Pipelines Using Different 
Artificial Neural Networks Models. J. Perform. Constr. Facil. 2016, 30, 04016032. 



Water 2020, 12, 1153 21 of 22 

 

20. Aydogdu, M.; Firat, M. Estimation of Failure Rate in Water Distribution Network Using Fuzzy Clustering 
and LS-SVM Methods. Water Resour. Manag. 2015, 29, 1575–1590. 

21. Shirzad, A.; Safari, M.J.S. Pipe failure rate prediction in water distribution networks using multivariate 
adaptive regression splines and random forest techniques. Urban Water J. 2019, 16, 653–661. 

22. Robles-Velasco, A.; Cortés, P.; Muñuzuri, J.; Onieva, L. Prediction of pipe failures in water supply networks 
using logistic regression and support vector classification. Reliab. Eng. Syst. Saf. 2020, 196, 106754. 

23. Harvey, R.; McBean, E.A.; Gharabaghi, B. Predicting the timing of water main failure using artificial neural 
networks. J. Water Resour. Plan. Manag. 2014, 140, 425–434. 

24. Ott, L. An Introduction to Statistical Methods and Data Analysis, 5th ed.; Duxbury and Wadsworth Publishing 
Co.: Belmont, CA, USA, 2001; Volume 34. 

25. Winkelmann, R. Econometric Analysis of Count Data, 5th ed.; Springer: Berlin, Germany, 2013; pp. 63–74. 
26. Kleiner, Y.; Nafi, A.; Rajani, B. Planning renewal of water mains while considering deterioration, economies 

of scale and adjacent infrastructure. Water Sci. Technol. Water Supply 2010, 10, 897–906. 
27. Giustolisi, O.; Savic, D.A. A symbolic data-driven technique based on evolutionary polynomial regression. 

J. Hydroinform. 2006, 8, 207–222. 
28. Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. 
29. Kim, S.E.; Seo, I.W. Artificial Neural Network ensemble modeling with conjunctive data clustering for 

water quality prediction in rivers. J. Hydro-Environ. Res. 2015, 9, 325–339. 
30. Xiao, J.; Lu, J.; Li, X. Davies Bouldin Index based hierarchical initialization K-means. Intell. Data Anal. 2017, 

21, 1327–1338. 
31. Wang, G.; Wang, Z.; Chen, W.; Zhuang, J. Classification of surface EMG signals using optimal wavelet 

packet method based on Davies-Bouldin criterion. Med. Biol. Eng. Comput. 2006, 44, 865–872. 
32. Davies, D.; Bouldin, D. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 2, 224–

227. 
33. Nicolas, P.R. Scala for Machine Learning: Leverage Scala and Machine Learning to Construct and Study Systems 

that Can Learn from Data, 1st ed.; Packt Publishing: Birmingham, UK, 2014; p. 57. 
34. Sousa, V.; Matos, J.P.; Matias, N. Evaluation of artificial intelligence tool performance and uncertainty for 

predicting sewer structural condition. Autom. Constr. 2014, 44, 84–91. 
35. Friedman, J. Additive Logistic Regression: A Statistical View of Boosting. Ann. Stat. 2000, 28, 337–374. 
36. Theodoridis, S. Classification: A tour of the classics. In Machine Learning; Theodoridis, S., Ed.; Academic 

Press: London, UK, 2015; pp. 275–325. 
37. Kabir, G.; Tesfamariam, S.; Francisque, A.; Sadiq, R. Evaluating risk of water mains failure using a Bayesian 

belief network model. Eur. J. Oper. Res. 2015, 240, 220–234. 
38. Ogutu, G.A.; Okuthe, P.K.; Lall, M. A review of probabilistic modeling of pipeline leakage using Bayesian 

Networks. J. Eng. Appl. Sci. 2017, 12, 3163–3173. 
39. Harvey, R.R.; McBean, E.A. Comparing the utility of decision trees and support vector machines when 

planning inspections of linear sewer infrastructure. J. Hydroinform. 2014, 16, 1265–1279. 
40. Kutyłowska, M.; Hotloś, H. Failure analysis of water supply system in the Polish city of Głogów. Eng. Fail. 

Anal. 2014, 41, 23–29. 
41. Hastie, T.; Tibshirani, R.; Friedman, J. Linear Methods for Classification, 2nd ed.; Springer: New York, NY, 

USA, 2009; pp. 353–361. 
42. Belayneh, A.; Adamowski, J. Standard Precipitation Index Drought Forecasting Using Neural Networks, 

Wavelet Neural Networks, and Support Vector Regression. Appl. Comput. Intell. Soft Comput. 2012, 2012, 
794061. 

43. Naser, J.A. Neural networks—A brief introduction. Proc. Am. Power Conf. 1991, 53, 943–945. 
44. Theodoridis, S. Neural Networks and Deep Learning. In Machine Learning; Theodoridis, S., Ed.; Academic 

Press: London, UK, 2015; pp. 875–936. 
45. Laakso, T.; Kokkonen, T.; Mellin, I.; Vahala, R. Sewer condition prediction and analysis of explanatory 

factors. Water 2018, 10, 1239. 
46. Luciani, C.; Casellato, F.; Alvisi, S.; Franchini, M. Green Smart Technology for Water (GST4Water): Water 

loss identification at user level by using smart metering systems. Water 2019, 11, 405. 
47. Debón, A.; Carrión, A.; Cabrera, E.; Solano, H. Comparing risk of failure models in water supply networks 

using ROC curves. Reliab. Eng. Syst. Saf. 2010, 95, 43–48. 



Water 2020, 12, 1153 22 of 22 

 

48. Harvey, R.R.; McBean, E.A. Predicting the structural condition of individual sanitary sewer pipes with 
random forests. Can. J. Civ. Eng. 2014, 41, 294–303. 

49. Jenkins, L.; Gokhale, S.; McDonald, M. Comparison of pipeline failure prediction models for water 
distribution networks with uncertain and limited data. J. Pipeline Syst. Eng. Pract. 2015, 6, 04014012. 

50. Barton, N.A.; Farewell, T.S.; Hallett, S.H.; Acland, T.F. Improving pipe failure predictions: Factors effecting 
pipe failure in drinking water networks. Water Res. 2019, 164, 114926. 

51. Boulos, P.F.; Karney, B.W.; Wood, D.J.; Lingireddy, S. Hydraulic transient guidelines for protecting water 
distribution systems. J. Am. Water Work. Assoc. 2005, 97, 111–124. 

52. Ahmadi, M.; Cherqui, F.; Aubin, J.B.; Le Gauffre, P. Sewer asset management: Impact of sample size and 
its characteristics on the calibration outcomes of a decision-making multivariate model. Urban Water J. 2016, 
13, 41–56. 

53. Xu, Q.; Chen, Q.; Li, W.; Ma, J. Pipe break prediction based on evolutionary data-driven methods with brief 
recorded data. Reliab. Eng. Syst. Saf. 2011, 96, 942–948. 

54. Asnaashari, A.; McBean, E.A.; Shahrour, I.; Gharabaghi, B. Prediction of watermain failure frequencies 
using multiple and Poisson regression. Water Sci. Technol. Water Supply 2009, 9, 9–19. 

55. Boxall, J.B.; O’Hagan, A.; Pooladsaz, S.; Saul, A.J.; Unwin, D.M. Estimation of burst rates in water 
distribution mains. Proc. Inst. Civ. Eng. Water Manag. 2007, 160, 73–82. 

56. St. Clair, A.M.; Sinha, S. State-of-the-technology review on water pipe condition, deterioration and failure 
rate prediction models! Urban Water J. 2012, 9, 85–112. 

57. Kleiner, Y.; Rajani, B. Comparison of four models to rank failure likelihood of individual pipes. J. 
Hydroinform. 2012, 14, 659–681. 

58. De Oliveira, D.P.; Garrett, J.H.; Soibelman, L. A density-based spatial clustering approach for defining local 
indicators of drinking water distribution pipe breakage. Adv. Eng. Inform. 2011, 25, 380–389. 

59. Ratner, B. Variable selection methods in regression: Ignorable problem, outing notable solution. J. Target. 
Meas. Anal. Mark. 2010, 18, 65–75. 

60. Davies, J.P.; Clarke, B.A.; Whiter, J.T.; Cunningham, R.J. Factors influencing the structural deterioration 
and collapse of rigid sewer pipes. Urban Water 2001, 3, 73–89. 

61. Martínez-Codina, Á.; Gómez, P.; de la Fuente, G. Relación entre las causas y los modos de fallo de tuberías 
en la red de distribución de Canal de Isabel II en Madrid. Rev. Iberoam. Agua 2018, 5, 16–28. 

62. Demissie, G.; Tesfamariam, S.; Sadiq, R. Prediction of pipe failure by considering time-dependent factors: 
Dynamic Bayesian belief network model. J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2017, 3, 04017017. 

63. Rajani, B.; Kleiner, Y.; Sink, J.E. Exploration of the relationship between water main breaks and temperature 
covariates. Urban Water J. 2012, 9, 67–84. 

64. Wols, B.A.; van Thienen, P. Impact of climate on pipe failure: Predictions of failures for drinking water 
distribution systems. Eur. J. Transp. Infrastruct. Res. 2016, 16, 240–253. 

65. Pulido, E.S.; Arboleda, C.V.; Rodríguez Sánchez, J.P. Study of the spatiotemporal correlation between 
sediment-related blockage events in the sewer system in Bogotá (Colombia). Water Sci. Technol. 2019, 79, 
1727–1738. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


