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Abstract: To simulate the dynamics of two-dimensional dam-break flow on a dry horizontal bed, 

we use a smoothed particle hydrodynamics model implementing two advanced boundary 

treatment techniques: (i) a semi-analytical approach, based on the computation of volume integrals 

within the truncated portions of the kernel supports at boundaries and (ii) an extension of the ghost-

particle boundary method for mobile boundaries, adapted to free-slip conditions. The trends of the 

free surface along the channel, and of the impact wave pressures on the downstream vertical wall, 

were first validated against an experimental case study and then compared with other numerical 

solutions. The two boundary treatment schemes accurately predicted the overall shape of the 

primary wave front advancing along the dry bed until its impact with the downstream vertical wall. 

Compared to data from numerical models in the literature, the present results showed a closer fit to 

an experimental secondary wave, reflected by the downstream wall and characterized by complex 

vortex structures. The results showed the reliability of both the proposed boundary condition 

schemes in resolving violent wave breaking and impact events of a practical dam-break application, 

producing smooth pressure fields and accurately predicting pressure and water level peaks.  

Keywords: SPH model; boundary treatment techniques; dam-break flow; free surface profile; 

impact wave pressure. 

 

1. Introduction 

Dams provide water for domestic, industrial, and irrigation purposes and are a source of 

hydroelectric power. They are also built to control river flow, improve navigation, provide recreation 

areas for fishing and boating, and regulate flooding. However, if a dam breaks, the effects can be 

catastrophic on both surrounding and downstream areas. Besides changes in river channel shape and 

local topography, the consequences of flow propagation can include significant damage to property 

and even loss of lives. Accordingly, the study of the dynamics of sudden floods resulting from dam 

failure is critical for evacuation planning and safe reservoir management.  

Since the large fluid deformations and multiple interacting physical effects arising from wave 

impact events are difficult to interpret, the analysis of this phenomenon through experimental models 

is very expensive and time consuming. In contrast, numerical methods can simulate even the most 

complex of scenarios, helping reduce time and cost, even if they cannot completely replace physical 

modeling.  

The most commonly used numerical methods in this field are based on solutions to the 1D or 2D 

shallow water equations (SWEs), which require a minor amount of computational time and cost 

compared to 3D CFD (computational fluid dynamics) equations [1,2]. However, given their meshing 
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features, assumptions regarding hydrostatic pressure, and neglect of vertical velocity and flow 

velocity uniformity along the vertical axis [3,4], traditional numerical solutions to SWEs cannot 

effectively reproduce the strong distortion of the free surface that occurs in dam-break flows. 

Mesh-free models, such as smoothed particle hydrodynamics (SPH), offer an alternative to 

solving SWEs with grid-based numerical methods and have, accordingly, been applied to several 

areas of computational fluid dynamics [5,6]. The SPH method presents different advantages: mesh 

deformation and cracking; calculation of the system’s advection and transport (due to its Lagrangian 

nature); modeling of free surface and phase/fluid interface problems; the ability to manage very large 

deformations in high-energy phenomena (e.g., explosions, high-velocity impacts, and penetrations); 

applicability at multiple scales if coupled with molecular dynamics and dissipative particle 

dynamics; and greater suitability to 3D-modeling than mesh-based methods [7,8]. In addition, should 

a “weakly compressible” approach be adopted, the non-iterative SPH algorithms are simplified [8]. 

The limits of SPH models are linked to slightly higher computational costs, complex procedures 

for the local refining of spatial resolution, and a relatively low accuracy for classical CFD applications 

where mesh-based models are well-validated (e.g., confined mono-phase flows [8]). However, they 

are effectively employed in several fields [9–18]. 

Various flood propagation studies have focused on the use of the SPH method to investigate 

dam-break events [19–32]. Having implemented an SPH scheme to treat a dam-break problem in a 

two-phase approach, Colagrossi and Landrini [19] discussed the effects of density-ratio variations 

and air entrapment on loads. Antoci et al. [20] employed an SPH method to simulate fluid-structure 

interactions of a 2D dam-break event where an elastic plate was deformed under the effects of a 

rapidly varying fluid flow. Having studied different propagation regimes during the evolution of a 

dam-break with dry and wet beds using an SPH model, Crespo et al. [21] highlighted the dissipation 

mechanisms of bottom friction and wave breaking. In their 2010 study to reproduce in detail the 

features of a dam-break on a wet bed, Khayyer and Gotoh [22] discussed the potential capacities of 

three standard or improved particle-based methods: Moving Particle Semi-implicit method (MPS), 

incompressible smoothed particle hydrodynamics (ISPH), and weakly compressible smoothed 

particle hydrodynamics (WCSPH). Moreover, they introduced a new viscosity reduction function in 

WCSPH to represent backward breaking and applied a fractional drag force term to include the effect 

of bed friction. Marrone et al. [23] analyzed the violent impacts of a dam-break event on obstacles of 

different shapes, using an advanced SPH model within which solid surfaces’ boundary conditions 

were implemented by way of fixed ghost particles. This allowed them to predict global and local 

loads of impact flows on structures. Chang et al. [24] investigated shallow-water dam-break flow 

effects on 1D open channels using an SPH formulation enhanced through the concept of slice water 

particles (SWP). The validation of this method on four benchmark problems showed its good 

performance in different conditions such as shock discontinuities, shock front motion, 

supercritical/subcritical/transcritical flow, contraction flow, and multiple wave interaction.  

An SPH method implementing the Lagrangian concept of cylindrical water particles (CWPs) 

was used to solve the 2D-SWEs [25] and model complex flow phenomena occurring during dam-

break events. Pu et al. [26] assessed the ability of an ISPH modeling technique, implementing an 

improved SWE model—the surface gradient upwind method (SGUM)—to calculate the dam-break 

flow with a triangular obstacle. The ISPH model more accurately predicted the dam-break peak wave 

build-up time and better represented the features of the streamwise flow surface profiles, velocities, 

and pressures. Applying an SPH method to graphical processing units (GPUs), Wu et al. [27] 

analyzed complex 3D dam-break flows in urban and underground areas, obtaining a close agreement 

with a real flooding experiment. In 2014, St-Germain et al. [28] compared the hydrodynamic forces 

of a tsunami bore exerted on a freestanding square column, measured from small-scale physical 

experiments, with the ones computed by a single-phase 3D WCSPH model. Although the authors 

showed the significant potential of the numerical model to investigate the tsunami bore impact on a 

square bridge pier, the inability to incorporate the air and soil entrainment in the same model did not 

result in a more accurate free surface evolution. In addition, the reliability of the model was not 

sufficiently validated in the presence of flow obstructions and for large-scale tsunami-like waves. 
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Later, these issues were addressed by the authors of [29,30], who applied the SPH model using a 

highly effective parallel computing technique to large-scale experimental tests involving the impact 

of tsunami-like waves on free-standing buildings, with and without openings, in dry bed surge and 

wet bed bore conditions. The authors demonstrated a good agreement between the experimental and 

numerical data, although some discrepancies were observed due to the insufficient spatial resolution 

of the computation and the difficulty of considering the channel floor roughness in the dry bed surge 

case, as well as the turbulent nature of the process and its air-entrainment in the wet bed bore case.  

Jian et al. [31] investigated 2D dam-break flows with wet beds through a WCSPH solver in order 

to analyze the advection and mixing phenomena of water bodies. They focused on the evolution of 

the water-water interface at various ratios of upstream to downstream flow depths along a long 

channel. In 2016, Cercos-Pita et al. [32] treated the problem of anomalous pressure fluctuations during 

a dam-break event using a WCSPH approach and the introduction of diffusive terms in the 

conservation of mass equation. They demonstrated the method’s greater reliability over other 

modified SPH schemes, based on an equivalence with Riemann solvers. Recently, a Monotone 

Upstream-centered Scheme for Conservation Laws (MUSCL) reconstruction model was applied to 

the study of dam-break flows [33], serving to improve the Riemann solution with Lax-Friedrichs 

fluxes. The model was first tested on two benchmark dam-break flows interacting with two obstacles 

differing in shape and, subsequently, on a prototype of the South-Gate Gorges Reservoir area in 

China’s Qinghai Province. In the same year, Zhang et al. [34] proposed a WCSPH method based on 

a low-dissipation Riemann solver to reduce numerical dissipation for expansion or compression 

waves. Moreover, they developed a wall boundary condition based on the one-sided Riemann solver 

to handle violent breaking-wave impacts. In another study, Albano et al. [35] applied an SPH model, 

implementing an advanced boundary treatment [15], to handle complex 3D configurations, which 

considered the transport of different rigid bodies in free surface flows arising from a small dam 

failure. The model accurately reproduced trends in the water depth and the timeline of the bodies’ 

movements. 

These studies developed and applied several boundary treatment techniques within the SPH 

method to overcome the method’s typically challenging limits related to boundary spatial accuracy 

[36]. When using SPH methods, the solid boundary and the free surface are generally modeled with 

fictitious particles [37–42], distributed near or outside boundaries. By attributing physical properties 

(e.g., velocity and temperature, as in Dirichlet boundary conditions, and pressure, as in Neumann 

boundary conditions) to fictitious particles, the approximate fluid characteristics can be obtained. 

When using mirror particles, the number of virtual particles varies according to the position of the 

real particle, making its computational implementation difficult. A proposed solution to this problem 

based on interpolation theory [43], the dynamic boundary particles (DBPs) approach, posits that such 

dynamic particles obey the laws of conservation of mass, momentum balance, and energy governing 

the movement of real fluid particles. It achieves this by modifying their physical properties and the 

forces acting on them, such that the dynamic particles either constitute fixed boundaries or move 

according to some externally imposed functions [44]. When the fluid particles approach the solid 

boundary, their density and pressure grow, increasing the repulsive forces exerted on the real 

particles [45], thereby maintaining them within the domain. The DBP’s approach presents an 

undesirable and nonphysical behavior in the repulsion mechanism, which could be overcome by 

other techniques such as the reflective boundary treatment, in which a collision detection and 

response algorithm, based on Newton’s restitution law, brings the particles back into the domain. 

The real particles are forced inside the domain due to the presence of the boundaries. Shortly after 

collision detection, the particles are reflected; the collision detection and response procedures are 

then repeated until the particles return to the flow region. More specifically, the resolution of the 

momentum conservation equation provides the acceleration of the particles at each time step [46,47]. 

Subsequently, when coupled with an integration method (Euler’s method), one can obtain accurate 

estimates of the particles’ final positions and velocities. The convergence and precision of the 

particles’ final positions depend on the quality of the reflections evaluated by the algorithm [47]. 

Other boundary treatment techniques currently being developed include: a semi-analytical method 
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with the estimation of the contact forces in rigid boundaries [48], an enhanced form of the latter with 

wall-corrected gradients to be used under general 2D [49,50] and 3D [51] boundary conditions, a 

boundary integral approach proposed by the authors of [52], and a new SPH model presented by the 

authors of [53] for viscous and non-viscous flows with 3D complex boundaries.  

In this context, this paper aims at validating the open source SPH research code SPHERA [54] 

by applying two advanced boundary treatment methods distinct from those implemented in other 

recently developed SPH methods, through the experimental 2D dam-break flow measurements 

conducted by the authors of [55] and simulated using a laboratory set-up resembling the set-up 

reported in [56]. The first boundary treatment scheme [57] represents a numerical variant of the semi-

analytical approach of [58], and is based on the computation of volume integrals within the truncated 

portions of the kernel supports at the boundaries. The main advantages of this method are 

computational speed, management of complex surfaces, and accuracy. The second boundary 

condition for the transport of solid bodies [15] also deals with the interaction between the fluid and 

mobile solid bodies, and is based on the extension of the ghost-particle boundary method for mobile 

boundaries of [42], adapted to free-slip conditions. The main advantages of this scheme are the 

management of surfaces, characterized by complex geometry and non-null wall velocity, and 

accuracy. The results show the reliability of both the proposed boundary condition schemes in 

resolving violent wave breaking and impact events of this practical dam-break application, 

producing smooth pressure fields and accurately predicting pressure and water level peaks. In 

particular, the present SPH method is capable of numerically reconstructing time trends of the 

primary wave pressures acting on the solid vertical wall downstream and the primary and secondary 

wave heights at specific positions of the reference test case where both the experimental 

measurements and numerical results of [32] and [34] are available.  

This paper is organized as follows. In Section 2, the numerical SPH scheme of the open source 

code SPHERA v.9.0.0 and the two advanced boundary treatment methods are described. Section 3 

depicts the experimental details of a literature 2D dam-break flow used to validate the accuracy and 

efficiency of the proposed model. In Section 4, a comparison among the observed time trends of the 

wave pressures and heights and the numerical results obtained by the present model and by other 

methods in the literature are presented and analyzed. In this framework, the differences between 

experimental and numerical data are identified and examined in depth. Finally, the main findings 

are summarized in Section 5. 

2. The Numerical Model 

The SPH model used for this study is SPHERA v.9.0.0 [54]. The following sub-sections describe 

the numerical schemes of the code relevant to this study with an emphasis on the two advanced 

boundary treatment methods adopted. 

2.1. SPH “Semi-Analytic Approach” of SPHERA for the Boundary Condition Scheme 

A weakly-compressible (WC) SPH model, which implements a boundary treatment for fixed 

boundaries based on the semi-analytic approach of [58], is adopted for the main flow numerical 

scheme, as developed by the authors of [57]. Let one consider Euler’s momentum and continuity 

equations: 
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where p is the pressure (Pa),  respresents the fluid density (kg m−3), ij is Kronecker’s delta (unitless), 

( )wvuu ,,
 
stands for the velocity vector (m s−1), and t is the time (s). One needs to calculate the 

momentum and continuity equations at each position of the fluid particle by using SPH formalism 
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and including the boundary terms in the computation. One considers the discretization of the 

momentum and continuity equations, as provided by the SPH approximation of the first derivative 

of a generic function (f), according to a semi-analytic approach (“SA”; [58]): 

( ) ( )



−−




−−=





'

3

00

0, hV ib

b

i

b
b

SAi

dx
x

W
ff

x

W
ff

x

f
 . (3) 

The numerical particles compose the inner part of the fluid domain. At boundaries, the kernel 

support is not truncated, because it may be, in part, external to the fluid domain. The summation is 

executed over all the fluid particles “b” (neighbouring particles with volume ) in the kernel support 

of the computational fluid particle (“”). In the truncated portion of the kernel support Vh’ (m3), the 

generic function f (pressure, velocity, or density, alternatively) can be defined and computed under 

the assumption of the semi-analytic approach (“SA”), as developed by the authors of [42]: 
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The subscript “SA” values are added in the functions and derivatives within the Vh’ to consider a 

null normal gradient of reduced pressure at the frontier interface (while considering uniform 

density): 
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The velocity vector 𝑢𝑆𝐴 at the boundaries is decomposed as the sum of a vector normal to the 

boundary ( )nSAu ,  and a tangential vector (𝑢𝑆𝐴,𝑇) in the case of free-slip conditions: 
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where n is the normal vector of the wall surface, as defined by its local orientation. The continuity 

equation is written by applying Einstein’s notation for the subscript “j” and using the semi-analytic 

method for the treatment of boundary conditions (second term on the right-hand side): 
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The parameter Cs (kg m-3 s−1) represents a fluid-body interaction term. The notation  indicates 

the SPH particle integral approximation. The approximation of the momentum equation is: 
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where as (m s−2) represents the acceleration term due to the fluid-body interactions, M (m2 s−1) is 

the artificial viscosity [59], m (kg) is the particle mass, and r (m) is the relative distance between the 

neighboring and the computational particle. 
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Finally, a barotropic equation of state (EOS) is linearized as follows: 

𝑝 ≅ 𝑐𝑟𝑒𝑓
2 (ρ − 𝜌𝑟𝑒𝑓). (9) 

The artificial sound speed c (m s-1) is 10-fold greater than the maximum fluid velocity (WC 

approach), and “ref” represents a reference state. More details are available in [15] and [57]. 

2.2. The SPHERA Scheme for the Transport of Solid Bodies as a Boundary Treatment Scheme 

Adopting the mobile and complex boundaries introduced by the authors of [42] and 

implemented and adapted to free-slip conditions by the authors of [15], the fluid-body interaction 

term is written in the continuity equation as: 
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Moreover, the analogous term is formulated in the momentum equation as in the following: 
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The pressure value of the generic neighboring surface body particle “s” depends on the fluid 

particle “0” under current investigation; accordingly, the interaction is represented by the subscript 

“s,0”. A unique pressure value for each body particle (free-slip conditions) is derived by applying an 

SPH interpolation over all the pressure values coming from the fluid-body particle interactions: 
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More details are available in [15]. 

2.3. Time Integration Scheme 

Time integration is ruled by a second-order Leapfrog scheme, as described in [57] and [15]: 
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Time integration is controlled by the stability criterion in the following: 
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where CFL stands for the Courant-Friedrichs-Lewy number that was set to 0.05 in the current 

study, and is described below. 
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3. Case Study 

The model was applied to a large series of laboratory measures on a generally 2D dam-break 

flow [55] and to a H = 0.3 m water level in the reservoir in order to numerically reconstruct the free 

surface and the pressures acting on the downstream solid vertical wall. The experimental set-up, 

resembling the one by the authors of [56], consisted of a prismatic tank of 1610 × 600 × 150 mm, 

divided into two separate chambers by a removable gate placed at 600 mm from the lateral side 

(Figure 1). Before running each test, the bed and the downstream walls of the tank were kept 

completely dry. 

The lateral, frontal, and top view of the complex free-surface profile evolution and the impact 

on the downstream wall were recorded by a digital camera, which also enabled the capture of the 

time history of the water level at several locations (i.e., H1 = 300 mm in the reservoir, and H2 = 265 

mm, H3 = 514 mm, and H4 = 762.5 mm, all downstream of the gate). Given that the phenomenon under 

analysis was a gravity current flow with a horizontal bed, the Reynolds and the Weber numbers, 

based on both the distance between the gate and the wall and the predicted velocity of the wave front 

[60], were 3.8 × 106 and 1.64 × 105, respectively. Under these conditions of heavy turbulence in the 

boundary layer triggered by the advancing wave front, surface tension effects were negligible. The 

pressures were measured by five piezo-resistive sensors with an acquisition frequency of 20 kHz. 

Four were in the central line, and an additional one was placed halfway towards the back wall, to 

detect the presence of any 3D effects of the frontal impact wave. In detail, sensor 1 was positioned at 

3 mm from the bottom of the tank, while sensors 2, 3, and 4 were, respectively, at 15 mm, 30 mm, and 

80 mm above the bed; sensor 5 was installed at the same height as sensor 2. 

 

Figure 1. Experimental set-up: (a) water level measuring position on the left (lateral view); (b) 

pressure sensor locations on the right (frontal view). Dimensions are in millimeters. 

4. Results and Discussion 

The two advanced boundary treatment methods implemented in the SPHERA model [54], 

described respectively in sub-sections 2.1 and 2.2, were validated with data from the experimental 

dam-break event carried out by the authors of [55] (see Section 3). In order to represent a sudden and 

complete dam-break, at the onset of the computation, water held under hydrostatic conditions is 

immediately released, rather than what occurs in the experimental setup, where the water is released 

gradually from a gate. This simplistic hypothesis is justified by the good agreement between the 

experiment and the SPH model in the representation of the time evolution of the primary wave, 

before the impact on the downstream wall. Moreover, the authors of [55] showed that the median 

value of the measured removal time is of the same order of magnitude as the theoretically predicted 

duration of the dam gate removal based on the freefall of the weight. In addition, the front side of the 

liquid block has not advanced beyond the position of the gate, which indicates that the gate rising 

speed is fast enough to disregard its effect on the liquid column. 
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When the computation water held under hydrostatic conditions is released, a downstream wave 

advances along a dry bed towards the downstream vertical wall and, finally, strikes this wall (i.e., 

primary wave). Later, two different successive high vertical run-up jets, due to the inviscid model 

used (as highlighted also in [32] and [34]), are created and fall by gravity onto the underlying fluid. 

The second jet initially disintegrates into droplets that splash onto and are reabsorbed by the main 

volume of the fluid flow. It is notable that the proposed SPH model is not suitable for the treatment 

of the superficial cohesion of the fluid. The wave reflected by the downstream wall (i.e., the secondary 

wave) appears upstream as a unique plunging wave propagation combined with an air cushion. 

Several snapshots of the calculated free surface at several time instances are shown in Figure 2.  

 

Figure 2. Two-dimensional dam-break phenomena: field snapshots of the absolute value of velocity 

at several time instants: (a) t = 0.15 s; (b) t = 0.42 s; (c) t = 0.60 s; (d) t = 0.90 s; (e) t = 1.06 s; and (f) t = 

1.30 s. 

Figures 3 and 5 report the experimental temporal evolution of water levels at locations H1, H2, 

H3, and H4 compared with those obtained using the first (green line) and the second (blue line) 

boundary treatment techniques. The numerical reconstruction of the free-surface profile from the 

gate release to the arrival of the secondary wave is pictured in Figure 3. The numerical and 

Lobovsky’s experimental [55] results at locations H1, H2, H3, and H4 have been compared with the 

longitudinal water surface profiles at several time instants from the gate release to the arrival of the 

secondary wave, obtained by the theoretical parabolic profile of Ritter [60]. The SPH simulation 

reproduces the theoretical solution well, as shown in Figure 4. 

Figure 5 displays the evolution of water flow levels from the secondary wave’s arrival onward. 

In the latter case, the second scheme also includes the filtered height (red line) estimated along the 

same vertical, neglecting the breaking effects.  
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Figure 3. Comparison between the experimental and numerical water level elevations at locations: (a) 

H1; (b) H2; (c) H3; and (d) H4 over time, until the arrival of the secondary wave. 

 

Figure 4. Comparison between the experimental and the numerical water level elevations at locations: 

(a) H1; (b) H2; (c) H3; and (d) H4 with the Ritter theoretical solution at t = 0.1 s, t = 0.2 s, t = 0.3 s, and t = 

0.4 s, until the arrival of the secondary wave. 

The distance of the wave front from the gate and the water levels are normalized by the initial 

height of the reservoir, H. The water levels are plotted against dimensionless time 𝑡∗ = √𝑔 𝐻⁄  (where 

t is the dimensional time recorded since the start of the gate’s movement, and g is the gravity 
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acceleration magnitude). From Figure 3, both levels are generally in perfect agreement with the 

experimental trend for all sensors. Following the breaking of the reflected wave and the beginning of 

splashing, the signal acquired by the authors of [55] becomes noisy, due to both the flow 

fragmentation and the presence of complex vortex structures propagating along the channel and 

greatly affecting the water level at different locations. In fact, the authors of [55] stated: “The 

discrepancies in elevation of the secondary wave depend on complex flow structures that are created 

as the secondary wave propagates through the tank. These flow structures differ from case to case 

and significantly affect the water levels at specific locations. Thus, a question as to secondary flow 

repeatability emerges. This question remains open”. This poses a challenge not only with respect to 

the repeatability of the experimental signal and related uncertainty but also complicates its 

comparison with the proposed numerical reconstruction (Figure 4). In fact, both the simulations 

developed here and the curve by the authors of [34], with a particle resolution of dx = H/120 and the 

three curves from the authors of [32], obtained using different diffusive models, do not adequately 

represent water levels during the secondary wave.  

More specifically, the filtered height curve of the second scheme is closer to the experimental 

data compared to the numerical results in the literature. The difference between the filtered and the 

unfiltered time series of the free surface height quantifies both the position of the multi-phase region 

(characterized by air intrusion) and the uncertainty in the definition of the free surface height. At the 

reflection of the primary dam-break wave, the filtering procedure on the free surface level provides 

differences comparable with the errors of the numerical code (with respect to measure). The filtering 

procedure locally reveals the presence of more than one liquid-gas interface along the vertical and 

possibly motivates either the use of a multi-phase model or the need for a clearer definition of the 

experimental procedure to detect the free surface. 

 

Figure 5. Water surface elevation comparison between the numerical results and the experimental 

data from the secondary wave arrival: (a) H1; (b) H2; (c) H3; and (d) H4. 

Finally, the numerical reconstruction of the impact wave pressures on the downstream vertical 

wall are presented in Figure 6. Here, the pressures are non-dimensionalized with regard to the 

hydrostatic pressure at the bottom of the reservoir and plotted versus t*. The trends of the pressures 
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simulated with both the first and second scheme generally showed a close agreement with the 

experimental signals. The model developed here provides values slightly higher than those recorded 

by the authors of [55], especially for the probes P1, P2, and P4. In contrast, a lower pressure peak is 

produced for P3. Compared with previous numerical data, the present results show a smoother 

signal, a more pronounced overestimation of the pressure levels at 3 < t* <6, and a more correct 

assessment of the peak pressure. 

 

Figure 6. Temporal evolution of pressure simulated at: (a) P1; (b) P2; (c) P3; and (d) P4 located on the 

downstream vertical wall of the channel. Comparison between experimental and numerical data in 

the literature. 

5. Conclusions 

A smoothed particle hydrodynamics method with two advanced boundary treatment 

techniques was proposed for modeling a free-surface flow with violent wave-breaking. Its efficiency 

and accuracy were validated by numerically simulating the dynamics of a two-dimensional dam-

break event investigated by the authors of [55] in a laboratory prismatic tank with a removable gate.  

The model generated an accurate representation of the wave’s free-surface profile and pressures on 

the downstream vertical wall seen in the experimental data. Both the advanced boundary techniques 

reproduced the water levels from the gate release to the arrival of the secondary wave with accuracy. 

Flow fragmentation and complex vortex structures propagating along the channel make a robust 

experimental reconstruction of the free surface profile of the secondary wave difficult, as widely 

discussed in previous studies. However, a comparison of the present work with numerical 

simulations in the literature highlights how the filtered height curve obtained from the second 

scheme, which neglects the breaking effects, is closer to the experimental data. 

Finally, the temporal evolution of the pressures simulated with either techniques generally 

agrees well with the ones recorded by [55], providing slightly higher values, especially for the probes 

P1, P2, and P4, and a lower peak for P3. In the last time-step, the present data showed a more regular 

signal compared with the previous numerical results.  
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