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Abstract: Variance in stream temperature from historical norms, which reflects the impacts from both
hydrological and meteorological factors, is a significant indicator of the stream ecosystem health.
Therefore, it is imperative to study the hydrological processes controlling stream temperature in
the watershed. The impacts of hydrological processes on stream temperature in the cold region of
Western Canada were investigated based on the previously developed Soil and Water Assessment Tool
(SWAT) equilibrium temperature model. The model was calibrated and validated for streamflow and
stream temperature based on the observations and a global parameter sensitivity analysis conducted
to identify the most important hydrological process governing the stream temperature dynamics.
The precipitation and air temperature lapse rates were found to be the most sensitive parameters
controlling the stream temperature, followed by the parameters regulating the processes of soil
water dynamics, surface runoff, and channel routing. Our analysis showed an inverse relationship
between streamflow volume and stream temperature, and different runoff components have different
impacts on temporal regimes of stream temperatures. This study elaborates on the response of the
stream temperature to changes in hydrological processes at the watershed scale and indicates that
hydrological processes should be taken into account for prediction of stream temperatures.

Keywords: parameter sensitivity analysis; heat transfer; climate change; runoff composition

1. Introduction

Stream temperature is a very important indicator when determining water quality condition
and ecosystem health because it directly and indirectly impacts numerous physical properties (e.g.,
pH) and biochemical processes of the stream [1]. It affects the water quality by determining the
saturated dissolved oxygen [2], biochemical reaction rates [3], and the distribution and habitat of
aquatic species, particularly for fishes [4]. Moreover, stream temperature is usually regulated by the
industry such as power plant. Therefore, modelling stream temperature under various hydrological
and meteorological conditions at a watershed scale is important to enhance understanding of the
underlying processes for protecting stream ecosystems [5]. Stream temperature regimes are influenced
by both meteorological forcing and hydrological conditions at different temporal and spatial scales [6].
The heat balance between atmosphere and water interface under different meteorological conditions
(i.e., air temperature, solar radiation, relative humidity, and wind speed) are important for modelling
stream temperatures. Though the impacts on stream temperature from these meteorological factors
are well understood, there are limited studies using process-based models to incorporate the impacts
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of different hydrological processes including surface runoff, snowmelt, and evapotranspiration on
stream temperature.

Previous studies have used observed stream temperature to investigate hydrological processes
impact on stream temperature [7–9]. These studies have demonstrated that the streamflow volume
and runoff composition reflecting variations in hydrological processes have important influences
on stream temperature. For instance, Webb et al. [7] found that stream temperature is inversely
related to streamflow and that the impact of streamflow on stream temperature was more obvious
for shorter temporal scales and larger watersheds. Van Vliet et al. [8] also suggested that variations
in streamflow are important for influencing stream temperatures and demonstrated that there is
an inverse relationship between streamflow and stream temperatures, reflecting a reduced thermal
capacity under decreasing streamflow. However, stream temperature is also substantially influenced
by runoff composition of the water in the stream because different runoff components, including
surface runoff, groundwater flow, lateral flow, glacier melt, and snowmelt runoff, enter the stream
with different temperature signatures. For example, surface runoff temperature is close to the air
temperature but snowmelt runoff is just around zero degree [6]. Bogan et al. [9] investigated a
total of 596 stream temperature stations across the United States and found that local hydrology,
such as snowmelt and groundwater, had significant influences on stream temperature in addition to
atmospheric forcing. Fellman et al. [10] investigated the impacts of various glacier coverages on stream
temperature in coastal watersheds of Southeast Alaska and found that stream temperatures decrease
when air temperatures elevate in summer for those streams with glacier coverage greater than 30% due
to the cooling effects of glacier melt runoff. Therefore, stream temperature regimes will be substantially
altered if there are changes in runoff composition and/or flow discharge volume caused by the changes
in these watershed hydrological processes. In addition, the extreme hydrological event, such as flood,
influences stream temperature by changing the river morphology [11]. Prolonged flood duration may
favor an increase of water temperature [12] and flood can also trigger reservoir management practices
(e.g., water release) that impact the downstream water temperature. A process-based model which
integrates both the hydrological processes and thermal energy balance in the stream will be a powerful
tool for investigating the impacts of hydrological process on stream temperature.

Different kinds of models for stream temperature modeling have been developed and applied
in the past, and these models can be divided into statistical based models, machine learning, and
process-based models. Statistical models use regression relationships between stream temperature
and meteorological variables to simulate stream temperature. Some examples of the most widely
used statistical models are linear regression or non-linear regressions using air temperature as input.
For instance, a linear regression model for simulating daily and weekly stream temperatures based on
air temperature with time lags was developed and used in the Mississippi River basin [13]. Recently,
Giles et al. [14] developed different linear regression models for four seasons and 408 different locations
across United States. The model performances were improved by considering the spatial and seasonal
variations in model parameters. A non-linear regression model between weekly stream temperature
and air temperature was developed for the contiguous United States [15]. Recently, Shrestha and
Wang. The authors of [16] used this non-linear regression model to predict daily stream temperature in
Athabasca River Basin in Western Canada and used this to predict climate change impacts on stream
temperatures based on their calibrated regression model. Other studies have used other regression
techniques like Bayesian regression and logistic function models and have included streamflow as
another model input besides air temperature [17,18]. Similarly, machine learning models are also
applied for stream temperature modeling, with artificial neural network (ANN) models as one of the
widely used methods [19,20]. One weakness, however, is that these models use only air temperature
or both air temperature and flow discharge as predictors. While good performances for stream
temperature modeling can be achieved by these statistical and machine learning models, the impacts
of changes in hydrological processes are not explicitly represented and therefore present uncertainty
for the future projections. We argue that the impacts of hydrological process need to be investigated
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by using stream temperature models that are fully coupled to hydrological models and explicitly
include key hydrological processes. Process-based models use the energy balances of heat fluxes to
simulate stream temperature change caused by heat transfer [21] and some of process-based models
have been incorporated into watershed scale hydrological models. For instance, Ozaki et al. [22]
incorporated heat balance processes in terrestrial and stream systems into hydrological model using
multi-layer mesh for stream temperature simulation. Yearsley, J. [23] incorporated thermal energy
balance simulations in river systems into variable infiltration capacity (VIC) model for modeling stream
temperature. Morales-Marín et al. [24] developed a stream model for the cold region watershed by
integrating a 1D stream temperature model with a semi-distributed process-based hydrological model.
In our previous studies, we developed a stream temperature model by integrating the equilibrium
temperature approach for simulating heat transfer between water and air, and incorporated it into
the widely used Soil and Water Assessment Tool (SWAT) hydrological model [3]. In addition to the
influences from meteorological factors, the equilibrium temperature model includes the impact from
key hydrological processes including the composition of different runoff components and water depth
dynamics. The stream temperature model has been successfully verified and applied in two different
cold region watersheds in North America [3]. The SWAT model has been extensively developed for
different watersheds in the cold region of Canada [25–28] and these have successfully modeled and
represented the hydrological processes for snowmelt-dominated watersheds in western and eastern
Canada [29]. Therefore, we used the newly developed SWAT equilibrium temperature model to
investigate the impacts of hydrological processes on stream temperature in the Elbow River watershed
in the cold region of Western Canada.

The SWAT equilibrium temperature model was first used to model daily streamflow and stream
temperatures from 2005 to 2015 in the Elbow River watershed. Then, the impacts of hydrological
processes on stream temperature were investigated based on the calibrated model. Firstly, key
hydrological processes affecting the stream temperature were identified based on global parameter
sensitivity analysis. Secondly, the impacts of streamflow and runoff composition on stream temperature
were quantified. Finally, the response of stream temperature to precipitation and air temperature
inputs both of which drive the hydrological processes was investigated.

2. Materials and Methods

2.1. Study Area

The Elbow River watershed (ERW) is located in southern Alberta in Western Canada (Figure 1)
and it drains an area of 1238 km2. The Elbow River has different landscapes from upstream to
downstream including mountainous alpine, subalpine high mountains, boreal foothills, and aspen
parkland. The elbow river water enters the Glenmore reservoir, supplying 40% of the city of Calgary
drinking water, which is a very important drinking water source for southern Alberta. The average air
temperature for the entire watershed is approximately 2.1 ◦C and the annual average precipitation is
about 600–700 mm. The mean discharge at the watershed outlet is about 12 m3/s [30]. Forest, including
evergreen and deciduous, is the main landuse type of the ERW accounting for about 35% of the
watershed area. Other major landuse types include agriculture land (16.7%), rangeland (6.2%), and
urban areas (5.9%) concentrated in the northeast part of the ERW [28].



Water 2020, 12, 1112 4 of 17

Figure 1. Geographic location of Elbow River watershed in southern Alberta, Canada. The map
illustrates spatial distribution of different land use types and the two hydrometric stations used for
calibration analysis in this study.

2.2. SWAT Equilibrium Temperature Model

The SWAT equilibrium temperature model (SWAT-ETM) developed by Du et al. [3] is based
on hydro-climatological stream temperature model [6] with the consideration of the combined
influences from hydrological processes and meteorological factors. It has incorporated the equilibrium
temperature module to simulate heat transfer flux between water and atmosphere, which reflects
the impacts from meteorological variables including air temperature, wind speed, solar radiation,
and stream water depth. Generally, there are three steps for simulating stream temperature in the
model. First, the temperature of the local subbasin is calculated by mixing different components,
which have different temperature signatures. The runoff components considered in the model include
surface runoff, snowmelt runoff, lateral flow and baseflow. Secondly, the initial stream temperature is
simulated before the calculation of heat transfer. The weighted average temperatures of streamflow
within the local sub-basin and from the inflow from the upstream subbasins are calculated. Finally, the
stream temperature is simulated by adding a change caused by heat transfer based on the equilibrium
temperature approach. More details about the model processes can be found in Du et al. [3,5].

2.3. Model Setup in Elbow River Watershed

The Elbow River watershed was delineated into 154 subbasins based on a 30 m resolution of digital
elevation model data. The land use map (GeoBase Land Cover Product, 2000) and soil map (Agri-Food
Canada, Government of Canada) were used for model spatial discretization. In total, 373 Hydrologic
Response Units (HRUs) were obtained based on unique combinations of land use type, soil type and
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slope class. The daily meteorological inputs, including air temperature and precipitation (Alberta
Environment and Parks), solar radiation and relative humidity, wind speed (CFSR: National Centers
for Environmental Predictions Climate Forecast System Reanalysis) were used to drive the model.

2.4. Model Calibration and Validation

Based on the availability of observed data for stream temperature in the ERW, a total of 11 years
(2005–2015) was used to model streamflow and stream temperature. The years from 2005 to 2010
were used for the calibration period and the years from 2011 to 2015 were used as the validation
period. In addition, a three year (2002–2004) warm-up period was used to minimize the impacts of
initial conditions [31]. Streamflow calibration and validation were conducted based on daily observed
streamflow data of two hydrological stations, i.e., Bragg Creek and Sarcee Bridge, obtained from
Environmental Canada and Climate Change (Figure 1). Moreover, monthly observed streamflow was
compared with the model simulations for evaluating the model performance at the monthly scale.
Periodic daily stream temperature data of the two hydrometric stations, collected from the City of
Calgary, was used to calibrate and validate the stream temperature simulation. The sampling frequency
of stream temperature is about once a month. Specifically, there are 133 and 172 measurements
of stream temperature from 2005 to 2015 for Bragg Creek and Sarcee Bridge station, respectively.
A global sensitivity analysis [25,32] was used for parameter sensitivity analysis. The p-value from the
student t-test of the sensitivity analysis was used to quantify the statistical significance for different
parameters, and the parameters with p value less than 0.1 are considered as sensitive in this study.
We used parallel processing scheme for calibrating and validating of our model using a similar
approach as Du et al. [33]. The objective function used for model calibration is Nash–Sutcliffe Efficiency
coefficient (NSE). In addition, we used two other model performance measures including coefficient
of determination (R2) and percent of bias (PBIAS) to assess the model simulation performance in
different aspects. The definitions of NSE, R2, and PBIAS can be found in Du et al. [34]. We performed
qualitative assessment of our model simulations based on the recommended criteria summarized by
Moriasi et al. [35], where model reliability is qualitatively assessed from ‘unsatisfactory’ to ‘very good’
according to the range of performance statistics values. Moreover, Moriasi et al. [35] summarized and
defined thresholds of performance measure values as being ‘unacceptable’. Specifically, R2 < 0.18, NSE
< 0.0, PBIAS ≥ ±30% for streamflow were considered as ‘unacceptable’ model performances. In this
study, we strived to achieve ‘acceptable’ model performances based on aforementioned thresholds of
NSE, R2, and PBIAS.

3. Results

3.1. Hydrological Calibration and Streamflow Simulation

For streamflow simulations, the model results at daily and monthly time scales were compared to
the observed data of the two hydrometric stations in the ERW. Table 1 shows the model of performance
statistics for daily and monthly streamflow simulation in the ERW. We also qualitatively evaluated
the streamflow modelling performances based on the statistics values in Table 1 and compared to
recommended criteria by Moriasi et al. [35]. Based on PBIAS, the model generally overestimated
the streamflow with negative values but were within the ‘satisfactory’ range (< ±15%) except for the
calibration period of the Bragg Creek station. However, the PBIAS of calibration period for Bragg
Creek station is still within the ‘acceptable’ range (< ±30%). For daily streamflow simulation, the
model performance during calibration period for two stations were assessed as ‘satisfactory’ according
to NSE and R2. However, model performance of the validation period were assessed as ‘unsatisfactory’
for two stations based on R2 and NSE but were within the acceptable range (R2 > 0.18 and NSE > 0.0).
Although Moriasi et al. [35] recommended the same model performance criteria for monthly and
daily time scales, it is generally accepted that calibration of process-based mods at daily scale is more
ambitious than the monthly scale, due to the uncertainty arising from input data as well as model
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process representation at a daily time scale. Therefore, the model performance for daily streamflow
can be considered “satisfactory”. It also indicates that different model performance criteria should be
used for different time scales. For monthly streamflow simulation, the model performance during
calibration and validation period for two stations were assessed as at least ‘satisfactory’ and four of the
statistics indicated as ‘very good’ performances. Overall, the calibrated SWAT hydrological model
achieved ‘satisfactory’ for streamflow simulations at two timescales in the ERW and can be further
used to calibrate the stream temperatures.

The simulated monthly streamflow was compared with observed data (Figure 2). The comparison
results indicated that the calibrated hydrological model could reproduce variations of observed
streamflow at monthly and seasonal scales. However, there are underestimations for some peak flow
months especially for the years of 2012 and 2013 during validation period. In addition, Figure 3
compared the simulated daily streamflow with observations for the two stations using scatter plots.
It shows that the model has a good model performance for low and mediate flow (less than 200 m3/s).
However, the high flows of around and greater than 200 m3/s were underestimated for both hydrometric
stations as indicated in Figure 3. These underestimations are not uncommon [34,36,37], and as discussed
in a previous study [34], the uncertainties of both input data and model structure play roles in the
underestimations of peak flow. Firstly, the accuracy and resolution of the input data, such as rainfall
and temperature data, substantially impact the simulations of peak flow, especially during snowmelt
and runoff season. In addition, since SWAT is used as a continuous model running at daily time
step in this study, the pulse of any intense peak flow events over shorter time period than daily is
likely underestimated.

Figure 2. Comparison of simulated and observed monthly streamflow for (a) Bragg Creek station and
(b) Sarcee Bridge station.
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Table 1. Daily and monthly streamflow simulation performance statistics in the Elbow River watershed (ERW).

Station Time Step Measures Calibration Period
(2005–2010)

Validation Period
(2011–2015)

Whole Period
(2005–2015)

Bragg Creek
Daily

PBIAS −21.6% −6.2% −14%
R2 0.61 0.22 0.33

NSE 0.56 0.22 0.33

Monthly R2 0.88 0.66 0.69
NSE 0.83 0.58 0.72

Sarcee Bridge
Daily

PBIAS −13.1% −9.1% −11.2%
R2 0.58 0.29 0.44

NSE 0.57 0.29 0.44

Monthly R2 0.70 0.87 0.73
NSE 0.60 0.83 0.78

Figure 3. Comparison of simulated and observed daily streamflow for (a) Bragg Creek station, and
(b) Sarcee Bridge station.

3.2. Stream Temperature Simulations

After streamflow calibration, stream temperature simulations were then calibrated and validated
using the periodic daily stream temperature measurements of the two hydrometric stations in the
ERW. Figure 4 compared simulated stream temperatures with the observations for the two stations.
The results indicated that SWAT equilibrium temperature model performs well in simulation of stream
temperature at different stations and is able to capture the temporal variation of the observed data
within the reasonable ranges. The model performance statistics for the stream temperature simulations
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of the two stations are shown in Table 2. For the whole period, the PBIAS values are less than ±4% and
the R2 and NSE values are all greater than 0.78. During calibration and validation period, R2 and NSE
values are all greater than 0.77 and the PBIAS values are less than ±10% except the validation period of
Sarcee Bridge station. The model overestimated stream temperatures of Sarcee Bridge station during
the validation period with mean simulated as 5.80 ◦C compared to mean observed as 5.24 ◦C. There is
no recommended criteria for qualitative assessment of stream temperature modeling performances
and we used recommended criteria of streamflow simulations summarized by Moriasi et al. [35] as a
reference for stream temperature simulations. The model statistics values of Table 2 were assessed as
‘good’ to ‘very good’ except PBIAS of Sarcee Bridge station during validation period as ‘satisfactory’.
In addition, we compared our model performance statistics with other studies for stream temperature
simulations using process-based models [23,38,39], which further verified the ‘good performance’ of
the calibrated model. Overall, SWAT equilibrium temperature model achieved ‘good’ performances of
the calibration, validation and the whole period for two different stations. The impacts of hydrological
processes on stream temperature in the ERW were then investigated based on the calibrated stream
temperature model.

Figure 4. Comparison of periodic daily simulated and observed stream temperatures for the (a) Bragg
Creek station and (b) Sarcee Bridge station.

Table 2. Model performance statistics for periodic daily stream temperature in the ERW.

Station Measures Calibration Period
(2005–2010)

Validation Period
(2011–2015)

Whole Period
(2005–2015)

Bragg Creek
PBIAS 7.8% −1.9% 3.8%

R2 0.85 0.83 0.84
NSE 0.83 0.80 0.82

Sarcee Bridge
PBIAS 0.6% −11.6% −3.0%

R2 0.81 0.82 0.81
NSE 0.77 0.77 0.78
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4. Discussion

4.1. Identification of Key Hydrological Processes Affecting Stream Temperature Based on Parameter
Sensitivity Analysis

A total of 25 SWAT hydrological parameters were considered for stream temperature sensitivity
analysis in the ERW using the observed stream temperature of Sarcee Bridge station because it is close
to the watershed outlet and represents the response of the whole watershed. Table 3 shows the top 15
sensitive hydrological parameters for stream temperature with the sensitivity ranking. It shows that the
air temperature and precipitation lapse rates (T_LAPS and P_LAPS) of the elevation band are the most
sensitive hydrological parameters affecting stream temperature in the ERW. The elevation bands were
incorporated into SWAT to represent spatiotemporal variations of climate factors because of elevation
changes, thereby enable reliable representation of snowmelt runoff. This indicates that representation
of topographic and orographic effects is important to control spatial varying snowmelt process in the
model [40]. T_LAPS and P_LAPS are used to account for orographic effects on both precipitation and
air temperature. The precipitation and air temperatures were updated for each elevation band using
the lapse rates and the elevation differences between the meteorological gage elevation and the average
elevation for the band. Therefore, these two parameters were found to be the most sensitive parameters
for stream temperature simulations. Moreover, the large elevation ranges (1040–3200 m) in the ERW
justify the sensitivity of the lapse rates. Compared to the lapse rates, the other snowmelt parameters
demonstrate much less sensitivity for stream temperature with SFTMP and SMTMP only ranking 12th
and 13th, respectively. This is because the snowmelt runoff mainly affects the streamflow composition
for a certain period (spring season). In addition to the lapse rate, the third most sensitive hydrological
parameters for stream temperature simulations is ESCO (soil evaporation compensation factor) for soil
evaporation. ESCO impacts soil moisture and overall watershed water balance by controlling water
loss in soil layers by evaporation, indirectly affecting water temperature. ESCO impacts the streamflow
volume by controlling the evaporation loss and contribution of runoff to streamflow, which affects
the thermal capacity of the stream. Furthermore, some key runoff parameters like CN2 (SCS runoff

curve number for moisture condition II) are adjusted by soil moisture, and therefore, ESCO indirectly
influences the partition of different runoff composition and the stream temperature. There are also
three other soil parameters in the most sensitive list, which SOL_Z (depth from soil surface to bottom
of layer) ranking fourth, SOL_AWC (available water capacity of the soil layer) ranking seventh, and
SOL_K (saturated hydraulic conductivity) ranking ninth, respectively. These soil parameters impact
the soil water dynamics and the distribution of different runoff components, which lead to impacts
on the stream temperature in the watershed. Parameter CN2 is the fifth most sensitive hydrological
parameter after two soil parameters. In SWAT model, the larger CN2 values result in a more surface
runoff generation with higher temperature signature and less subsurface runoff. CN2 is amongst
the most sensitive parameters, partially because it determines the composition of different runoff

components. In our model, a mixing model of different runoff components with different temperature
signatures was used to consider the influence of these hydrological processes on stream temperature.
Another surface runoff parameter (SURLAG—surface runoff lag coefficient) for the routing within
the subbasin, ranks 10th for stream temperature sensitivity. This indicates surface runoff is one of the
important hydrological processes impacting the stream temperature. The channel Manning coefficient
CH_N2 is also among one of the most sensitive hydrological parameters for stream temperature. This is
because it determines the water residency time in the channel and thus heat transfer flux between
atmosphere and water. The parameters affecting the lateral flow (HRU_SLP, SOL_K, and SLSUBBSN)
and groundwater flow (RCHRG_DP) are less sensitive for stream temperature when compared to the
aforementioned parameters.
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Table 3. SWAT hydrological parameters with the sensitivity ranking for stream temperature.

Symbol Description Unit Sensitivity Ranking p-Value

T_LAPS Air temperature lapse rate ◦C/km 1 0.00
P_LAPS Precipitation lapse rate mm/km 2 0.00
ESCO Soil evaporation compensation factor none 3 0.00
SOL_Z Depth from soil surface to bottom of layer mm 4 0.00

CN2 SCS runoff curve number for moisture condition II none 5 0.00
CH_N2 Manning’s “n” value for the main channel none 6 0.00

SOL_AWC Available water capacity of the soil layer mm H2O/mm soil 7 0.00
HRU_SLP Average slope steepness m/m 8 0.00

SOL_K Saturated hydraulic conductivity mm/h 9 0.00
SURLAG Surface runoff lag coefficient days 10 0.00

SLSUBBSN Average slope length m 11 0.01
SFTMP Snowfall temperature ◦C 12 0.08
SMTMP Snow melt base temperature ◦C 13 0.21

RCHRG_DP Deep aquifer percolation fraction none 14 0.21
CH_K2 Effective hydraulic conductivity in main channel alluvium mm/h 15 0.25
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4.2. Sensitivity of Stream Temperature to Streamflow and Runoff Composition

We conducted sensitivity analysis to understand how stream temperature corresponds to changes
in streamflow, snow melt, and surface runoff in the watershed. We performed these analyses by
manipulating the SWAT source code and changing these three variables in rtmusk.f, snom.f, and
surfstor.f subroutines, respectively. The sensitivity of stream temperature to changes in streamflow
was investigated by assuming that there are no changes in the runoff composition. Specifically, the
streamflow volume simulated by SWAT was changed by −40%, −20%, 20%, and 40% to examine the
impacts on stream temperatures. Our results (Figure 5) confirmed the inverse relationship between
stream temperature and streamflow as also found by previous studies [7,8]. On average, decreases of
streamflow by 20% and 40% would increase stream temperature by +0.37 ◦C and +0.42 ◦C, respectively.
However, increases of streamflow by 20% and 40% would decrease stream temperature by −0.48 ◦C
and −0.59 ◦C, respectively. There are also seasonal variations for stream temperature changes caused
by changes in streamflow (Figure 5). Stream temperature change is larger when the streamflow
magnitude is larger in high flow season, and the largest change is found to occur in the summer months.
The inverse relationship between stream temperature and streamflow reflects the impact of streamflow
volume on the thermal capacity of a stream [8]. The thermal capacity is lower when the streamflow
decreases and is higher when the streamflow increases. In addition, streamflow changes affected the
water travel time within the reach [6], which then affected the heat transfer amount between water
and atmosphere.

Figure 5. Stream temperature sensitivity to streamflow changes in the ERW.

We also investigated the sensitivity of stream temperature to the changes in different runoff

components. We chose two important runoff components including surface runoff and snowmelt runoff

as identified by the parameter sensitivity analysis. In the SWAT source code, we manually changed
these runoff components by −40%, −20%, 20%, and 40% in the calibrated model. The results (Figure 6)
showed an overall inverse relationship between stream temperatures with surface runoff and snowmelt
runoff similar to streamflow changes. On average, surface runoff and snowmelt runoff decreased of
−40%, increased the stream temperature by 0.10 ◦C and 0.09 ◦C, while increaseing in these two runoff

components by +40%, decreased the stream temperature by −0.06 ◦C and −0.08 ◦C. These results
showed that snowmelt runoff has a similar impact on stream temperature as surface runoff. Snowmelt
runoff has a significant role in shaping stream temperature regime in the ERW despite the fact that
snowmelt runoff only dominates in the spring season and is smaller in volume compared to surface
runoff. The quantitative impacts of surface runoff and snowmelt runoff on stream temperature are
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different during the different seasons. The biggest change in stream temperature caused by snowmelt
runoff changes was found in May, when the snow melt is the major runoff component, while the largest
change in stream temperature caused by surface runoff was found in June, when the summer season
begins and the rainfall-runoff is the major hydrological process. In addition, groundwater flow affects
stream temperature because it has different temperature signature from other runoff components.
Groundwater temperature is lower than surface runoff but higher than snowmelt runoff, which is
usually consisted to be 1–2 ◦C higher than annual average air temperature in a region [6]. Therefore,
the anthropogenic activities that impact the streamflow volume and runoff composition would affect
the stream temperature regime. For example, land use change which influences the streamflow volume
and runoff composition as well as river morphology [41,42] has an impact on stream temperature.

Figure 6. Stream temperature sensitivity to different runoff components in the ERW: (a) surface runoff

change and (b) snow melt change.
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4.3. Sensitivity of Stream Temperature to Precipitation and Air Temperature Inputs

Precipitation and air temperature are two most significant meteorological forcing to drive the
watershed hydrological processes. The sensitivity of the lapse rates also demonstrated the importance of
precipitation and air temperature inputs in determining the stream temperature regimes. Any changes
for precipitation and air temperature will alter the hydrological processes and have impacts on
stream temperature regimes. It indicated by previous study that the air temperature in the ERW will
increase by 4 ◦C in 2050 under climate change [43]. Therefore, the sensitivity of stream temperature to
the precipitation and air temperature changes were also investigated in the ERW. The historical air
temperature series fed into the model were increased by +2 ◦C, +4 ◦C, and +6 ◦C at each daily time
step. The results showed an annual average stream temperature increases of +1.13 ◦C, + 2.36 ◦C, and
3.67 ◦C, due to air temperature increases of +2 ◦C, +4 ◦C, and +6 ◦C, respectively. The reasons for
stream temperature increase when air temperature arises are two-fold. First, the heat transfer from the
atmosphere to the streams is enhanced by air temperature increase. Secondly, the evapotranspiration
rate is also increased by air temperature increase, which then decreases the runoff and streamflow
volume. As a result, the stream temperature increases because of the inverse relationship as previously
demonstrated. In our analysis, stream temperatures increased for all months when air temperatures
increased, and the largest increases were found during the summer months (Figure 7). The average
stream temperature of summer (June to August) increased by 1.84 ◦C, 3.64 ◦C, and 5.43 ◦C, respectively
when air temperature increased by +2 ◦C, +4 ◦C, and +6 ◦C. This indicates that summer season is likely
the most critical season in future climate change scenarios, because increases in stream temperature
would likely affect the life of aquatic species. The increases in temperature may trigger extreme high
stream temperature and the crossing of critical temperatures, and consequently exceeding dissolved
oxygen thresholds that may pose a threat to the fishes and specific cold water species that inhabit the
streams [4,5,44].

Figure 7. Stream temperature sensitivity to precipitation change in the ERW.

To investigate the sensitivity of stream temperature to precipitation changes, precipitation input
was changed by −40%, −20%, 20%, and 40%. Figure 8 showed the inverse relationship between stream
temperature and precipitation, which is similar to streamflow on an annual average scale. However,
the changes caused by precipitation changes are much smaller when compared to those caused by
streamflow changes. A decrease of precipitation by −40% increases the stream temperature by 0.08 on
average, while an increase of precipitation by 40% decrease stream temperature by 0.07 on average.
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Figure 8 shows the stream temperature changes caused by precipitation also have seasonal variations.
Most months have inverse relationship with precipitation but the months from July to September show
a direct relationship indicating a cancelling out effect because precipitation changes not only result
in streamflow volume change but also alter the sources of runoff components (e.g., surface runoff,
snowmelt runoff, and groundwater flow). The largest stream temperature increase was found in May
for a precipitation decrease while the largest stream temperature decrease was found in July for a
precipitation increase.

Figure 8. Stream temperature sensitivity to air temperature increase in the ERW.

5. Conclusions

The SWAT equilibrium temperature model was used to investigate the impact of hydrological
processes on the stream temperature in the Elbow River watershed (ERW) in the cold region of Western
Canada by considering the influences of both hydrological processes and meteorological forcing.
The SWAT equilibrium temperature model was then calibrated and validated based on the periodic
stream temperature observations, and model performance was evaluated as overall ‘good’ based on
several performance measures. The important hydrological process governing the stream temperature
was identified by using the global parameter sensitivity analysis. These results showed that the lapse
rates for air temperature and precipitation are two the most sensitive hydrological parameters for
stream temperature simulations, followed by the parameters controlling the processes of soil water
dynamics, surface runoff and channel routing. Furthermore, sensitivity analysis showed an inverse
relationship between streamflow volume and stream temperature reflecting the changes in travel time of
the stream and the impacts of streamflow volume on thermal capacity. The sensitivity analysis showed
that annual average stream temperature would increase by +1.13 ◦C, +2.36 ◦C, and 3.67 ◦C, when air
temperature increases by +2 ◦C, +4 ◦C, and +6 ◦C, respectively. The largest temperature increases were
found to occur in the summer months. Precipitation also showed an inverse relationship with stream
temperature similar to streamflow but a cancelling out effect was found. Further analysis showed
that different runoff components have different impacts on temporal regimes of stream temperatures.
It showed snowmelt runoff has a similar impact on stream temperature as surface runoff, indicating
that snowmelt runoff has a significant role in shaping stream temperature regime in the ERW. This
study presents an improved understanding of the impacts of various hydrological processes on stream
temperature at watershed scale and concludes that the impacts of hydrological processes should be
taken into account for modeling and predicting stream temperatures.
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12. Saniewska, D.; Bełdowsk, M.; Bełdowski, J.; Jędruch, A.; Saniewski, M.; Falkowska, L. Mercury loads into
the sea associated with extreme flood. Environ. Pollut. 2014, 191, 93–100. [CrossRef]

13. Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature 1. JAWRA J. Am.
Water Resour. Assoc. 1993, 29, 27–45. [CrossRef]

14. Giles, N.A.; Babbar-Sebens, M.; Srinivasan, R.; Ficklin, D.L.; Barnhart, B. Optimization of linear stream
temperature model parameters in the soil and water assessment tool for the continental United States.
Ecol. Eng. 2019, 127, 125–134. [CrossRef]

15. Mohseni, O.; Stefan, H.G.; Erickson, T.R. A nonlinear regression model for weekly stream temperatures.
Water Resour. Res. 1998, 34, 2685–2692. [CrossRef]

16. Shrestha, N.K.; Wang, J. Water quality management of a cold climate region watershed in changing climate.
J. Environ. Inform. 2019, 35, 56–80. [CrossRef]

17. Sohrabi, M.M.; Benjankar, R.; Tonina, D.; Wenger, S.J.; Isaak, D.J. Estimation of daily stream water temperatures
with a Bayesian regression approach. Hydrol. Process. 2017, 31, 1719–1733. [CrossRef]

http://dx.doi.org/10.7717/peerj.7065
http://www.ncbi.nlm.nih.gov/pubmed/31198649
http://dx.doi.org/10.1002/wrcr.20248
http://dx.doi.org/10.5194/hess-22-2343-2018
http://dx.doi.org/10.1016/j.jhydrol.2007.01.008
http://dx.doi.org/10.1016/j.scitotenv.2018.09.344
http://dx.doi.org/10.1029/2011WR011256
http://dx.doi.org/10.1002/hyp.1280
http://dx.doi.org/10.1029/2010WR009198
http://dx.doi.org/10.1029/2003WR002034
http://dx.doi.org/10.1002/hyp.9742
http://dx.doi.org/10.1016/j.geomorph.2017.12.034
http://dx.doi.org/10.1016/j.envpol.2014.04.003
http://dx.doi.org/10.1111/j.1752-1688.1993.tb01502.x
http://dx.doi.org/10.1016/j.ecoleng.2018.11.012
http://dx.doi.org/10.1029/98WR01877
http://dx.doi.org/10.3808/jei.201900407
http://dx.doi.org/10.1002/hyp.11139


Water 2020, 12, 1112 16 of 17

18. Toffolon, M.; Piccolroaz, S. A hybrid model for river water temperature as a function of air temperature and
discharge. Environ. Res. Lett. 2015, 10, 114011. [CrossRef]

19. DeWeber, J.T.; Wagner, T. A regional neural network ensemble for predicting mean daily river water
temperature. J. Hydrol. 2014, 517, 187–200. [CrossRef]

20. Zhu, S.; Nyarko, E.K.; Hadzima-Nyarko, M. Modelling daily water temperature from air temperature for the
Missouri River. PeerJ 2018, 6, e4894. [CrossRef]

21. Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality
Model, Version 3.5; Civil and Environmental Engineering Faculty Publications and Presentations: Portland,
OR, USA, 2003.

22. Ozaki, N.; Fukushima, T.; Kojiri, T. Simulation of the effects of the alteration of the river basin land use on
river water temperature using the multi-layer mesh-typed runoff model. Ecol. Model. 2008, 215, 159–169.
[CrossRef]

23. Yearsley, J.R.; Sun, N.; Baptiste, M.; Nijssen, B. Assessing the impacts of hydrologic and land use alterations
on water temperature in the Farmington River basin in Connecticut. Hydrol. Earth Syst. Sci. 2019, 23,
4491–4508. [CrossRef]

24. Morales-Marin, L.A.; Sanyal, P.R.; Kadowaki, H.; Li, Z.; Rokaya, P.; Lindenschmidt, K.E. A hydrological and
water temperature modelling framework to simulate the timing of river freeze-up and ice-cover breakup in
large-scale catchments. Environ. Model. Softw. 2019, 114, 49–63. [CrossRef]

25. Mapfumo, E.; Chanasyk, D.S.; Willms, W.D. Simulating daily soil water under foothills fescue grazing with
the soil and water assessment tool model (Alberta, Canada). Hydrol. Process. 2004, 18, 2787–2800. [CrossRef]

26. Watson, B.M.; McKeown, R.A.; Putz, G.; MacDonald, J.D. Modification of SWAT for modelling streamflow
from forested watersheds on the Canadian Boreal Plain. J. Environ. Eng. Sci. 2008, 7, 145–159. [CrossRef]

27. Faramarzi, M.; Srinivasan, R.; Iravani, M.; Bladon, K.D.; Abbaspour, K.C.; Zehnder, A.J.B.; Goss, G.G. Setting
up a hydrological model of Alberta: Data discrimination analyses prior to calibration. Environ. Model. Softw.
2015, 74, 48–65. [CrossRef]

28. Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca
River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [CrossRef] [PubMed]

29. Troin, M.; Caya, D.; Velázquez, J.A.; Brissette, F. Hydrological response to dynamical downscaling of climate
model outputs: A case study for western and eastern snowmelt-dominated Canada catchments. J. Hydrol.
Reg. Stud. 2015, 4, 595–610. [CrossRef]

30. Wijesekara, G.; Gupta, A.; Valeo, C.; Hasbani, J.-G.; Qiao, Y.; Delaney, P.; Marceau, D.J. Assessing the impact
of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta,
Canada. J. Hydrol. 2012, 412, 220–232. [CrossRef]

31. Du, X.Z.; Li, X.Y.; Zhang, W.S.; Wang, H.L. Variations in source apportionments of nutrient load among
seasons and hy-drological years in a semi-arid watershed: GWLF model results. Environ. Sci. Pollut. R 2014,
21, 6506–6515. [CrossRef] [PubMed]

32. Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability
in Iran. Hydrol. Process. 2009, 23, 486–501. [CrossRef]

33. Du, X.; Loiselle, D.; Alessi, D.S.; Faramarzi, M. Hydro-climate and biogeochemical processes control
watershed organic carbon inflows: Development of an in-stream organic carbon module coupled with a
process-based hydrologic model. Sci. Total Environ. 2020, 718, 137281. [CrossRef] [PubMed]

34. Du, X.; Shrestha, N.K.; Wang, J. Integrating organic chemical simulation module into SWAT model with
application for PAHs simulation in Athabasca oil sands region, Western Canada. Environ. Model. Softw. 2019,
111, 432–443. [CrossRef]

35. Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance
measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785.

36. Hoang, L.; Mukundan, R.; Moore, K.E.; Owens, E.M.; Steenhuis, T.S. Phosphorus reduction in the New York
City water supply system: A water-quality success story confirmed with data and modeling. Ecol. Eng. 2019,
135, 75–88. [CrossRef]

37. Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and
multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment
in South Australia. Agric. Water Manag. 2016, 175, 61–71. [CrossRef]

http://dx.doi.org/10.1088/1748-9326/10/11/114011
http://dx.doi.org/10.1016/j.jhydrol.2014.05.035
http://dx.doi.org/10.7717/peerj.4894
http://dx.doi.org/10.1016/j.ecolmodel.2008.02.030
http://dx.doi.org/10.5194/hess-23-4491-2019
http://dx.doi.org/10.1016/j.envsoft.2019.01.009
http://dx.doi.org/10.1002/hyp.1493
http://dx.doi.org/10.1139/S09-003
http://dx.doi.org/10.1016/j.envsoft.2015.09.006
http://dx.doi.org/10.1016/j.scitotenv.2017.05.013
http://www.ncbi.nlm.nih.gov/pubmed/28570976
http://dx.doi.org/10.1016/j.ejrh.2015.09.003
http://dx.doi.org/10.1016/j.jhydrol.2011.04.018
http://dx.doi.org/10.1007/s11356-014-2519-2
http://www.ncbi.nlm.nih.gov/pubmed/24464078
http://dx.doi.org/10.1002/hyp.7160
http://dx.doi.org/10.1016/j.scitotenv.2020.137281
http://www.ncbi.nlm.nih.gov/pubmed/32092512
http://dx.doi.org/10.1016/j.envsoft.2018.10.011
http://dx.doi.org/10.1016/j.ecoleng.2019.04.029
http://dx.doi.org/10.1016/j.agwat.2016.02.009


Water 2020, 12, 1112 17 of 17

38. Sun, N.; Yearsley, J.; Voisin, N.; Lettenmaier, D.P. A spatially distributed model for the assessment of land use
impacts on stream temperature in small urban watersheds. Hydrol. Process. 2015, 29, 2331–2345. [CrossRef]

39. Cao, Q.; Sun, N.; Yearsley, J.; Nijssen, B.; Lettenmaier, D.P. Climate and land cover effects on the temperature
of Puget Sound streams. Hydrol. Process. 2016, 30, 2286–2304. [CrossRef]

40. Fontaine, T.; Cruickshank, T.; Arnold, J.; Hotchkiss, R. Development of a snowfall–snowmelt routine for
mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 2002, 262, 209–223. [CrossRef]

41. Keesstra, S.D.; Van Huissteden, J.; Vandenberghe, J.; Van Dam, O.; De Gier, J.; Pleizier, I.D. Evolution of the
morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 2005, 69, 191–207.
[CrossRef]

42. Keesstra, S.D. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia.
Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 49–65. [CrossRef]

43. Farjad, B.; Gupta, A.; Marceau, D.J. Hydrological regime responses to climate change for the 2020s and 2050s
periods in the Elbow River watershed in southern Alberta, Canada. In Environmental Management of River
Basin Ecosystems; Springer: New York, NY, USA, 2015; pp. 65–89.

44. Eaton, J.; McCormick, J.; Goodno, B.; O’brien, D.; Stefany, H.; Hondzo, M.; Scheller, R.M. A field
information-based system for estimating fish temperature tolerances. Fisheries 1995, 20, 10–18. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/hyp.10363
http://dx.doi.org/10.1002/hyp.10784
http://dx.doi.org/10.1016/S0022-1694(02)00029-X
http://dx.doi.org/10.1016/j.geomorph.2005.01.004
http://dx.doi.org/10.1002/esp.1360
http://dx.doi.org/10.1577/1548-8446(1995)020&lt;0010:AFISFE&gt;2.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	SWAT Equilibrium Temperature Model 
	Model Setup in Elbow River Watershed 
	Model Calibration and Validation 

	Results 
	Hydrological Calibration and Streamflow Simulation 
	Stream Temperature Simulations 

	Discussion 
	Identification of Key Hydrological Processes Affecting Stream Temperature Based on Parameter Sensitivity Analysis 
	Sensitivity of Stream Temperature to Streamflow and Runoff Composition 
	Sensitivity of Stream Temperature to Precipitation and Air Temperature Inputs 

	Conclusions 
	References

