
water

Article

Analyses of Precipitation and Evapotranspiration
Changes across the Lake Kyoga Basin in East Africa

Charles Onyutha * , Grace Acayo and Jacob Nyende

Department of Civil and Building Engineering, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda;
graceacayo20@gmail.com (G.A.); jmnyende@yahoo.com (J.N.)
* Correspondence: conyutha@kyu.ac.ug

Received: 15 March 2020; Accepted: 15 April 2020; Published: 16 April 2020
����������
�������

Abstract: This study analyzed changes in CenTrends gridded precipitation (1961–2015) and
Potential Evapotranspiration (PET; 1961–2008) across the Lake Kyoga Basin (LKB). PET was
computed from gridded temperature of the Princeton Global Forcings. Correlation between
precipitation or PET and climate indices was analyzed. PET in the Eastern LKB exhibited an
increase (p > 0.05). March–April–May precipitation decreased (p > 0.05) in most parts of the LKB.
However, September–October–November (SON) precipitation generally exhibited a positive trend.
Rates of increase in the SON precipitation were higher in the Eastern part where Mt. Elgon is located
than at other locations. Record shows that Bududa district at the foot of Mt. Elgon experienced a
total of 8, 5, and 6 landslides over the periods 1818–1959, 1960–2009, and 2010–2019, respectively. It is
highly probable that these landslides have recently become more frequent than in the past due to the
increasing precipitation. The largest amounts of variance in annual precipitation (38.9%) and PET
(41.2%) were found to be explained by the Indian Ocean Dipole. These were followed by precipitation
(17.9%) and PET (21.9%) variance explained by the Atlantic multidecadal oscillation, and North
Atlantic oscillation, respectively. These findings are vital for predictive adaptation to the impacts of
climate variability on water resources.

Keywords: precipitation variability; potential evapotranspiration; climate indices; trend analyses;
climate variability; Lake Kyoga Basin; Bududa landslides; Hargreaves method

1. Introduction

Within the River Nile basin, Lake Kyoga links Lake Victoria to Lake Albert. However, the Lake
Kyoga Basin (LKB) is the least studied among the River Nile tributaries [1]. This is due to lack of quality
observed long-term hydrometeorological data. Generally, in the sub-Saharan Africa (where the LKB is
located), weather stations are of low density, unevenly distributed, and not continuously operational
due to poor maintenance of data recording equipment or instruments [2]. In some cases, studies
tend to be conducted using short-term data. For instance, to investigate the groundwater–surface
water interactions of papyrus wetlands in the LKB, Southwell [3] used data observed from July
2015 to February 2016. Such short-term data cannot be representative of the long-term variation in
the hydrometeorology.

Generally, to circumvent the problem of lack of historical long-term series, studies tend to make
use of the reanalyses or remotely sensed datasets. A few examples of precipitation products and/or
temperature datasets freely available to researchers can be obtained from the Princeton Global Forcings
(PGFs) [4], Global Precipitation Climatology Project (GPCP) [5], Climatic Research Unit (CRU) [6],
African Rainfall Climatology (ARC) [7], Tropical Rainfall Measuring Mission (TRMM) [8], and Climate
Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) [9].
The temperature from some of the freely downloadable datasets can be used to estimate Potential
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Evapotranspiration (PET). Several studies (for instance, [10–13]) that made use of the freely available
precipitation products. The main advantage of reanalyses data is that they tend to be of a large
(or global) spatial scale.

In hydrology, hydrometeorology, and perhaps other fields, precipitation and evapotranspiration
are respectively the first and second largest terms in relation to the water budget. Especially
for the estimation of PET, several studies [14–19] made use of remotely sensed and/or satellite
images. Glenn et al. [14] in their review put emphasis on studies that combine methods for estimating
evapotranspiration from remote sensing and ground observations considering areas such as agricultural
region, rangelands, and natural ecosystems. Vinukollu et al. [15] compared the performance of a single
source energy budget model, Penman–Monteith approach, and Priestley–Taylor method for estimating
evapotranspiration at a global scale. Where soil evaporation plays a dominant role, the Priestley–Taylor
approach and the single source energy budget model yielded results, which were highly comparable
with ground-based observations of evapotranspiration; however, the Penman–Monteith method
showed the highest correlation for sensible heat flux [15]. Bashir et al. [19] assessed the applicability of
evapotranspiration estimates from remotely sensed data for managing of Gezira Scheme in Sudan.
Alemu et al. [17] investigated the association between evapotranspiration and vegetation dynamics in
the River Nile basin. Liou and Kar [18] conducted a review of evapotranspiration estimation with remote
sensing and a number of surface energy balance algorithms. For the study area, Nsubuga et al. [20]
used remotely sensed Landsat images for 1986, 1995, and 2010 to detect changes in the surface water
area of the LKB. Nsubuga et al. [20] showed that the surface area of Lake Kyoga was increasing.
Such findings are relevant for applications, which directly depend on the Lake Kyoga and its outflow.
The main challenge with remotely sensed data or satellite images is that they tend to be of short term.
Furthermore, acquiring an archive of such imagery with high spatial and temporal resolution is always
very expensive. Therefore, given that in the analyses of trends and variability, long-term data are
required, reanalyses data can be used based on the intended applications or the purpose for which the
study is being conducted.

There are a number of water resources applications within the LKB. Some of these applications
include the 600 Mw Karuma hydro power plant (located shortly downstream of the Lake Kyoga
outflow), as well as the several irrigation schemes such as Agoro, Doho, and Olwenyi in Lamwo,
Butaleja, and Lira Districts, respectively. In Bududa district, which is located in the Eastern part of the
LKB, the occurrence of precipitation-induced landslides is common. The recent landslide occurred in
December 2019 [21]. Therefore, for an insight on the variation in the water budget of the LKB, it is
important to assess precipitation and PET changes in terms of long-term trends, and/or multidecadal
variability. Whereas long-term trends may be due to global warming, precipitation and PET decadal
or multidecadal variability can be to a number of drivers. Such drivers can include the changes in
large-scale ocean–atmosphere conditions, as well as the influence from regional and local factors. Dry
and wet conditions across the East Africa where the LKB is located can be linked to the increase or
decrease in the Sea Surface Temperature (SST) or atmospheric pressure at the sea level across the
various oceans. When precipitation or PET variability drivers are known, an upcoming period of wet
or dry condition can be predicted thereby supporting planning of predictive adaptations to the impact
of climate variability on water resources, and agriculture.

This study aimed at analyzing precipitation and PET trends and variability across the
LKB. This, while focusing on the rainy season as well as annual time scale, was done while
investigating the possible linkage of the precipitation and PET variability to the changes in large-scale
ocean–atmosphere conditions.
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2. Materials and Methods

2.1. The Study Area

The LKB is found in the upper part of the River Nile Basin. It is located in Uganda, a country
found in East Africa. Apart from Lake Kyoga, the LKB comprises Lake Bisina and Lake Nakuwa
with the open water surface areas of 130 km2 and 83 km2, respectively [22]. The Lake Kyoga receives
flows from the Victoria Nile and the tributaries emanating from the Mount Elgon region. The Lake
Kyoga is shallow (with most parts less than 4 m deep) but connects Lake Victoria to Lake Albert.
The drainage area of the LKB has been reported differently by many researchers as 75,000 km2 [23],
57,233 km2 (Food and Agriculture Organization FAO [24]), and about 57,000 km2 [1,25]. Nevertheless,
the drainage area of the LKB stretches between 0◦ N and 4◦ N (in the North–South direction) and
32◦ E and 35◦ E (in the East–West direction). The vast drainage area of the LKB is exclusively within
the confines of the territorial boundary of Uganda. The study area starts from the central part of the
country and extends through the eastern region until the northeastern subregion. The LKB consists of
eleven subcatchments including Awoja, Okok, Okere, Mpologoma, Victoria Nile, Sezibwa, Akweng,
Abalang, Lwere, Lumbuye, and Kyoga Lake side zones (Figure 1). There are a number of ethnic tribes
found within the LKB including (among others) the Buganda, Busoga, Iteso, Kumam, Jopadhola, Sebei,
Lango, and Karamojong. The main occupation of the people in the LKB is subsistence farming. Fishing
is another key occupation especially for those close to the shoreline of the Lake Kyoga. However, in
the far northeastern part of the LKB, the Karamojongs are nomadic pastoralists and tend to move from
place to place in search for pasture and water for their livestock.

In Figure 1, the background map of the LKB is the Digital Elevation Model (DEM). The hole-filled
DEM derived from the USGS/NASA [26] and processed by the International Centre for Tropical
Agriculture (CIAT-CSI-SRTM) using interpolation methods described by Reuter et al. [27] was
downloaded online via the link http://srtm.csi.cgiar.org (accessed: 3 December 2019). It is noticeable
that the elevation ranges from about 1000 to 4320 m above sea level. The highest point (4320 m) is
the peak of Mount Elgon located in the Eastern part of the LKB. The lowest lying area is in the Teso
subregion where the slope of the terrain hardly exceeds 2%. The difference between the highest and
the lowest point across the study area is large (up to about 3310 m).

The long-term (1961–2000) mean annual rainfall at the two selected precipitation gauge Stations
1 and 2 was found to be 1436 mm and 1258 mm, respectively. At the selected locations A and B,
the observed Tmin values for each month were above 18 ◦C. Therefore, based on the Koppen Geiger
classification [28,29], the climate of the LKB is characterized by Af or Equatorial fully humid climate
(along the equator) and Aw or Equatorial savannah with the dry (December–January–February, DJF)
season in the northeastern part.

http://srtm.csi.cgiar.org
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recent variability in precipitation and PET across the LKB, the period 1961–2015 was selected. 

2.2.1. Precipitation  

Gridded (0.3° × 0.3°) monthly precipitation of CenTrends v1.0 data [30] was downloaded via the 
link https://doi.org/10.1038/sdata.2015.50 (accessed: 25 May 2019). There were no missing records in 
the gridded data over the selected period 1961–2015.  

Daily rainfall data from 1961 to 2000 observed at Bugaya labeled as Station 1 (longitude = 33.15, 
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Figure 1. The Lake Kyoga Basin.

2.2. Data

Data from various sources were used in this study. The data included precipitation, PET, and
climate indices. Regarding the selection of the data period for analyses, it is vital to note that in 1960
there was a step jump in the precipitation mean in the region where the LKB is located. To eliminate
the influence of step jump in the precipitation mean on results of trend analyses, data over the periods
before and after the step jump are required to be considered separately. Eventually, to reflect the recent
variability in precipitation and PET across the LKB, the period 1961–2015 was selected.

2.2.1. Precipitation

Gridded (0.3◦ × 0.3◦) monthly precipitation of CenTrends v1.0 data [30] was downloaded via the
link https://doi.org/10.1038/sdata.2015.50 (accessed: 25 May 2019). There were no missing records in
the gridded data over the selected period 1961–2015.

Daily rainfall data from 1961 to 2000 observed at Bugaya labeled as Station 1 (longitude = 33.15,
latitude = 1.60) in Figure 1 was obtained from the Uganda National Meteorological Authority
(UNMA). Monthly rainfall data over the period 1961–2000 observed at Ivukula labeled as Station 2
(longitude = 33.35, latitude = 0.57) in Figure 1 was adopted from a previous study [25] after quality
control had already been performed. In other words, data at Station 2 had no missing records.

https://doi.org/10.1038/sdata.2015.50
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However, the missing records at Station 1 were infilled based on the linear relationship between data
of corresponding months at Stations 1 and 2.

For trend and variability analyses, the monthly CenTrends precipitation was converted to seasonal
and annual scales. Similarly, the observed precipitation was converted to seasonal and annual scales.
Comparison of long-term mean monthly values of observed and CenTrends precipitation was made
(see Figure 2). It is noticeable that the mismatch between the observed and CenTrends precipitation
was minimal for both Stations 1 and 2 (Figure 2a,b). This close agreement between the two datasets
was because the CenTrends data were obtained by Kriging interpolation of observed precipitation.
Therefore, a possible difference between observed and CenTrends precipitation would be due to the
influence of the few number of weather stations in the region where LKB is located on the interpolation
estimates. Nevertheless, amidst low density of weather stations in a region (like in the sub-Saharan
Africa where the study area is located), the empirically determined distance decay functions are
required to control the Kriging procedure.

It can be seen that the precipitation at Station 2 clearly shows a bimodal pattern with
peaks in the March–April–May (MAM) and September–October–November (SON) seasons while
December–January–February (DJF), and June–July–August (JJA) periods were dry. The precipitation
pattern tends to rely on the migration of the Inter-Tropical Convergence Zone (ITCZ) in response to the
pressure differences in the south and northern hemispheres. This is because a band of precipitation
tends to move with the ITCZ as it migrates from the south to the north or vice versa. The ITCZ crosses
the equator twice a year, firstly while it is migrating northwards from the southern hemisphere, and
secondly during its southward retreat after reaching close to 20◦ N. The first and second crossing of the
equator leads to the MAM and SON precipitation (for instance at Station 2), respectively. An important
note is that in June, July, and August, the ITCZ is clearly in the northern hemisphere. Eventually,
the area (farther away from the equator but close to 20◦ N) gets continuous precipitation in the JJA
season. In other words, the farther one gets Northwards of Equator, the more unimodal the monthly
precipitation pattern becomes. This explains why the JJA season has more precipitation at Station 1
than that at Station 2.
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Figure 2. Mean of long-term monthly precipitation at selected locations in the Lake Kyoga Basin (LKB).

2.2.2. Temperature and PET

Gridded (0.5◦ × 0.5◦) daily minimum (Tmin) and maximum (Tmax) temperature were obtained from
Princeton Global Forcing (PGFs) [4] via the link http://hydrology.princeton.edu/data/pgf/ (accessed:
27th June 2019). The PGF data covered the period 1948–2008. To conform to the period for precipitation,
the PGF Tmin and Tmax used in this study were over the period 1961–2008.

Daily Tmin and Tmax observed at Soroti and Jinja labeled as Station A (longitude = 33.611, and
latitude = 1.715), and Station B (longitude = 33.204, and latitude = 0.423), respectively (see Figure 1),
were obtained from the UNMA. The available data obtained for Station A covered the period 1971–1974.
At Station B, daily data was available over the periods 1961–1982 and 1983–2000. Station A had no
missing values. Station B had a missing record of 4%. Infilling of the missing records for a particular
month was done through the arithmetical mean. For instance, the missing record for 1st November,

http://hydrology.princeton.edu/data/pgf/
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1978 was obtained as the average of values recorded on every 1st November in 1977, 1976, 1979, and
1980. This method was adopted for Station B because there were no available nearby temperature
measurement stations for this study.

Several methods exist for the estimation of PET including the FAO Penman-Monteith (FPM)
method [31], Makkink method [32], Hargreaves method [33,34], Blaney–Criddle approach [35], and
Priestley–Taylor method [36]. Generally, the methods for PET estimation can categorically be based
on temperature [33,35], radiation [32,36], mass transfer [37], combined energy, and mass balance [31].
Comparison of the various PET estimation methods has been widely made in several studies such
as [38–41]. Each of the PET estimation methods has its advantages and disadvantages. The FPM
method is physically based and gives the most realistic estimates of PET across various climates [31].
However, the application of the FPM in a data scarce region (like where the LKB is located) is limited
due to its huge data requirements. Makkink, Blaney–Criddle, and Priestley–Taylor methods require
local calibration of some of their parameters and this affects the PET estimates. The Hargreaves
method [33,34] is simple to compute, has low data requirement (in terms of only Tmax, Tmin, and
latitude) to estimate PET of a location. Chuanyan et al. [42] compared three methods for estimating PET
including Behnk–Maxey [43], Prestley–Taylor [36], and Hargreaves [33,34]. The Hargreaves method
was found to be the best for areas where weather stations were sparse [42]. In this line, furthermore,
given that only Tmin and Tmax were available, the Hargreaves method [33,34] was adopted for the
computation of the PET in this study such that

PET = 0.0023×Ra ×

√
(Tmax − Tmin) × (Tmean − 17.8) (1)

where PET is in mm/day, Tmin and Tmax are in (◦C), Tmean refers to the mean air temperature (◦C), and
Ra denotes the extra-terrestrial solar radiation (W/m2). The Ra can be computed in terms of latitude.
Equation (1) was applied to the Tmin and Tmax at each grid point. Furthermore, the PET was converted
from daily to monthly scale. Like the temperature data, the PET series used in this study covered the
period 1961–2008.

For comparison, the PGF data (Tmin and Tmax) were extracted at Stations A and B. Comparisons
of observed and PGF-based temperature (Tmin and Tmax) as well as the PET were made (Figure 3).
For clarity taking the differences in the orders of magnitudes of the variables, plots for observed
and PGF-based Tmin, Tmax, and PET were made separately. At Station A, the observed temperature
exhibited peaks twice a year (a bimodal pattern) though it is more clearly visible for Tmax than Tmin

(Figure 3a,b). Nevertheless, at Station A, the maximum temperatures occurred during the DJF season.
For the PGF data (Figure 3a,b), there was one peak (a unimodal pattern). The differences between
Tmax and Tmin were larger for observed than PGF data. Eventually, the observed PET (Figure 3c) of
each month was largely underestimated by the PGF-based PET (Figure 3f). At Station B or close to the
equator, Tmin, Tmax, and PET (Figure 3g–i) were clearly of a bimodal pattern with the peaks during
the MAM and SON seasons. However, the PGF-based Tmin and Tmax exhibited a unimodal pattern
(Figure 3j–k). On average, the monthly mean values of the observed Tmax and Tmin were 27.53 ◦C and
16.54 ◦C, respectively. However, PGF-based Tmax and Tmin yielded a monthly mean of 19.46 ◦C and
18.91 ◦C, respectively. In other words, the PGF data underestimated the observed differences between
Tmax and Tmin (an aspect that comprised of an important component of Equation (1)). Eventually, the
deviation of the PETs of the various months from the monthly mean was larger for observed (Figure 3i)
than PGF-based data (Figure 3l). In other words, (i) the response of the PET to rainy seasons (MAM,
JJA, SON, and DJF) was not well captured by the PGF data, and (ii) for each month, the PGF-based
PET were only about 50% of the observed PETs.
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Figure 3. Mean of long-term monthly PET at selected locations in the LKB.

2.2.3. Climate Indices

A number of monthly climate indices including the North Atlantic oscillation (NAO), Atlantic
multidecadal oscillation (AMO), Niño 3 index, and the Indian Ocean dipole index (IOD) were obtained
from various sources.

(a) The NAO index [44,45] is the normalized pressure difference between a station on the Azores
and one on Iceland. Monthly NAO index was obtained from http://www.esrl.noaa.gov/psd/

gcos_wgsp/Timeseries/NAO/ (accessed: 30 June 2019). The data used in this study covered the
period 1960–2015.

(b) The AMO index is defined as the SST averaged over 25–60◦ N, 7–70◦ W minus the regression
on the global mean temperature [46]. The monthly AMO index [47,48] was obtained from
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/ (accessed: 30 June 2019). The data
used in this study covered the period 1960–2015.

(c) The Niño 3 [48,49] is the area averaged SST for the Tropical Pacific region 90◦ W to 150◦ W and 5◦

N to 5◦ S. The monthly Niño 3 data was obtained via http://www.esrl.noaa.gov/psd/gcos_wgsp/

Timeseries/Nino3/index.html (accessed: 25 May 2019). The Niño 3 covered the period 1960–2015.
(d) The IOD is the climate mode associated with the state of the SST over Western (50◦ E to 70◦ E and

10◦ S to 10◦ N) Equatorial and Southeastern (90 to 110◦ E and 10◦ S to 0◦ N) Indian Ocean [50].
The monthly IOD series obtained from the Japan Agency for Marine-Earth Science and Technology
(JAMEST) via the link http://www.jamstec.go.jp/frcgc/research/d1/iod (accessed: 20 January 2014)
and used in the research by Onyutha and Willems [51] was adopted from this study. The IOD
used in this study covered the period 1960–2003.

Precipitation and PET were converted to seasonal and annual timescales. For the relevance of
water resource applications, apart from the annual precipitation and PET, wet conditions in each year
or MAM, and SON rainy seasons were considered.

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/AMO/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino3/index.html
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino3/index.html
http://www.jamstec.go.jp/frcgc/research/d1/iod
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2.3. Trend

Trend analysis is normally two-fold. The trend magnitude or slope is first computed. In this line,
the trend slope (m) in MAM, SON, and annual precipitation and PET was computed using the method
of Theil [52] and Sen [53]. The second step requires testing of the significance of the non-zero slope of a
linear variation of the variable. Trend significance can be tested parametrically or non-parametrically.
Linear regression test is parametric and requires the data to be normally distributed. The assumption
that the data should be normally distributed is not necessary for non-parametric methods including
the Mann–Kendall (MK; [54,55]), and Spearman Rho (SR; [56–58]) tests. However, both the MK and SR
tests are specifically for trend detection. Therefore, in this study, another non-parametric approach that
tests both trends and variability was adopted. In other words, the significance of the trend was tested
in terms of the difference between the exceedance and non-exceedance counts of data points [59–61].
Examples of recent studies that applied the method adopted in this study include Pirnia et al. [62],
Tang and Zhang [63], Vido et al. [64], and Cengiz et al. [65]. Statistically, the comparability of the
adopted method with the MK test was demonstrated in previous studies [2,59].

In the adopted method, the given data X of sample size n is first transformed into series d
using [59–61].

di = 2
∑n

j=1
sgn1

(
y j − xi

)
−

(
n−

∑n

j=1
sgn2

(
y j − xi

))
(2)

where,

sgn1

(
y j − xi

)
=

 1 if
(
y j − xi

)
> 0

0 if
(
y j − xi

)
≤ 0

(3)

sgn2

(
y j − xi

)
=

 1 if
(
y j − xi

)
= 0

0 if
(
y j − xi

)
< 0 or

(
y j − xi

)
> 0

(4)

The trend statistic T can be given by [59]

T = 6×
(
n3
− n

)−1
×

∑n

j=1

∑ j

i=1
di (5)

Increasing and decreasing trends are indicated by T > 0, and T < 0, respectively. The distribution
of T is approximately normal with the mean of zero and the variance = (n − 1)−1 such that [60,61].

Z =
T√

(n− 1)−1
× β

(6)

where Z is the standardized trend statistic with the mean of zero and variance equal to one while β
is a factor to correct the variance of T from the influence of autocorrelation on Z. The suitability of β
for analyses of autocorrelated data can be found demonstrated by Onyutha [13]. Let Zα/2 denote the
standard normal variate at a selected α. The null hypothesis H0 (no trend) is not rejected if |Z| < Zα/2 at
α; otherwise, the H0 is rejected.

The trend test was applied to the precipitation and PET at each grid point. Spatialization of trend
results across the study area was achieved through interpolation. Another method of spatialization
is regionalization, an approach that requires division of the study area into homogenous regions.
Regionalization was not relevant for this study. Several methods exist for spatial interpolation such as
ordinary kriging, inverse distance weighted interpolation, and universal kriging. Ordinary kriging
was adopted in this study because it allows for the optimization of interpolation estimates using
distance decay functions thereby making it possible to limit the area of influence of each station to some
reasonable value. The kriging method is important for Africa (where the study area is located), since
large areas are ungauged, and values from the edges of these un-monitored locations can perpetuate
thousands of kilometers when not constrained [30].
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2.4. Variability

Variability in the MAM, SON, and annual precipitation, and PET was computed in terms of
subtrends based on Equation (6) following the approach of Onyutha [2]. If we consider X to have a
subset x from the uth to the vth value of X, Equation (6) can be applied based on a subseries extracted
using the window (of length w) moved from the start to the end of the series. For the selected w, t = 0.5
× (w + 1) and t = 0.5 × w in the cases when w is odd and even, respectively, such that

Z(w)
i = f (x ⊂ X|xu ≤ x ≤ xv) for i = 1, 2, . . . ., n (7)

where Zi is the ith value of Z, while the terms u and v can be given by:

if i < t, u = 1, v = t + i− t− 1
if i ≥ t and i ≤ (n− t), u = i− t + 1, v = i + t
if i > (n− t) and i ≤ n, u = i− t + 1, v = n

 (8)

Based on the values from Equation (7), the plot of Zi against the corresponding ith data year can be
used to diagnose the variability in the data. Due to natural randomness, over one epoch, the subtrends
can be positive while a subsequent subperiod can be characterized by negative subtrends. The Z = 0
line can be taken as the reference corresponding to the case when there is completely no trend in the
data. The occurrence of positive and negative subtrends in a clustered way in time characterizes the
variability in the data. The H0 (natural randomness) is rejected if the scatter points (in the plot of Zi
against the corresponding ith data year) go outside the (100 − α)% Confidence Interval (CI) limits or
|Z| > Zα/2 at the selected α. However, if the scatter points fall within the (100 − α)% CI limits, the H0

(natural randomness) is not rejected at the selected α.

2.5. Correlation Analysis

The covariation of the subtrends in the seasonal and annual precipitation with climate indices
was determined in terms of correlation. The H0 (no correlation between the subtrends of precipitation
and those of the climate indices) was tested at α = 0.05 (at each grid point). This step was repeated for
the climate indices and PET. The idea was to determine the amount of variance in precipitation or PET
that could be explained in terms of the changes in large-scale ocean–atmosphere interactions.

3. Results

3.1. Trend

Figure 4 shows linear trends fitted to annual precipitation, Tmax and PET. Both observed and
CenTrends-based annual precipitation (Figure 4a,b) exhibited a decrease. The corresponding trend
slopes at Station 1 were−18.257 mm/year, and−3.2168 mm/year, with p = 0.001 and p = 0.423, respectively.
At Station 2, trend slopes in observed and CenTrends-based precipitation were −19.567 mm/year,
and −3.0809 mm/year, with p = 0.006 and p = 0.631, respectively. In other words, the precipitation
decrease with time was faster in observed than the CenTrends data. In Figure 4c, Tmax was considered
because it is important in the computation of PET using temperature-based method (see Equation
(1)) as adopted in this study. At Station B, both observed and PGF-based annual Tmax (Figure 4c)
exhibited an increase. The rate of increase of Tmax was 0.0339 ◦C/year and 0.0072 ◦C/year for observed
and PGF-based temperature, respectively. From Figure 4d, there were contrasting trend slopes of
0.6508 mm/year and −0.0345 mm/year in observed and PGF-based PET, respectively. As seen from
Equation (1), PET depends on the difference between Tmax and Tmin. For each data year, the difference
between Tmax and Tmin was larger for observed than PGF data. Though only shown for annual time
scale, the differences in trends between observed and CenTrends precipitation varied among seasons.
Furthermore, observed and PGF-based temperature (or PET) trends also tended to differ among
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seasons. It is envisaged that the differences in trends between observed and CenTrends precipitation,
as well as observed and PGF-based PET may vary in magnitude from one location to another across
the LKB. Nevertheless, the use of CenTrends precipitation and PGF-based PET in this study was to
give an insight on the possible long-term trend, something that is important for planning predictive
adaptation of water resources management.
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Figure 4. Time series plots of annual (a,b) precipitation, (c) Tmax, and (d) PET. The legend of chart
(b) and (d) is similar to that of (a) and (c), respectively. “Obs” stands for observed (a,b) precipitation,
(c) Tmax, and (d) PET.

Figure 5 shows magnitudes of statistical trends in precipitation and PET. The corresponding Z
values for the significance of the trends can be found in Figure A1 of Appendix A. At the selected
α of 0.05, the Zα/2 = 1.96. The southern part of the LKB exhibited a decreasing trend in both MAM
(Figure 5a) and annual (Figure 5c) precipitation. For the eastern part of the LKB, SON precipitation
exhibited an increase (Figure 5b). The trend slope in the southern part of the LKB was as low as
−0.752 mm/year, −0.078 mm/year, and −1.393 mm/year for MAM (Figure 5b), SON (Figure 5d), and
annual (Figure 5f) precipitation, respectively. For these negative trends, the H0 (no trend) was not
rejected (p > 0.05) with standardized trend statistic Z values as low as −1.194, −0.184, and −0.922 for
MAM, SON, and annual precipitation, respectively. MAM precipitation was mainly characterized by a
decrease with Z varying from −1.194 to −0.314 indicating p > 0.05. For this increase, the H0 (no trend)
was rejected (Z = 2.061, p < 0.05) for SON precipitation in the northeastern part (north of 2◦30′ N).
The trend slopes of the SON precipitation in the eastern part were higher than those at other locations
of the LKB.

MAM PET exhibited a decrease especially over the southwestern part of the LKB (Figure 5d).
The SON PET was characterized by an increase in the southern part (Figure 5e). The MAM PET in
the northern part of the LKB exhibited an increase (Figure 5d). Annual PET across the LKB mainly
showed an increase except in the western periphery (Figure 5f). Generally, for the trends in terms of
both an increase and a decrease in the PET of either seasonal or annual time scales, the H0 (no trend)
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was not rejected (p > 0.05) since the ranges of the Z values were −0.756 ≤ Z ≤ 1.522, −1.218 ≤ Z ≤ 1.005,
and −1.211 ≤ Z≤ 1.712 for MAM, SON, and annual PET, respectively (see Figure A1 of Appendix A).
Nevertheless, what cannot escape a quick notice is that the spatial results across the LKB were more
coherent for precipitation than the PET.Water 2020, 12, x FOR PEER REVIEW 11 of 24 
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3.2. Variability

Figure 6 shows variability in precipitation and PET at selected locations. The occurrences
of negative and positive subtrends in a temporally clustered way in time were exhibited in both
precipitation and PET. For the observed precipitation at Station 1, negative subtrends occurred from
the mid-1960s to the late 1980s (MAM, Figure 6a), the 1960s and 1980s (SON, Figure 6b), and the late
1970s and 1980s (annual precipitation, Figure 6c). The positive subtrends occurred in the 1990s for
both seasonal and annual precipitation (Figure 6a–c). At Station 2, the negative subtrends in observed
precipitation were in the 1980s (for MAM), from the early 1960s to the late 1980s (for SON and annual
precipitation). Like at Station 1, the precipitation at Station 2 exhibited positive subtrends in the 1990s.

At Station 1 (Figure 6a–c), the coefficient of correlation between observed and CenTrends
precipitation variability was 0.40, 0.29, and 0.27, for MAM, SON, and annual time scales, respectively.
Correspondingly, the correlation at Station 2 (Figure 6d–f) was 0.30, 0.13, and 0.56 for MAM, SON, and
annual precipitation, respectively. It was noted that the mismatch between observed and CenTrends
data was larger for the period after than before 1980. This suggests that in the interpolation to derive
the CenTrends data, there were fewer precipitation gauge stations before than after 1980.

For PET (Figure 6g–i), positive subtrends occurred from the 1970s till the end of the data period
(MAM, Figure 6g), in the 1960s (SON, Figure 6h), and the 1970s (for annual PET, Figure 6i). A negative
subtrend occurred in the early 1960s (for MAM PET), from the late 1960s to the mid-1970s (for SON
season), and again in the late 1960s (for annual time scale). The coefficient of correlation between
observed and PGF-based data was −0.67, 0.14, and 0.43 for MAM, SON, and annual PET, respectively.
These results, like for trends in Figure 4, indicate that CenTrends data and PGF are not perfect per se in
reproducing observed temperature but can be used to obtain insight into the variability of observed
precipitation and PET, respectively.

Using only observed temperature at Station B, correlation between PET and MAM, SON, and
annual Tmax was 0.96, 0.88, and 0.80, respectively. The corresponding correlation for Tmin was −0.40,
−0.60, and 0.06, for MAM, SON, and annual data, respectively. This indicated, as mentioned for results
in Figure 4, the difference between Tmax and Tmin is an important determinant of the variation in
the PET.



Water 2020, 12, 1134 12 of 23
Water 2020, 12, x FOR PEER REVIEW 12 of 24 

 

 

Figure 6. Variability in precipitation at (a,b) Station 1, (d–f) Station 2, and PET at (g–i) Station B based 
on (a, d, g) MAM, (b, e, h) SON, and (c, f, i) annual time scales. In each chart, “Obs” means observed 
variable, and the dotted horizontal lines denote the 95% CI limits. 

Figure 7 shows the variability in precipitation and PET across the LKB. The variability can be 
noted in terms of the periods over which the subtrends were positive and negative indicating epochs 
with increasing and decreasing precipitation (or PET) trends, respectively. Results shown are for 
variability based on precipitation and PET at four locations with coordinates (33° E, 0.5° N), (34.5° E, 
3.4° N), (34.5° E, 1.5° N), and (32.4° E, 1.5° N) taken from the southern, northern, eastern, and western 
parts of the LKB. It is vital to note the last PET and precipitation data record years were 2008 and 
2015, respectively.  

For the MAM season (Figure 7a–d), the 1960s and 1990s were characterized by negative 
precipitation subtrends. The H0 (natural randomness) was rejected (p < 0.05) for the negative subtrend 
in the 1990s especially in the southern part of the study area (Figure 7a). However, positive subtrend 
in MAM precipitation was in the 1980s and after 2010 (Figure 7a–d). For this positive subtrend, the 
H0 (natural randomness) was rejected (p < 0.05) in the northern part of the LKB (Figure 7b). For PET, 
in the southern part of the LKB, negative and positive subtrends especially in the MAM (Figure 7a) 
and annual (Figure 7i) data occurred in the 1970s and 1980s, respectively. For both of these subtrends, 
the H0 (natural randomness) was rejected (p < 0.05). The variability in the SON PET (Figure 7e) was 
characterized by random fluctuations about the reference (or the Z = 0 line). Such variability was also 
obtained for the MAM and annual PET (Figure 7c,k) of the eastern part of the LKB. However, for the 
PET in the Eastern LKB (especially for the SON season), the positive subtrends were in the 1970s and 
2000s while the negative subtrend was in the 1980s (Figure 7g). 

   

   

   

-3.0

-1.5

0.0

1.5

3.0

1960 1970 1980 1990 2000

Tr
en

d 
st

at
is

tic
 Z

Year

a) MAM, Station 1

Obs CenTrends -3.0

-1.5

0.0

1.5

3.0

1960 1970 1980 1990 2000

Tr
en

d 
st

at
is

tic
 Z

Year

b) SON, Station 1

Obs CenTrends -3.0

-1.5

0.0

1.5

3.0

1960 1970 1980 1990 2000

Tr
en

d 
st

at
is

tic
 Z

Year

c) Annual, Station 1

Obs CenTrends

-3.0

-1.5

0.0

1.5

3.0

1960 1970 1980 1990 2000

Tr
en

d 
st

at
is

tic
 Z

Year

d) MAM, Station 2

Obs CenTrends -3.0

-1.5

0.0

1.5

3.0

1960 1970 1980 1990 2000

Tr
en

d 
st

at
is

tic
 Z

Year

e) SON, Station 2

Obs CenTrends -3.0

-1.5

0.0

1.5

3.0

1960 1970 1980 1990 2000

Tr
en

d 
st

at
is

tic
 Z

Year

f) Annual, Station 2

Obs CenTrends

-3.0

-1.5

0.0

1.5

3.0

4.5

1960 1968 1976 1984

Tr
en

d 
st

at
is

tic
 Z

Year

g) MAM, Station B

Obs PGF -3.0

-1.5

0.0

1.5

3.0

1960 1968 1976 1984

Tr
en

d 
st

at
is

tic
 Z

Year

h) SON, Station B

Obs PGF -3.0

-1.5

0.0

1.5

3.0

1960 1968 1976 1984

Tr
en

d 
st

at
is

tic
 Z

Year

i) Annual, Station B

Obs PGF

Figure 6. Variability in precipitation at (a,b) Station 1, (d–f) Station 2, and PET at (g–i) Station B based
on (a,d,g) MAM, (b,e,h) SON, and (c,f,i) annual time scales. In each chart, “Obs” means observed
variable, and the dotted horizontal lines denote the 95% CI limits.

Figure 7 shows the variability in precipitation and PET across the LKB. The variability can be
noted in terms of the periods over which the subtrends were positive and negative indicating epochs
with increasing and decreasing precipitation (or PET) trends, respectively. Results shown are for
variability based on precipitation and PET at four locations with coordinates (33◦ E, 0.5◦ N), (34.5◦ E,
3.4◦ N), (34.5◦ E, 1.5◦ N), and (32.4◦ E, 1.5◦ N) taken from the southern, northern, eastern, and western
parts of the LKB. It is vital to note the last PET and precipitation data record years were 2008 and
2015, respectively.

For the MAM season (Figure 7a–d), the 1960s and 1990s were characterized by negative
precipitation subtrends. The H0 (natural randomness) was rejected (p < 0.05) for the negative
subtrend in the 1990s especially in the southern part of the study area (Figure 7a). However, positive
subtrend in MAM precipitation was in the 1980s and after 2010 (Figure 7a–d). For this positive subtrend,
the H0 (natural randomness) was rejected (p < 0.05) in the northern part of the LKB (Figure 7b). For PET,
in the southern part of the LKB, negative and positive subtrends especially in the MAM (Figure 7a)
and annual (Figure 7i) data occurred in the 1970s and 1980s, respectively. For both of these subtrends,
the H0 (natural randomness) was rejected (p < 0.05). The variability in the SON PET (Figure 7e) was
characterized by random fluctuations about the reference (or the Z = 0 line). Such variability was also
obtained for the MAM and annual PET (Figure 7c,k) of the eastern part of the LKB. However, for the
PET in the Eastern LKB (especially for the SON season), the positive subtrends were in the 1970s and
2000s while the negative subtrend was in the 1980s (Figure 7g).
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Figure 7. Variability in (a–d) MAM, (e–h) SON, and (i–l) annual precipitation and PET for the
(a,e,i) southern, (b,f,j) northern, (c,g,k) eastern, and (d,h,l) western parts of the LKB. All charts share
the same legend as in (e) and the dotted horizontal lines denote the 95% CI limits.

Like for the MAM season, the SON precipitation (Figure 7e–h) yielded negative subtrends in the
1960s, and 1990s. For the 1960s’ subtrend, the H0 (natural randomness) was rejected (p < 0.05) in the
precipitation of the southern (Figure 7e) and eastern (Figure 7g) parts of the LKB. Positive subtrends
were in the 1970s and again in the recently especially from the mid 2000s onwards. The H0 (natural
randomness) was rejected (p < 0.05) only for the northern part of the LKB (Figure 7g). For the annual
time scale (Figure 7i–l), negative precipitation subtrends occurred in the 1960s and again from the late
1990s to the early 2000s. Both of these subtrends were significant (p < 0.05) at most of the locations
(Figure 7i,j,l) except in the northern part of the LKB. From the late 1980s to the early 1990s, and again
from the mid 2000s till the end of the data period (2015), annual precipitation was characterized by
positive subtrends. Despite the variability in the eastern part of the LKB, it is noticeable that the
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changes in the precipitation from 1960 to 2015 were dominated by an increasing trend especially in the
SON season and annual timescale (Figure 7g,k).

With respect to the PET variability, in the northern part of the LKB, both seasonal and annual data
(Figure 7b–j) yielded positive subtrends in the early 1960s and 1990s. The positive subtrend of the
1990s was significant (p < 0.05) in the annual PET (Figure 7j). For the SON PET, negative subtrends
were in the late 1960s and 1980s (Figure 5f). However, for the MAM PET, negative subtrends occurred
from the late 1960s to the early 1970s, and again in the early 1990s (Figure 7b). For the subtrend that
occurred in the late 1970s, the H0 (natural randomness) was rejected (p < 0.05). For the western part
of the LKB, MAM PET (Figure 7d) exhibited positive subtrends in the 1960s and 1980s. However,
negative subtrends were in the 1970s and the late 1990s. For the PET of SON season (Figure 7h),
positive subtrends occurred in the 1960s, the early 1980s and again in the early 2000s. However, the
SON PET exhibited negative subtrends in the 1970s, the late 1980s and early 1990s. The H0 (natural
randomness) was rejected (p < 0.05) in the PET of the SON season (Figure 7h). Two significant (p < 0.05)
subtrends in annual PET (Figure 7l) occurred in the 1960s, and the early 1980s. The major negative
subtrend yielded by the annual PET was in the 1970s.

3.3. Correlation Analysis

Based on a two-tailed test, the critical value of the correlation between climate indices and
observed data at station 1 and 2 was 0.312. However, at Station B, the critical value of the correlation
was 0.423. For the observed precipitation at Station 1, the H0 (no correlation) was rejected (p < 0.05)
for the relationship with IOD (for MAM), AMO (for SON), and both NAO and IOD (for annual time
scale). For the CenTrends data at Station 1, the H0 (no correlation) was rejected (p < 0.05) even for the
correlation between AMO and MAM or annual precipitation. At Station 2, the H0 (no correlation) was
rejected (p < 0.05) for the correlation between observed precipitation and NAO and IOD (for MAM),
Niño 3 and AMO (for SON), and again both NAO and IOD (for annual time scale). It is noticeable
that for the SON season, the correlation between climate indices and precipitation were higher with
CenTrends than observed data. For PET data at the selected Station B, the H0 (no correlation) was
rejected (p < 0.05) for the relationship with Niño 3 (for MAM and SON seasons), and AMO (for annual
time scale). For PGF data, correlation between PET and NAO, IOD, or AMO yielded larger values than
when the PET was computed based on observed temperature. The differences in attribution results
when observed and PGF data were used reflects the effects of the possible mismatch between the PGF
data and observed temperature on analysis results across the study (Table 1).

Table 1. Correlation between climate indices and precipitation or PET.

Station Scale NAO IOD Niño 3 AMO NAO IOD Niño 3 AMO

1

Observed precipitation CenTrends precipitation
MAM −0.20 0.48 * −0.03 0.06 −0.06 0.38 * −0.23 0.45 *
SON 0.25 −0.29 −0.04 0.42 * −0.36 * 0.19 −0.65 * 0.57 *
Annual −0.46 * 0.46 * 0.19 0.21 −0.49 * 0.63 * −0.27 0.53 *

2

Observed precipitation CenTrends precipitation
MAM −0.50 * 0.46 * 0.22 0.08 0.32 * 0.03 0.11 0.32 *
SON −0.04 0.12 −0.35 * 0.33 * −0.67 * 0.41 * −0.38 * 0.68 *
Annual −0.48 * 0.61 * 0.16 0.17 −0.44 * 0.73 * −0.17 0.67 *

B

PET from observed temperature PET based on PGF temperature
MAM −0.23 −0.41 0.48 * 0.19 −0.21 0.69 * −0.31 −0.48 *
SON −0.33 0.26 −0.67 * −0.28 −0.53 * 0.12 0.55 * 0.77 *
Annual 0.10 −0.21 0.23 0.70 * −0.74 * −0.36 −0.07 0.25

Note: * means H0 (no correlation) was rejected at α = 0.05.

Figure 8 shows an insight on the linkage of the precipitation variation to the changes in the
large-scale ocean–atmosphere conditions. The sample size of AMO, NAO or Niño 3 used in this study
was 55. Using a two-tailed test, the critical value of the correlation between precipitation and AMO,
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NAO, and Niño 3 was 0.265. The critical correlation value for IOD (with sample size of 44) was 0.297.
Precipitation across the LKB was generally found to be positively correlated with AMO (Figure 8a,c,e).
Of the total variance in the SON and annual precipitation, 20.5% and 17.9% could be explained in
terms of the variation in the AMO. The correlation between NAO and MAM precipitation was mainly
positive (Figure 8b). The amount of precipitation variance that could be explained by the changes
in NAO went up to 60.9%. However, SON and annual precipitation were found to be negatively
correlated with NAO (Figure 8d,f). The amount of precipitation variance that could be explained by
NAO for SON and annual precipitation (Figure 8d,f) was up to 34.1% and 37.5%, respectively. The H0

(no correlation) was rejected (p < 0.05) for the relation between NAO and precipitation in the Southern
part (Figure 8b,d,f). The MAM precipitation (Figure 8g) across the LKB was generally positively
correlated to the IOD except in the northeastern part. Both SON and annual precipitation (Figure 8i,k)
was mainly positively correlated with IOD. The H0 (no correlation) was rejected (p < 0.05) for the
relationship between IOD and the variation in the SON and annual precipitation in the southern and
eastern parts, respectively. For annual time scale, the largest amount of precipitation variance (38.9%)
was explained by the IOD. Niño 3 was positively and negative correlated with MAM precipitation in
the western and northeastern parts, respectively (Figure 8h). However, SON precipitation was mainly
negatively correlated with Niño 3 (Figure 8j). Niño 3 was positively and negatively correlated with
annual precipitation in the western and eastern parts, respectively (Figure 8l). The H0 (no correlation)
was rejected (p < 0.05) for the relation between Niño 3 and SON precipitation.Water 2020, 12, x FOR PEER REVIEW 16 of 24 

 

 

Figure 8. Correlation between precipitation and climate indices considering (a–b, g–h) MAM, (c–d, 
i–j) SON, and (e–f, k–l) annual time scales. 

Figure 9 shows how the PET variability is linked to the large-scale ocean–atmosphere conditions. 
The critical correlation coefficients for Figure 9 were similar for the corresponding climate indices as 
given for Figure 8. For both seasonal and annual time scales, the correlation between MAM PET and 
AMO (Figure 9a) as well as NAO (Figure 9b) was mostly negative across the study area. The PET in 
the southern part was mainly positively correlated with IOD (Figure 9g,i,k). However, Niño 3 was 
mainly negatively correlated with MAM and annual PET (Figure 9h,l). Niño 3 was both positively 
and negatively correlated with western and eastern PET, respectively (Figure 9j). What is worth 
mentioning is that the results of the correlation analyses were less coherent for the PET (Figure 9a–l) 
than precipitation (Figure 8a–l). 

 

Figure 8. Correlation between precipitation and climate indices considering (a,b,g–h) MAM, (c,d,i–j)
SON, and (e–f,k–l) annual time scales.

Figure 9 shows how the PET variability is linked to the large-scale ocean–atmosphere conditions.
The critical correlation coefficients for Figure 9 were similar for the corresponding climate indices as
given for Figure 8. For both seasonal and annual time scales, the correlation between MAM PET and
AMO (Figure 9a) as well as NAO (Figure 9b) was mostly negative across the study area. The PET in



Water 2020, 12, 1134 16 of 23

the southern part was mainly positively correlated with IOD (Figure 9g,i,k). However, Niño 3 was
mainly negatively correlated with MAM and annual PET (Figure 9h,l). Niño 3 was both positively
and negatively correlated with western and eastern PET, respectively (Figure 9j). What is worth
mentioning is that the results of the correlation analyses were less coherent for the PET (Figure 9a–l)
than precipitation (Figure 8a–l).Water 2020, 12, x FOR PEER REVIEW 17 of 24 
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4. Discussion

One of the findings from this study was that in most areas of the LKB (except in the eastern part
of the LKB), precipitation from the rainy seasons as well as that from the annual time scale exhibited a
decreasing (though insignificant p > 0.05) trend. The rate of this decrease was as low as −1.39, −0.752,
and −0.078 mm/year for annual, MAM, and SON precipitation, respectively. Using ARC2 data from
1983 to 2012, Diem et al. [66] reported that precipitation in West-Central Uganda significantly decreased
for multiple three-month periods centered on boreal summer. Furthermore, precipitation associated
with the two rainy seasons decreased from 1983 to 2012 by 20% [66]. In our study, we found that at some
of the locations where precipitation was decreasing, PET exhibited an increasing trend. Precipitation
decrease and PET increase indicate a shift towards dry condition. If such trends are to continue into
the future especially in the Equatorial region (where the LKB and Lake Victoria basin are located), the
changes in the hydroclimate may affect the operations of water resources applications. For instance,
the Karuma hydro power plant may not be able to generate power to its full capacity throughout
the year due to erratic river flows stemming from the decreasing precipitation and increasing PET
across the region. Furthermore, given that farming is the main occupation in this region, this finding
shows the need to adopt good farming practices including mulching to improve soil moisture and
fertility. New scientifically developed crop varieties, which are drought-resistant can be adopted by
the smallholder farmers from this region.
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Apart from the long-term trends, the precipitation and PET across the LKB were characterized
by variability in terms of temporal occurrences of positive and negative subtrends. The results of
variability showed that both seasonal and annual precipitation exhibited a decreasing subtrend in the
1990s. However, from the mid 2000 till the end of the data record (2015), precipitation was generally
characterized by an increasing subtrend. Specifically, for the eastern part of the LKB (where Mt. Elgon
is located), the change in precipitation from 1960 until the end of the data period (2015) was dominated
by an increasing long-term trend. Between 1815 and 1959, landslides at the foot of Mt. Elgon occurred
in 1818, 1900, 1918, 1922, 1927, 1933, 1942, and 1944 [67]. Between 1959 and 2009, landslides occurred
at the foot of Mt. Elgon in 1960, 1967, 1970, 1997, and 1999 [67]. From 2010 to 2019 alone, landslides in
Bududa occurred in March 2010, March 2011, June 2012, August 2013, October 2018, and December
2019 [21,68]. These records show that there were 8, 5, and 6 landslides over the periods 1818–1959
(142 years), 1960–2009 (50 years), and 2010–2019 (10 years), respectively. It is highly probable that the
landslides have become more frequent recently than in the past due to the increasing precipitation
trend in the eastern part of the LKB. These landslides claimed several lives and property as well
as leading to the displacement of thousands of the local population. Due to the rapid population
growth in the eastern part of the study area, there has been massive deforestation (for settlement,
and cultivation) around the Mt. Elgon thereby rendering the area susceptible to landslides. Actually,
“Deforestation and cultivation of steep concave slopes lower the threshold of slope stability, as they
alter soil hydrological conditions within the slope elements by way of enhancing saturation, hence
triggering debris flows” (Mugagga et al. [69]). If the increase in the precipitation in this region is to
continue into the future, appropriate measures (such as preventive resettlement of the local population
at the foot of Mt. Elgon, prevention of the encroachment of the gazetted forest reserve and national
park in Mt. Elgon area, and restoration of the vegetation cover) should be implemented to avoid loss
of lives and property due to landslides.

This study showed that the precipitation from the rainy seasons across the study area is correlated,
to varying extents, with IOD, Niño 3, and AMO or NAO. Several studies assessed the correlation
between the precipitation in the Equatorial region (where the LKB is located) and changes in SST or SLP
from the Atlantic Ocean [2,66,70,71], and Indian Ocean [2,72,73]. Precipitation across the Equatorial
region was also found linked to the El Niño Southern Oscillation (ENSO) [51,74–78]. Whereas our
findings agree with results on teleconnections based on a number of previous studies, some differences
were also noted especially with respect to the magnitudes (and directions, to some extent) of the
correlation coefficients. Such differences could have been due to several reasons. Firstly, this study
focused on MAM, SON, and annual precipitation while some other studies such as McHugh and
Rogers [70] considered only the DJF season. Drivers of precipitation trends and variability may differ
from one season to another [79]. Secondly, this study analyzed gridded CenTrends precipitation
from 1961 to 2015. However other studies analyzed data from different sources considering various
periods, for instance, CRU data from 1901 to 2015 [2], ARC2 over the period 1983–2012 [66], and
observed precipitation at 37 stations with data covering period between 1900 and 2004 [51]. It is vital
to note that, the drivers of precipitation or PET variability change in their strengths from one period
to another. For instance, the ascending (or descending poles) of the Atlantic cell can be weak over
one period and strong during another. Similarly, the descending or ascending poles of the Pacific
cell can change in their strength among periods. Furthermore, the Indian Walter cell may be strong
over one period but weak or moderate during another. This indicates that results of precipitation
or PET variability attribution depend on the period selected for analysis. Another reason for some
differences between our findings and results from other studies can be explained in terms of the
methods used for analyses. Several methods were used in various studies to extract anomalies for
attribution of precipitation variability. For instance, Onyutha and Willems [51] used the Quantile
Perturbation Method, Indeje et al. [76] applied the Empirical Orthogonal Functions, and Onyutha [2]
(like in this study) analyzed variability in terms of the occurrences of positive and negative subtrends
over time. Variability in the same precipitation series can temporally differ among the methods applied.
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This means that results of correlation between climate indices and precipitation anomalies can depend
on the selected method applied for deriving the variability. Despite the above reasons, this study
established that the magnitude (and sign) of the correlation depends on the chosen climate index or
location where the precipitation is selected for analysis.

With respect to the annual time scale, the largest amount of variance in precipitation (38.9%)
and PET (41.2%) was found to be explained by the IOD. The second largest amount of variance in
precipitation (17.9%) and PET (21.9%) was found to be explained by the AMO and NAO, respectively.
However, the IOD processes or linkages to AMO or NAO could not explain all the precipitation
variance. Other factors which could be controlling the precipitation and PET variability across the study
area include the influences from a number of topographical features such as lakes (Kyoga, Victoria, and
Albert), and high mountains (Mt. Elgon, Mt. Rwenzori, and Mt. Kenya) [80]. Generally, knowledge of
the driver of precipitation and/or PET variability is important in prediction of an upcoming epoch
of wet or dry condition. Eventually, there can be a careful planning of predictive adaptation to the
impacts of climate variability on hydrometeorology.

5. Conclusions

This study analyzed changes in precipitation and PET across the LKB. This study made use of
gridded CenTrends monthly precipitation dataset [30] and PET derived from the PGF-based Tmax and
Tmin series [4]. The changes in precipitation and PET were in terms of long-term trends and variability
based on the temporal variation of subtrends. Possible linkages of precipitation and PET variability to
large scale ocean–atmospheric interactions were assessed. Both seasonal and annual precipitation from
1960 to 2015 exhibited an insignificant (p > 0.05) decrease in most parts of the LKB. However, at some
of the locations, PET exhibited an increasing (though insignificant p > 0.05) trend. Such precipitation
decrease accompanied by an increasing PET can negatively affect river flow thereby affecting some of
the water resources applications in the study area.

Both seasonal and annual precipitation exhibited decreasing subtrends in the 1960s and 1990s.
However, from the mid 2000 until the mid-2010s (or end of the data record or 2015), precipitation
was generally characterized by an increasing subtrend. For the eastern part of the LKB (where Mt.
Elgon is located), the change in precipitation from 1960 until the end of the data period (2015) was
dominated by an increasing long-term trend. This increasing precipitation is a critical cause of the
several recent landslides in Bududa located in the eastern part of the LKB. Human activities such as
massive deforestation and overgrazing exacerbate the occurrences of precipitation-induced landslides.
With respect to the annual time scale, the largest amount of variance in precipitation (38.9%) and PET
(41.2%) was found to be explained by the IOD. The second largest amount of variance in precipitation
(17.9%) and PET (21.9%) was found to be explained by the AMO and NAO, respectively. In terms
of the strength of the correlation between precipitation and climate indices, some differences were
noted between our findings and results from other or previous studies. Such slight discrepancies were
mainly due to the differences (among studies) in (i) the methods for computing variability, (ii) the
periods selected for analyses, and (iii) the sources of data considered for studies. Nevertheless, the
findings from this study are important for predictive adaptation to the impacts of climate variability
on hydrometeorology, and agriculture in the study area.

Even if the CenTrends data were derived by interpolation of station-based weather data, still
some minor validation was conducted at two locations within the study area considering the period
1961–2000. The mismatch between the long-term monthly mean from the observed and CenTrends
precipitation was minimal. However, there were some differences in the long-term trends from the
observed and CenTrends. Importantly, results showed close agreement between the observed and
CenTrends precipitation variability from 1961 until the late 1970s. However, from 1980 until 2000,
there was some mismatch between observed and CenTrends precipitation. This could be due to the
consideration of fewer precipitation stations before than after 1980 in the derivation of precipitation
interpolation products over the LKB. This suggests the need for an update of the CenTrends v1.0 data
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to incorporate observations (if available) at more stations from Uganda to reflect the precipitation
variability especially from around 2000 to the present.

Comparison of PET based on observed and PGF temperature was made in terms of long-term
monthly mean, trends and variability. The PGF data did not adequately reproduce the bimodal
pattern in observed temperature. For each month, the PGF underestimated observed Tmax by about
50%. Eventually, the PGF data underestimated the observed differences between Tmax and Tmin,
an aspect that comprises of a key component in the computation of PET. Trends or variability in
observed and PGF-based data tended to differ to some extent across the seasonal and annual time scales.
This indicated the need for improving the quality of PGF data in reproducing observed climatology of
the Equatorial region and/or East Africa.

Variation in river flow can be influenced by both climate variability and human factors [81].
Therefore, it is recommended that future research to supplement the findings of this study should
consider an assessment of the impact of land use on the variation in PET and lake level, and investigating
the impacts of climate variability and climate change on hydrometeorology of the LKB.
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