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Abstract: The engineering applications of two-dimensional (2D) hydrodynamic models are restricted
by the enormous number of meshes needed and the overheads of simulation time. The aim of this
study is to improve computational efficiency and optimize the balance between the quantity of
grids used in and the simulation accuracy of 2D hydrodynamic models. Local mesh refinement and
a local time stepping (LTS) strategy were used to address this aim. The implementation of the LTS
algorithm on a 2D shallow-water dynamic model was investigated using the finite volume method
on unstructured meshes. The model performance was evaluated using three canonical test cases,
which discussed the influential factors and the adaptive conditions of the algorithm. The results of
the numerical tests show that the LTS method improved the computational efficiency and fulfilled
mass conservation and solution accuracy constraints. Speedup ratios of between 1.3 and 2.1 were
obtained. The LTS scheme was used for navigable flow simulation of the river reach between the
Three Gorges and Gezhouba Dams. This showed that the LTS scheme is effective for real complex
applications and long simulations and can meet the required accuracy. An analysis of the influence
of the mesh refinement on the speedup was conducted. Coarse and refined mesh proportions and
mesh scales observably affected the acceleration effect of the LTS algorithm. Smaller proportions of
refined mesh resulted in higher speedup ratios. Acceleration was the most obvious when mesh scale
differences were large. These results provide technical guidelines for reducing computational time
for 2D hydrodynamic models on non-uniform unstructured grids.

Keywords: two-dimensional hydrodynamic model; local time stepping; unstructured grids; numerical
simulation; computational efficiency

1. Introduction

The numerical simulation of shallow water flow is frequently used in flood forecasting,
river regulation, and flood-control planning [1]. Given the need for better accuracy and breadth
of shallow-water simulations in engineering applications, a balance between the number of cells,
simulation accuracy, and computational time needs to be found. Addressing this issue using
optimization of the solving algorithm [2–4] has received much research attention, as has the use of
computer hardware acceleration and parallel computing technology [5–7].

The local mesh refinement technique is especially efficient for balancing the number of grids and
the accuracy of the simulation. It is flexible and allows grids to be arranged according to different
engineering concerns, while retaining a high level of refinement in regions requiring detail, such as
where flows change sharply or where there are key features. A coarse mesh is used in general or
slow-flowing areas. Consequently, the simulation accuracy can be ensured with only a small increase
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in the number of grids. This technique has been broadly used in engineering applications involving
shallow-water flow simulations [8–12]. However, the time step must strictly satisfy the model solution,
which is obtained using the Courant–Friedrichs–Lewy (CFL) stability condition. When using a locally
refined mesh, the global time stepping (GTS) size is limited by the time step of the refined mesh,
which markedly increases the overall computation time.

In response to this issue, Osher and Sanders [13] proposed a local time stepping (LTS) algorithm
for solving the one-dimensional (1D) scalar conservation equations. In each cell, a locally allowable
maximum time step satisfying the CFL stability condition was adopted to minimize the computational
time. This effectively deals with the complexity of the lag caused by the heterogeneous time step.
Tan and Huang [14] developed an efficient adaptive mesh refinement (AMR) with an LTS algorithm
for 1D nonlinear hyperbolic problems. Crossley et al. [15,16] successfully applied the LTS technique
to the modeling of open channel flows using 1D Saint-Venant equations; their results for unsteady
shallow-water equations with LTS met the required accuracy. Consequently, the use of LTS algorithms
has enabled significant progress in 1D hydrodynamic simulations. Compared with 1D models for
simulating long and wide rivers, two-dimensional (2D) hydrodynamic models are better suited to
complex terrains and provide more precise simulation results. Dazzi et al. [17,18] used AMR to
implement an LTS algorithm in the numerical simulation of 2D shallow-water flow for a steady-state
test case, a circular dam break case, and a Tacker test case. Using the time step of each cell and the CFL
condition, they evaluated whether the cell’s current time step met the CFL condition. If the condition
was not met, then the rule of degrading the time-step rank was implemented, which involved a dynamic
inspection of the time step for each cell over the whole computational domain. Wu et al. [19] adopted
the LTS technique to avoid excessive storage when modeling three-dimensional (3D) fluid dynamics
using the discontinuous finite element method. The powerful function of 3D models determines their
complex and elusive performance. At present, hydrodynamic modeling is dominated by 2D modeling,
which can provide sufficiently reliable results, such as for river navigation.

Nevertheless, recent research has paid increasing attention to this aspect with a suitable treatment
of unstructured grids and has yielded promising results. Although the numerical procedure has
unique advantages in terms of mesh generation, storage, use of elements, capturing of specific
physical phenomena, and computational efficiency, the boundaries of such regular grids are too
generalized and are not geometrically adaptable. Furthermore, the computational accuracy of the
boundaries is extremely rough and neglects terrain changes, and is thus limited in its scope. The use of
unstructured grids provides highly adaptable solutions for complex terrains. Unstructured grids can
incorporate a region’s boundaries and constraints using mesh density control in continuous regions.
Consequently, unstructured grids play a dominant role in grid generation technology. Using the
Runge–Kutta discontinuous Galerkin finite element method, Trahan and Dawson [20] applied LTS to
the shallow-water equations and incorporated rainfall, wetting, and drying into the model. Using
LTS, Hu et al. [21] established a new coupled model, which had high computational efficiency,
for sediment-laden flows. The computational domain was discretized using unstructured triangular
meshes. The inter-cell numerical fluxes were estimated using the Harten–Lax–van Leer–Contact
(HLLC) approximate Riemann solver. The model used by Hu et al. was applied to the Taipingkou
waterway of the Yangtze River and achieved a 92% reduction in computational cost without loss
of quantitative accuracy. To solve the problem of mass conservation linked to time splitting in LTS
algorithms, Michael [22] improved the finite volume method (FVM) using a deformation correction
to achieve local mass conservation, while a row-oriented sub-stepping was proposed to deal with
Courant numbers larger than one.

Despite several successful studies based on the LTS algorithm, the computation of flux at the cells
with different time-step levels has not been dealt with clearly in recent research. The calculation of the
unit variables at the interface is difficult because the use of the local time-step invariably leads to time
faults. The calculation of element variables at the interface is crucial but is difficult because of time
splitting errors in the LTS algorithm. Implementation of the LTS algorithm on unstructured grids is
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also valuable for advancing the knowledge base. No specific comparison of the acceleration efficiency
of the LTS algorithm has been demonstrated in the existing research. To address these issues, the LTS
technique was applied in the establishment of a high-efficiency, 2D, shallow-water, dynamic model
using the FVM and unstructured grids. Experiments were performed to verify the flux approximation
at the interface, to assess the accuracy of the results, and to analyze the feasibility analysis of the LTS
algorithm for complex applications. Model evaluation was performed using 2D simulations of two
instantaneous dam break test cases and engineering applications that simulate the navigable flow of
the river reach between the Three Gorges and Gezhouba Dams. These tests show the acceleration
effect, influencing factors, and the adaptive conditions of the LTS algorithm.

2. Methods

2.1. Global Time Stepping Scheme

2.1.1. Governing Equation

The governing equations used herein are the 2D shallow-water equations (SWEs), written in
conservation form [23]:

∂U
∂t

+
∂F(U)

∂x
+
∂G(U)

∂y
= S0(U, x, y) + S f (U, x, y) (Ω × [0, Ts]). (1)

In the present study, the modified form of the SWEs was selected to guarantee that the scheme
was well-balanced. The variables follow from

U =


h

hu
hv
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√

u2+v2

h4/3

,
where U is the vector of conserved variables; F and G are the tensors of fluxes in the x and y directions,
respectively; S0 and S f are the bed and friction slope source terms, respectively; x and y represent the
spatial horizontal coordinates; u and v represent the average velocity components from integration of water
depth in the x and y directions, respectively; h is the flow depth; zb is the bed elevation above the datum;
g represents the acceleration related to gravity; n is Manning’s roughness coefficient; Ts is the duration.

2.1.2. Numerical Technique

Because of the nonlinear characteristics of the SWEs, the analytical solution cannot be obtained
generally but can be approximated by numerical discretization. The FVM was used to discretize
the governing equation. The computational region was discretized into several points. With these
points as the center, the whole computational domain was divided into several interconnected but
non-overlapping control volumes. By integrating the basic equation with each control volume, a set of
algebraic equations with the unknown quantity on the calculation node was obtained. A triangular
mesh was used to discretize the computational domain to adapt the boundary conditions for a complex
terrain. The cell-centered mode was used in the calculations, which means that the physical variables
are defined in the center of the control volume [24], as shown in Figure 1.
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physical variables are defined at the grid center, where ௞is the kth control volume; 𝒏 is the unit 
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To improve the adaptability of the model to complicated terrain conditions, the source term 
reflecting the bottom topography was managed using an eigen-decomposition method, while 
upwind treatment was applied to balance the interface flux [30,31]: 

Figure 1. Schematic diagram of the two-dimensional model with finite volume discretization: physical
variables are defined at the grid center, where Ωk is the kth control volume; n is the unit normal vector;
p(i, j) is a grid point; and ∆lkj is the length of a side.

Integration of Equation (1) over the area of the governing volume Ω, gives∫
Ωi

(
∂U
∂t

+∇·E
)
dΩ =

∫
Ωi

(
S0 + S f

)
dΩ. (2)

In Equation (2), E = [F, G] represents a 2D matrix.
The volume integral is transformed to a line integral along the edge of the control volume using

Gauss’ formula
∆uk
∆t

∆sk = −

∫
lk

E·ndl +
∫

Ωk

(
S0 + S f

)
dΩ, (3)

where Uk is the average value of the governing cell; lk is the edge of the kth control volume Ωk; ∆sk is
the area of each calculation cell; n is the unit vector of the normal direction outside the edge.

After discretization of Equation (3), the following formula is obtained:

∆U = −
∆t
∆sk

3∑
j=1

(
Ekj, nkj

)
∆lkj +

∆t
∆sk

S, (4)

where ∆lkj is the length of each side (using triangular grids, j = 1, 2, 3); and Ekj and nkj represent the
numerical fluxes and the external normal unit vector of edge j. S0 =

∫
Ωi

S0dΩ and S f =
∫

Ωi
S f dΩ =

∆skS f represent the integral values of the bed and friction slope source terms in the mesh cell,

respectively. The notation
(
Ekj, nkj

)
denotes the inner product.

Commonly used approximate Riemann solvers for the discontinuous problem include the Osher,
Roe, Harten–Lax–van Leer (HLL), and HLLC schemes [25]. In the present study, the fluxes at the
interface of the governing cell were estimated using the Roe scheme. The physical variables UL and UR

on the interface of the left and right grid were determined to solve the Riemann discontinuity problem.
The flux expression is defined as follows [26–29]:

E·n =
1
2
[(F, G)R·n + (F, G)L·n− |̃J|(UR −UL) ], (5)
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where J̃ = ∂(E·n)
∂U is the Roe average of the Jacobian matrix. The three eigenvalues of the Jacobian matrix

are λ̃k(k = 1, 2, 3), while the related eigenvectors are ẽk. The left and right interface conservative form
variables are UL and UR, respectively.

To improve the adaptability of the model to complicated terrain conditions, the source term
reflecting the bottom topography was managed using an eigen-decomposition method, while upwind
treatment was applied to balance the interface flux [30,31]:

S0 =
3∑

j=1

3∑
k=1

[
1
2
(1− sign(λ̃k))βkẽkl j]

j
, (6)

where sign() is the sign function. In this case, β1 = − 1
2 c̃Z̃b, β2 = 0, and β3 = 1

2 c̃Z̃b. Furthermore, c̃ is
the average velocity given by the Roe scheme; and Z̃b =

1
2 [(Zb)L + (Zb)R]; while (Zb)L and (Zb)R are

the bottom elevations of the left and right side, respectively.
An explicit scheme that discretizes the frictional slope source term was carried out to increase

the stability of the computation. Eventually, the variation of the conservation after undergoing ∆t
was obtained.

∆U = I
∆t
A
[(−

3∑
j=1

E jn jl j) +
3∑

j=1

3∑
k=1

(
1
2

(
1− sign(λ̃k)

)
βkẽkl j)

j + ∆tSn
f ], (7)

where I is the unit matrix. Superscripts n and n + 1 refer to the current and updated time levels,
respectively. ∆t is the globally permissible time step, which must be computed according to the CFL
stability condition [32]:

∆tg
i = Cr min

j=1,2,3
(

di, j√
u2

i + v2
i +

√
ghi

), (8a)

∆t = min
(
∆tg

i

)
, (8b)

where i is the computational cell index, with values of 1, 2, . . . , Ne. The term Ne refer to the total
number of computational grid elements; di, j is the distance from the center of the cell (triangle centroid)
to the three sides; ui and vi are the velocities in the x and y directions, respectively, of cell i; hi is the
flow depth of cell i. The Courant number Cr was set to 0.8.

In the traditional GTS algorithm, the time step ∆t is equal to the minimum value for the whole
computational domain and is proportional to the size of the grid elements. When the scale of each
mesh element varies markedly, the uniform time-step restriction will severely reduce the efficiency of
the model operation. Therefore, it is essential to explore an efficient method in which the time-step
changes with the mesh size and satisfies the CFL conditions.

2.2. Local Time Stepping Scheme

The key approach in the LTS algorithm is to advance each cell with a time step as close as possible
to its maximum allowable value while satisfying the stability of the CFL condition. The algorithm
reconstructs the time-step level of each cell with the aim of reducing the computational load of coarse
grids, consequently saving computational time. Figure 2 compares the implementation of GTS versus
LTS algorithms. The LTS algorithm differs in two aspects: reconstructing the local time step of each
cell (Section 2.2.1) and updating values of the conserved variables ∆U (Section 2.2.2).



Water 2020, 12, 1148 6 of 24

Water 2020, 12, x FOR PEER REVIEW 5 of 24 

𝑆଴ = ∑ ∑ [ଵଶଷ௞ୀଵଷ௝ୀଵ (1 − 𝑠𝑖𝑔𝑛(𝜆ሚ௞))𝛽௞𝑒̃௞𝑙௝]௝, (6) 

where 𝑠𝑖𝑔𝑛() is the sign function. In this case, 𝛽ଵ = − ଵଶ 𝑐̃𝑍෨௕, 𝛽ଶ = 0, and 𝛽ଷ = ଵଶ 𝑐̃𝑍෨௕. Furthermore, 𝑐̃ is the average velocity given by the Roe scheme; and 𝑍෨௕ = ଵଶ [(𝑍௕)௅ + (𝑍௕)ோ]; while (𝑍௕)௅ and (𝑍௕)ோ are the bottom elevations of the left and right side, respectively. 
An explicit scheme that discretizes the frictional slope source term was carried out to increase 

the stability of the computation. Eventually, the variation of the conservation after undergoing Δ𝑡 
was obtained. Δ𝑈 = 𝐈 ୼௧஺ [൫− ∑ 𝐄௝𝐧௝𝑙௝ଷ௝ୀଵ ൯ + ∑ ∑ (ଵଶ ቀ1 − 𝑠𝑖𝑔𝑛൫𝜆ሚ௞൯ቁ 𝛽௞𝑒̃௞𝑙௝)௝ + Δ𝑡𝑆௙௡]ଷ௞ୀଵଷ௝ୀଵ , (7) 

where 𝐈 is the unit matrix. Superscripts 𝑛 and 𝑛 + 1 refer to the current and updated time levels, 
respectively. Δ𝑡 is the globally permissible time step, which must be computed according to the 
CFL stability condition [32]: Δ𝑡௜௚ = 𝐶𝑟 min௝ୀଵ,ଶ,ଷ( ௗ೔,ೕට௨೔మା௩೔మାඥ௚௛೔), (8a) ∆𝑡 = min (∆𝑡௜௚), (8b) 

where 𝑖 is the computational cell index, with values of 1, 2… 𝑁௘. The term 𝑁௘ refer to the total 
number of computational grid elements; 𝑑௜,௝  is the distance from the center of the cell 
(triangle centroid) to the three sides; 𝑢௜  and 𝑣௜  are the velocities in the 𝑥  and 𝑦 
directions, respectively, of cell 𝑖; ℎ௜ is the flow depth of cell 𝑖. The Courant number 𝐶𝑟 was 
set to 0.8. 

In the traditional GTS algorithm, the time step ∆𝑡 is equal to the minimum value for the 
whole computational domain and is proportional to the size of the grid elements. When the scale of 
each mesh element varies markedly, the uniform time-step restriction will severely reduce the 
efficiency of the model operation. Therefore, it is essential to explore an efficient method in which 
the time-step changes with the mesh size and satisfies the CFL conditions. 

2.2. Local Time Stepping Scheme 

The key approach in the LTS algorithm is to advance each cell with a time step as close as 
possible to its maximum allowable value while satisfying the stability of the CFL condition. The 
algorithm reconstructs the time-step level of each cell with the aim of reducing the computational 
load of coarse grids, consequently saving computational time. Figure 2 compares the 
implementation of GTS versus LTS algorithms. The LTS algorithm differs in two aspects: 
reconstructing the local time step of each cell (Section 2.2.1) and updating values of the conserved 
variables ∆𝑈 (Section 2.2.2). 

 
Figure 2. Flow diagram showing global time stepping (GTS) and local time stepping (LTS) algorithms.
In the GTS scheme, each cell is updated with the same time step ∆t, while in the LTS scheme, a locally
allowable maximum time step (∆tb

i ) is used for updating variables in each cell.

2.2.1. Reconstructing the Local Time Step of Each Cell

This procedure is defined as follows:
(1) Compute the initial time step ∆t∗i
The ∆t∗i of each cell satisfying the CFL condition is computed via Equation (9a):

∆t∗i = Cr min
j=1,2,3

(
di, j

√
u2 + v2 +

√
gh

), (9a)

where u and v are the maximum velocities in the x and y directions, respectively; and h is the maximum
water depth.

Next, calculate the minimum time step ∆tr in the whole computational domain:

∆tr = min
(
∆t∗i

)
. (9b)

(2) Set an initial temporal resolution level for each cell
In terms of the CFL condition, the initial time step ∆t∗i in cell i is proportional to the mesh scale di, j.

Taking the minimum time step ∆tr over the whole computational domain as the reference standard,
a binary logarithmic function is selected as the conversion tool. Each cell is classified based on its initial
time step ∆t∗i , with the allocation of an initial time-step level m∗i , reflecting the mesh scale and having
integer values of 1, 2, 4, 8, 16, 32, 64, . . . The initial m-level distribution map is shown in Figure 3a.

m∗i = int(log2

(∆t∗i
∆tr

)
), (10)

where the function of int() is to obtain the maximum integer that does not exceed the given number.
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(3) Modify the time-step level
The initial m-level distribution calculated by Equation (10) is usually scattered and broken (see

Figure 3a), especially within the transition zone between coarse and refined grids. This distribution
varies dramatically because of the large difference in mesh size. Appropriate measures need to be
taken to smooth the transition and to reduce mass and momentum errors in these zones related to
the calculation of conserved variables at interfaces between cells with different m-levels. The initial
m-levels are modified via Equation (11a), which produces a buffer zone.

mi = min
(
m∗i , mi,1, mi,2, mi,3

)
, (11a)

where mi, j(j = 1, 2, 3) is the time-step level of the three neighboring cells of cell i. The evaluation of the
time-step level mi in cell i is based on values of the neighboring cells: mi,1, mi,2, mi,3. If the time-step
level of the current cell is larger than that of the neighboring cells, then the mi value will be reduced
by one; otherwise, it will be retained. Thus, the difference between the m-levels of the current and
neighboring cells cannot exceed one. In this way, the time-step level mi (see Figure 3a) is modified via
Equation (11a), and the new m-level distribution is as shown in Figure 3b.

The maximum of time-step level mmax is given by

mmax = max(mi), (11b)

where L = mmax + 1 refers to the local time-step rank of the LTS algorithm in the computation (L =

1 represents the GTS solution). Building on the requirement of simulation accuracy, the maximum
value of the different time-step level mu is selected according to the simulation accuracy requirements,
and the restriction condition mi = min

(
mu, m∗i , mi,1, mi,2, mi,3

)
is added to Equation (11a).

In this case, the time step adopted by each calculation cell ∆tb
i is

∆tb
i = 2mi ∆tr. (11c)

The maximum time step ∆tmax is

∆tmax = 2mmax ∆tr (11d)

2.2.2. Calculation of Element Variables at the Interface

Once the local time-step level of each computation cell is reconstructed, no further cells are
updated with the same time step but are instead updated with the locally allowable time step at each
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cell. The algorithm focuses on the convergence of the element variables at different time levels along
the interface. In a maximum time step ∆tmax, the number of updates at each cell Ni is calculated using

Ni = 2mmax−mi . (12)

The expression for ∆U in Equation (7) is then replaced by Equation (13), in which ∆tb
i from

Equation (11c) takes the place of ∆tr in each computing cell. The improved expression is as follows:

∆U = I
∆tb

i
A

[(−
3∑

j=1

E jn jl j) +
3∑

j=1

3∑
k=1

(
1
2

(
1− sign(λ̃k)

)
βkẽkl j)

j + ∆tb
i Sn

f ]. (13)

Then, Equation (13) is iterated Ni times, and the conserved variables of each cell are updated to
the same time level n, from which the variables at the next time level n + 1 are calculated until the
calculation time terminates.

The fluxes on the interface of the governing cell are estimated from the approximate Riemann
solution of the Roe scheme. However, the variable values of all cells at the current time level need to be
given to confirm the UR and UL values of the adjacent states on the left and right sides of the interface.
In the initial GTS model, the unified global time step ∆t can meet these requirements. In the LTS
algorithm, however, when the m-level of the current and neighboring cells differ within the maximum
time step ∆tmax, the update times are different, and time splitting occurs at the interface. In the present
study, the value of the missing element variable at the interface was obtained by linear interpolation of
the value of the element variable in two adjacent time layers. This is shown in Figure 4, where the
maximum time-step level mmax = 2. At the starting time of 0, we assumed that ∆tr = 0.01 s. First,
the element variables of the coarse grid (m = 2) were computed only once, which consumes 0.04 s. Next,
the values for the intermediate meshes (m = 1) were calculated twice, costing 0.02 s for each calculation.
The local time step of the coarse mesh (m = 2) at the interface is, however, 0.04 s, which suggests that the
variable values at 0.02 s are missing. In the present study, the variable values U(h, u, v) were estimated
approximately using the average value of the former and the latter time step (1/2 of the variable value
at 0 and 0.04 s). Finally, the refined grids (m = 0) were calculated at four intervals, with time steps of
0.01 s. At 0.01 and 0.03 s, the values of the variables are absent at the interface of the cells having m = 1.
The above approximation method was again used. At 0.04 s, all cell variables were updated to the
same time level in preparation for the next iteration.
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Figure 4. Sketch showing the calculation of element variables at an interface: the variable U(h, u, v)
refers to the water depth h, and the velocity components u and v in the x and y directions, respectively.
Within a maximum time step of ∆tmax = 0.04 s, the coarse mesh areas (time-step level, m = 2) were
updated only once. The value of U1(h1, u1, v1) at 0 s was updated to U∗1

(
h∗1, u∗1, v∗1

)
after 0.04 s. The blank

value at 0.02 s was estimated using the average of the values at the former and the latter time-step

level, giving U′1

(
h1+h∗1

2 ,
u1+u∗1

2 ,
v1+v∗1

2

)
. Immediately following this, the intermediate grids (m = 1) were

updated twice over this maximum time step. The values of variables at 0.01 and 0.03 s were similarly
approximated. Finally, the refined mesh grids (m = 0) were updated four times over this interval.
All variables were ultimately updated to 0.04 s, which allowed the next time step to be performed.

3. Numerical Tests

Numerical tests were carried out to verify the reliability and adaptability of the LTS strategy
within a 2D hydrodynamic model, and to make a comparison between the effects of the novel LTS
and the original GTS strategies on the simulation results. To quantify these differences, we used the
mean-square error (MSE)

Ls( f ) =

√√√
1

Ne

Ne∑
i=1

( fi,GTS − fi,L)
2, (14)

where Ls( f ) refers to the MSE of variables f (such as water depth h, and velocity components u and
v in the x and y directions, respectively), and the subscript L refers to the local time-step rank of
the solutions.

The principle purpose of using the LTS algorithm instead of the GTS algorithm is to reduce the
computing time. The relative time saving ratio Tr and speedup ratio Sn were used as evaluation indices
of the computing efficiency for different L values.

The time saving ratio Tr is given by

Tr =
TGTS − TL

TGTS
× 100. (15a)
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The speedup ratio Sn is given by

Sn =
TGTS

TL
, (15b)

where TGTS is the computation time of the GTS strategy, and TL is the computation time of the LTS
strategy using different local time-step rank values (L).

3.1. Anti-Symmetric Dam Break Case

A classic verification experiment that considers the anti-symmetric square dam break case has
been described by Fennema and Chaudhry [33]. The computational domain consists of a 200× 200 m
square region with a flat bottom (bed elevation of 0 m). In this problem, the dam is assumed to fail
instantaneously at a certain moment, producing an anti-symmetric breach with a width of 75 m at the
center of the calculation domain, which is 95 m from the x-axis boundary. The detailed geometry of
this problem is shown in Figure 5.
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Figure 5. Sketch showing the plane geometry of an anti-symmetric dam break, with the breach
occurring in the center.

The computational domain was discretized on triangular meshes. Local mesh refinement
technology was adopted near the break to accurately reflect the important flow regions while
controlling the number of grids. The spatial resolution level varied from 6 to 1 m, with a refined
area of 5%. A total of 13,338 computing cells were generated. The LTS algorithm was applied to
shorten the computing time and improve the calculation efficiency. The m-level distribution of the
LTS strategy is presented in Figure 6. The simulation duration was Ts = 160 s. At the initial moment,
upstream water depth was set to 10.0 m, while downstream water depth was assumed to be 5.0 m.
Manning’s roughness coefficient was set to 0.03 [34].

Before making a quantitative analysis of the MSE generated by the LTS strategy, it is useful to verify
the validity of the GTS scheme applied to the original model. The numerical solution results at t = 7.2 s
were obtained using the GTS strategy; the resulting water surface profiles are shown in Figure 7a,
contours of water depth in Figure 7b, and velocity vector distribution in Figure 7c. These results
effectively simulated the dam break waves and are consistent with previous research results [34–36].



Water 2020, 12, 1148 11 of 24
Water 2020, 12, x FOR PEER REVIEW 10 of 24 

 
Figure 6. Details of the non-uniform unstructured meshes and time-step level (m-level) distribution 
for the anti-symmetric dam break case. 

Before making a quantitative analysis of the MSE generated by the LTS strategy, it is useful to 
verify the validity of the GTS scheme applied to the original model. The numerical solution results 
at t = 7.2 s were obtained using the GTS strategy; the resulting water surface profiles are shown in 
Figure 7a, contours of water depth in Figure 7b, and velocity vector distribution in Figure 7c. These 
results effectively simulated the dam break waves and are consistent with previous research results 
[34–36]. 

Figure 6. Details of the non-uniform unstructured meshes and time-step level (m-level) distribution for
the anti-symmetric dam break case.Water 2020, 12, x FOR PEER REVIEW 11 of 24 

 
Figure 7. Results of the simulation using the global time stepping strategy at dam break (t = 7.2 s). 
(a) Three-dimensional visualization of the water surface; (b) contour plot of water depth; (c) velocity 
vector distribution. 

Table 1 shows the MSE of water depth ℎ, as well as velocity components 𝑢 and 𝑣 along the 𝑥 
and 𝑦 directions, respectively, of the simulation results. As the value of the local time-step rank L 
increased, the MSE increased accordingly. Both precision and efficiency are important when 
performing hydrodynamic numerical simulations. By reducing the value of L, the calculation 
efficiency can be improved when levels of high accuracy are reached. This observation agrees well 
with the research results of Hu et al. [37]. In the present study, the error of the solution using the 
LTS algorithm was within the 10−3 to 10−2 range. At the beginning of the calculation, the total water 
volume was 3 × 105 m3. When the value of L was 2, 3, and 4, the relative error of the water volume 
was 0.0017%, 0.0019%, and 0.0045%, respectively, which indicates that the simulation meets the 
accuracy and conservation of water volume requirements. 

Figure 7. Results of the simulation using the global time stepping strategy at dam break (t = 7.2 s).
(a) Three-dimensional visualization of the water surface; (b) contour plot of water depth; (c) velocity
vector distribution.
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Table 1 shows the MSE of water depth h, as well as velocity components u and v along the x
and y directions, respectively, of the simulation results. As the value of the local time-step rank L
increased, the MSE increased accordingly. Both precision and efficiency are important when performing
hydrodynamic numerical simulations. By reducing the value of L, the calculation efficiency can be
improved when levels of high accuracy are reached. This observation agrees well with the research
results of Hu et al. [37]. In the present study, the error of the solution using the LTS algorithm was
within the 10−3 to 10−2 range. At the beginning of the calculation, the total water volume was 3 × 105

m3. When the value of L was 2, 3, and 4, the relative error of the water volume was 0.0017%, 0.0019%,
and 0.0045%, respectively, which indicates that the simulation meets the accuracy and conservation of
water volume requirements.

Table 2 shows the computing time, time-saving ratio, and speedup ratio for different values of L.
The simulation time of the dam break was 160 s. A time saving of 40% to 50% was achieved using
the LTS algorithm in the numerical experiment of the anti-symmetric square dam break. For L = 4,
a speedup ratio of 2.1 was achieved.

This clearly shows that the calculation efficiency of the numerical simulation of the anti-symmetric
square dam break is improved using the LTS technique (Figure 8). As the value of L increased,
the speedup ratio also increased, thus shortening the model operation.
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Table 1. Mean square errors of water depth (h) and velocity components (u, v) for different local time-step rank values (L) in the anti-symmetric dam break case.

t(s)
L = 2 L = 3 L = 4

Ls(u) × 10−2 Ls(v) × 10−2 Ls(h) × 10−2 Ls(u) × 10−2 Ls(v) × 10−2 Ls(h) × 10−2 Ls(u) × 10−2 Ls(v) × 10−2 Ls(h) × 10−2

7.2 0.41 0.38 0.22 0.65 0.56 0.50 1.07 0.71 0.79
15.2 0.34 0.31 0.17 0.65 0.64 0.45 1.02 0.67 0.87
23.2 0.50 0.43 0.39 1.02 0.81 1.07 1.84 1.20 1.99
31.2 0.66 0.72 0.57 1.53 1.45 1.39 2.81 2.63 2.62
39.2 0.74 0.75 0.29 1.34 1.37 0.62 2.43 2.40 1.04
47.2 0.55 0.70 0.30 0.89 1.24 0.72 2.03 3.31 1.63
55.2 0.55 0.71 0.36 0.84 1.06 0.96 1.72 2.16 1.76
63.2 0.51 0.60 0.31 0.95 1.18 0.86 1.63 3.12 2.14
71.2 0.71 0.70 0.30 1.17 1.25 0.68 2.82 2.81 1.46
79.2 0.64 0.63 0.27 1.10 1.05 0.74 2.54 2.32 1.50
120 0.67 0.63 0.18 1.33 1.12 0.47 2.69 2.26 1.10
160 0.61 0.56 0.24 1.03 0.97 0.70 2.35 2.26 1.85

average 0.57 0.59 0.30 1.04 1.06 0.76 2.08 2.15 1.56
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Table 2. Computing time T (s), time-saving ratio Tr (%), speedup ratio (Sn) of different local time-step
rank values (L) for the anti-symmetric dam break case (GTS: global time stepping strategy).

Test T Tr Sn

GTS 608 - -
L = 2 349 43 1.74
L = 3 295 51 2.06
L = 4 285 53 2.13

3.2. Non-Flat Bottom Dam Break Case

In this test case, the length of the rectangular channel was 75 m, and its width was 30 m.
Three obstacles were placed on the bottom of the rectangular channel. Two obstacles had a radius of
6.5 m and a height of 1 m, and one had a radius of 8.6 m and a height of 2 m. The elevation expression
is defined as follows:

Zb(x, y) =


1− [(x− 30)2 + (y− 8)2]/42.25, (x− 30)2 + (y− 8)2

≤ 42.25
1− [(x− 30)2 + (y− 22)2]/42.25, (x− 30)2 + (y− 22)2

≤ 42.25
2− [(x− 52)2 + (y− 15)2]/36.89, (x− 52)2 + (y− 15)2

≤ 73.98
0, else

.

Local mesh refinement was applied with a spatial resolution level varying from 0.5 to 3 m. The grid
generation results are shown in Figure 9. The total number of grid cells for the region was 6848.
In the calculation, a solid wall boundary condition was adopted. Manning’s roughness coefficient
was set to 0.018 [30]. The water depth for x ≤ 16 m in the computational domain was set to 2 m and
was assumed to be 0 m elsewhere. The variation of the ground level is shown in Figure 10a. In the
GTS scheme, the time step was 0.005 s, the initial total water volume was 959.841 m3, and the final
water volume was 959.978 m3. The relative error was 0.01%, which is within the discrete error range.
The model dealt well with wetting and drying fronts over the complex terrain, satisfied computational
stability, and conservation of water volume requirements, and provided results that were consistent
with previous experimental results [38,39].
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Figure 10. Three-dimensional visualization of the inundation process at various time points following
the dam break. (a) t = 0 s; (b) t = 10 s; (c) t = 30 s; (d) t = 100 s. (GTS: global time stepping strategy,
while L is the time-step rank value in the local time stepping strategy).

The distribution of m-values obtained by applying the LTS strategy is shown in Figure 9.
The maximum time-step level mmax is 2. The simulation of the dam break water flow was modeled for
Ts = 100 s. The inundation related to the dam break is shown in Figure 10. To observe the influence
of the LTS algorithm on the simulation results, four bathymetric measuring points were arranged
(see Figure 9 for the location of the measuring points). Figure 11 provides a comparison of water
depths generated by the LTS algorithm and the classical algorithm during the process of the dam
break. A visual inspection indicates that the simulated water depths from the two algorithms are
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essentially the same. Thus, the LTS technique improves the efficiency of calculation without any
reduction in accuracy.Water 2020, 12, x FOR PEER REVIEW 16 of 24 
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According to the statistical results for this simulation (shown in Table 3), adopting the LTS
technology in the numerical experiment of the non-flat bottom dam break created a saving of up to
26% in computation time, and a speedup ratio of 1.3, without compromising the solution accuracy.
The best result was obtained for L = 3, which reduced the computational cost and improved the
calculation efficiency.

Table 3. Computing time T (s), time saving ratio Tr (%), speedup ratio (Sn) for different local time-step
rank values (L) for the non-flat bottom dam break case (GTS: global time stepping strategy).

Test T Tr Sn

GTS 148 - -
L = 2 115 22 1.28
L = 3 110 26 1.34

3.3. Navigable Flow Simulation Case

There are several noticeable perilous waterways between the Three Gorges Dam and the Gezhouba
Dam. The river section is about 38 km long [40,41]. Bed elevations measured in October 2008 provided
by the Three Gorges Navigation Authority were used as the initial bed topography. In the present study,
the three segments with the highest risk to shipping (the Letianxi, Liantuo, and Shipai riverways),
and the outlet of the Three Gorges Reservoir are adopted for local mesh refinement. The spatial
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resolution level ranged from 10 to 100 m, and 36,297 cells and 19,011 nodes were generated. The results
of the grid generation and refined areas are shown in Figure 12.Water 2020, 12, x FOR PEER REVIEW 17 of 24 
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and Gezhouba Dams.

The LTS algorithm was applied to the numerical simulation of the navigable flow of the waterway.
The results are provided in Table 4. The maximum time-step level (mmax = 4) and the minimum time
step (∆tr = 0.03 s) were calculated for the whole computational domain. The simulation duration
was set to Ts = 4 h. The absolute deviation in the water level between the calculated and measured
values was 0.06 to 0.07 m, and the relative deviation in flow velocity was between −3.8% and 4.6%.
There is no significant difference between the LTS and GTS algorithm simulation results for water
level and flow velocity. The mass errors are non-negligible for a large computational area and a long
simulation. This was addressed by adopting a smaller maximum time-step level mmax. The obvious
acceleration effect that this provides in the real application ensures that accuracy requirements are met.
It is clear that the LTS algorithm has provided obvious improvements in the execution time without
compromising the solution accuracy. This is of practical value and importance in navigation.
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Table 4. Simulation results for the navigable flow of the waterway between the Three Gorges and Gezhouba Dams.

Data
River Reach

Water Level (m) Flow Velocity (m/s)

Observation
Time

Discharge
(m3/s) Measured

Calculated
Measured

Calculated

GTS L = 2 L = 3 L = 4 L = 5 GTS L = 2 L = 3 L = 4 L = 5

2008.08.20 28,400 Letianxi
Value 68.32 68.39 68.39 68.39 68.39 68.39 1.56 1.63 1.63 1.63 1.63 1.63

Deviation - 0.07 0.07 0.07 0.07 0.07 - 0.07 0.07 0.07 0.07 0.07

2008.08.20 29,700 Liantuo
Value 68.35 68.41 68.41 68.41 68.41 68.41 2.13 2.16 2.16 2.16 2.16 2.16

Deviation - 0.06 0.06 0.06 0.06 0.06 - 0.03 0.03 0.03 0.03 0.03

2008.09.04 31,700 Shipai Value 67.83 67.90 67.90 67.90 67.90 67.90 1.61 1.55 1.55 1.55 1.55 1.55
Deviation - 0.07 0.07 0.07 0.07 0.07 - −0.06 −0.06 −0.06 −0.06 −0.06

T 6.65 3.86 3.56 3.45 3.39
Tr - 41.96 46.47 48.06 48.96
Sn - 1.72 1.87 1.93 1.96

GTS: global time stepping strategy; L: local time-step rank in the local time stepping strategy; T: execution time (h); Tr: time saving ratio (%); and Sn: speedup ratio.
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4. Discussion

4.1. The Influence of the Proportion of Refined Mesh on the Acceleration Effect

In the anti-symmetric dam break case, the 75-m breach was used as the core area in which to
analyze the acceleration effect of the LTS algorithm. In this area, we set the refined area to different
proportions of the total area (4 hm2). The spatial resolution level varied from 1 to 6 m, with a minimum
resolution close to the breach of 1 m, surrounded by a smooth transition up to a maximum resolution
of 6 m in the outer domain. The mesh generation results for the refined areas for various proportions
in the anti-symmetric dam break case is shown in Figure 13. The numerical simulation was performed
for refined areas of 5%, 10%, 25%, 50%, and 75%. The impact of increasing the local refinement area on
the acceleration effect was analyzed for a time-step level of m = 0 in the refinement area, m = 2 in the
coarse grid area, and m = 1 in the buffer zone.
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The duration of the dam break Ts was kept at 160 s. Table 5 shows the number of generated grids,
computational cost, speedup ratio, and time-saving ratio for different refined area proportions. As the
refined area was increased, the total number of meshes generated by partitioning increased. The grid
number increased from 13,338 at 0.2 hm2 to 73,306 at 3 hm2, which represents an increase by a factor of
5.5. The operating time of the model rose from 608 to 3394 s, which represents an increase by a factor
of 5.6. The number of grids is a key factor determining the overhead of computing. There is a direct
positive correlation between the number of grids and computing overheads.
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Table 5. Simulation results for different refined area proportions in the dam break simulation.

Refined Area
Proportion

Refined
Area (hm2)

Total Grid
Number

Test

Index GTS L = 2 L = 3

5% 0.2 13,338
T 608 467 436
Tr - 23% 28%
Sn - 1.30 1.39

10% 0.4 18,986
T 857 727 702
Tr - 15% 18%
Sn - 1.18 1.22

25% 1 32,230
T 1474 1328 1308
Tr - 9.8% 11.3%
Sn - 1.11 1.13

50% 2 48,622
T 2234 2197 2183
Tr - 1.6% 2.3%
Sn - 1.01 1.02

75% 3 73,306
T 3393 3376 3352
Tr - 0.5% 0.5%
Sn - 1.01 1.01

NB: GTS: global time stepping strategy; L: local time-step rank in the local time stepping strategy; T: execution time
(s), Tr: time-saving ratio, Sn: speedup ratio.

The speedup ratio was strongly affected by the ratio of the locally refined area to the total area.
As the proportion of the refined area increased, the speedup ratio obtained by the LTS algorithm
diminished, reducing the acceleration effect. When L = 3, the speedup ratio decreased from 1.39 times
to 1.01 times; when the refined area was increased from 5% to 75%, there was scarcely any improvement
in computational efficiency at high proportions of refined area. These patterns occurred because a high
proportion of refined area brings about an unreasonable number of refined grids (with a local time-step
level, m = 0), which reduces the number of coarse grids (m = 1, 2) that help optimize the operation.
This suggests that little improvement is gained by implementing the LTS algorithm in cases that have
a high proportion of refined grids. Conversely, when refined grids account for a small proportion of
the total number of grids, the LTS algorithm can markedly shorten the computing time and achieve
an excellent acceleration effect. Furthermore, the results in Figure 14 suggest that L has an influence on
the calculation efficiency. The acceleration ratio increased as L increased.
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4.2. The Impact of the Different Scale of the Mesh on Acceleration Effect

In the case study of the anti-symmetric dam break, the test was carried out using a refinement of
5% of the breach area, as shown in Figure 13a. A grid discretization method was employed to analyze
the influence of using different grid scales on the acceleration effect while using the LTS algorithm.
The refined grid had a minimum spatial step of 1 m in the burst section, while the coarse grids had
spatial steps of 2, 3, 4, 5, and 6 m. The computational results are shown in Table 6 and Figure 15.
These results indicate that the speedup ratio improves with the increasing differences in grid resolution.
The CFL condition of Equation (9a) shows that the time step of the mesh is positively correlated with
the mesh scale difference. As the difference between the maximum and minimum scales of the grids
increases, the maximum time-step level mmax becomes higher, and a larger L can be adopted. In this
test, once the spatial step of the coarse grid was 4, 5, and 6 m, it was possible to set the L value to 3,
while the other two conditions were only subdivided into two grades. This explains why greater grid
diversity leads to a higher speedup ratio.

Table 6. Simulation results for different spatial resolutions in the dam break simulation.

Spatial Resolution Grid Number
Test

Index GTS LTS

1–2 m 35,104
T 1558 1223
Tr - 22%
Sn - 1.27

1–3 m 22,084
T 973 769
Tr - 21%
Sn - 1.26

1–4 m 17,108
T 757 589
Tr - 22%
Sn - 1.28

1–5 m 14,380
T 641 494
Tr - 23%
Sn - 1.30

1–6 m 13,338
T 608 436
Tr - 28%
Sn - 1.39

(GTS: global time stepping strategy, LTS: local time stepping strategy, T: execution time (s), Tr: time-saving ratio,
and Sn: speedup ratio).
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5. Conclusions

Improvements in the computational efficiency of the 2D hydrodynamic model have a significant
bearing on its engineering applications. In the present study, an improved 2D shallow-water dynamic
model applying an LTS algorithm was established using an FVM on a triangular mesh. Results from
simulation and analysis of three canonical test cases show that the LTS scheme has a satisfactory ability
for adapting real complex applications and long simulations while meeting the required accuracy.
The following conclusions were drawn:

(1) Based on the FVM for unstructured grids, an LTS algorithm was implemented that improved the
computational efficiency of the model, while satisfying water conservation conditions. In the
anti-symmetric dam break case, a speedup ratio of 2.1 was achieved, which saved 53% in execution
time. The speedup ratio of the non-flat bottom dam break case was 1.3, which represented
a shortening of 26% in the calculation time. The numerical simulation of the navigable flow of
the river reach between the Three Gorges and Gezhouba Dams achieved a speedup ratio of 1.9,
which represented a saving of 49% in modeling time.

(2) The proportions of coarse to refined meshes on the acceleration effect of the LTS algorithm were
noticeable. It was evident that a higher speedup ratio was obtained when the proportion of the
refined mesh was minimized. When the proportion of the refined mesh was high, the acceleration
effect was not significant. It is clear that the LTS algorithm is best suited to situations in which
refinement is only required in small regions.

(3) When using the LTS algorithm on non-uniform unstructured grids, the larger the grid scale
difference, the more obvious the grid layering became. This led to increased acceleration effects.
However, computational accuracy was slightly impaired by excessive differences in grid mesh size.
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