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Abstract: Typhoons can often cause inundation in lower coastal cities by inducing strong surges and
waves. Being affected by typhoon annually, the coastal cities in South Korea are very vulnerable to
typhoons. In 2016, a typhoon ‘CHABA’, with a maximum 10 min sustained wind speed of about
50 m/s and a minimum central pressure of 905 hPa, hit South Korea, suffering tremendous damage.
In particular, ‘CHABA’-induced coastal inundation resulted in serious damage to the coastal area of
Busan where a lot of high-rise buildings and residential areas are concentrated, and was caused by the
combined effect of tide, surge, and wave. The typhoon-induced surge raised sea levels during high
tide, and the strong wave with a long period of more than 10 s eventually led to the coastal inundation
at the same time. The present research focuses a numerical downscaling considering the effects
of tide, surge and wave for coastal inundation induced by Typhoon ‘CHABA’. This downscaling
approach applied several numerical models, which are the Weather Research and Forecasting model
(WRF) for typhoon simulation, the Finite Volume Community Ocean Model (FVCOM) for tide
and surge simulation, and the Coastal Wave Prediction Model (Coastal Wave Watch III-CoWW3)
by Korea Meteorological Administration for wave simulation. In a domain covering the Korean
Peninsula, typhoon-induced surges and waves were simulated applying the results simulated by
WRF as meteorological conditions. In the downscaled domain ranged near the coastal area of Busan,
the coastal inundation was simulated blending a storm tide height and an irregular wave height
obtained from the domain, in which each height has 1 s interval. The irregular wave height was
calculated using the significant wave height and peak period. Through this downscaling study,
the impact of storm tide and wave on coastal inundation was estimated.

Keywords: downscaling; surge; wave; coastal inundation; numerical modeling

1. Introduction

The increase of sea temperature due to climate change may cause the sea level to rise and an
increase of typhoon intensity, leading to extreme damages from flood disaster in coastal areas, including
river mouth and river reaches [1–10]. Coastal flooding can be driven by water level rise due to a
combination of tide, surge, and wave, and it can be maximized by the breaking and run-up of strong
waves during high sea level by high tide and storm-induced surge [11,12]. In addition, undesirable
erosion and loss of beaches along the coastline have continuously been generated with extreme flood
events and storm-induced surge [13–21]. An aerial photograph of the dunes located between the
French and Belgian borders confirms that the speed of retreat in front of sand dunes has increased
for 30 years [14]. The most severe Atlantic and Gulf Coast storms in the U.S. reveals the primary
factors affecting morphological storm responses of beaches and barrier islands [15]. Dune erosions and
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cross-shore beach profile evolution occurred in Outer Banks, North Carolina, in 2003 during Hurricane
Isabel, were analyzed with several LIDAR (Light Detection and Ranging) profiles before and after
Hurricane Isabel for two months [16]. It is a surveying method with laser light for measuring the
reflected light with a sensor and commonly used to make high-resolution maps.

The need for scientific, accurate, fast, and efficient forecasting of extreme weather-induced
disasters in coastal regions on sustainable socio-economic development plans has been increasing all
over the world. There is no known way to prevent a coastal disaster in the short term, but if there
is information about when it will happen and what kind effect it is likely to have, damage from the
disaster could be minimized and costs of subsequent repairs reduced. In the decision-making process
for response to flooding-induced disasters, it is important that information about the occurrence of
disaster is accurate. Over the last decade, considerable researches have been focused for the accurate
prediction of surge, wave and coastal inundation, it is possible to resolve the coastal geometry more
precisely through unstructured grid model: advanced circulation model (ADCIRC), and finite-volume
community ocean model (FVCOM) [2,22–31]. Also, in recent years, a fully coupled wave-current
model with unstructured grid has been used to improve accuracy of surge prediction because the
typhoon-induced surface wave plays important role in the surge and coastal inundation [1]. However,
a lot of computing resource and cost is required for the fully-coupled modeling with high resolution of
unstructured grid. Therefore, high-performance computing (HPC) is necessary in the field for finding
useful information from large, complex, and rapidly growing volumes of data and analysis. Although
several researches with model lightening were presented, HPC was needed in this research because
more detailed simulation and analysis are needed [22,23]. Therefore, we used the HPC system of
the Korea Institute of Science and Technology Information (KISTI), which is funded by the Korean
government for the HPC service in South Korea.

In this study, we selected typhoon ‘CHABA’ (1618), which caused huge damage to South Korea in
2016, the case study, and simulated the typhoon, typhoon-induced storm surge, and inundation in
Busan, the second largest, and a coastal city in South Korea. This paper presents our finding to answer
the following: (1) How much affected by typhoon ‘CHABA’ was Busan city? (2) How accurately can
we predict the actions of typhoon CHABA and typhoon-induced disasters?

2. Methodologies

2.1. Prediction and Analysis System

KISTI was designated the ‘National Supercomputing Center’ in 2011. Using HPC, we have
been developing the prediction and analysis system to respond to natural disasters such as typhoons,
storm surges, and other flooding. It is an integrated package system that collects various data
based on scenarios and produces forecasting information, analyzes the likely socio-economic impacts,
and visualizes the simulated results. Initial conditions established from the TMD (tide model driver)
and HYCOM (hybrid coordinate ocean model) were applied in the surge and wave prediction.
With calculated results of the irregular wave height from JONSWAP (Joint North Sea Wave Observation
Project), surge and wave predictions were adopted in the flood inundation model (Figure 1).
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Figure 1. Conceptual diagram of analysis system and data processing.

2.2. A Case Study: Typhoon ‘CHABA’ (1618)

Typhoon ‘CHABA’, which was the 18th numbered storm, ranked third in intensity among the
tropical cyclones in 2016, and was the most powerful typhoon to make landfall in South Korea since
the typhoon ‘SANBA’ in 2012 [9]. The CHABA in early October 2016 was the third strongest typhoon
after the typhoon ‘MAEMI’ in September 2003 and Typhoon ‘Lussa’ in August 2002, with a maximum
wind speed of 56.7 m/s [10]. In 2016, many typhoons have passed in many Asian countries including
South Korea and China. Representative strong typhoons include LionRock, Meranti, Melakas, and
Megi, and their impact analysis has been studied [11].

It developed approximately 1445 km east-northeast of Guam on 26th September, moved westward,
and started to move northward on 1st October. The typhoon intensified to a category 5-equivalent
super typhoon on the Saffir-Simpson Hurricane Wind Scale (SSHWS) with its eye surrounded by a
very intense convective core due to very warm sea surface temperatures. The peak of 1 min sustained
wind and 10 min sustained wind was 75 m/s (270 km/h) and 50 m/s (180 km/h), respectively, and its
lowest pressure was 905 hPa. The CHABA gradually weakened as its core became asymmetric, and
dropped in strength to a strong Category 4 typhoon by 4 October. The storm caused massive damage
to the southern coastal cities in South Korea, especially Busan, which is the second largest city in South
Korea and has regions of dense population along the coastline. In South Korea, there was loss of life,
with at least seven people killed and four people missing during that period. Hundreds of flights were
cancelled and the electricity was off in more than 200,000 households. There was also flooding in the
cities of Ulsan, Gyeongju, and Busan, with damage estimated at 20.3 billion KRW (18.3 million USD)
according to the Korea Standard Times in 6th October 2016.

2.3. Numerical Model Description

We developed a high-resolution atmospheric, oceanic, and inundation (flooding) prediction and
analysis system with the aim of producing more scientific, more accurate, faster, and more efficient
forecasting of typhoon-induced disasters based on a HPC system. Using this integrated and coupled
prediction system, the coastal inundation caused by the typhoon was simulated (Figure 2). Tables 1
and 2 show the description of the typhoon, surge and wave modeling using Weather Research and
Forecasting model (WRF), the Finite Volume Community Ocean Model (FVCOM), and the Coastal
Wave Prediction Model (Coastal WaveWatch III, CoWW3) by the Korea Meteorological Administration
which provides the overall results for the meteorological monitoring and prediction in South Korea,
respectively [32,33]. WRF model is a numerical weather prediction (NWP) system designed to serve
both atmospheric research and operational forecasting needs. The effort to develop WRF began
in the 1990’s and was a partnership with the National Center for Atmospheric Research (NCAR),
the National Oceanic and Atmospheric Administration (NOAA), the U.S. Air Force, the Naval Research
Laboratory, the University of Oklahoma, and the Federal Aviation Administration (FAA) in the United
States. NWP refers to the simulation and prediction of the atmosphere with a computer model,
and WRF is a set of software for this. The FVCOM model is an unstructured-grid, free-surface,
three-dimensional equation coastal ocean model. This model is developed by researchers at the
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University of Massachusetts Dartmouth and Woods Hole Oceanographic Institution. Obviously,
developed for the estuarine flooding and drying process, it has been upgraded to the spherical
coordinate system of basin and global applications. Lastly, wave computations by CoWW3, which is
developed based on WW3 (WAVEWATCH3), can be made on a regular grid in a Cartesian or spherical
coordinate system. WAVEWATCH3 is developed at NOAA/NCEP (National Oceanic and Atmospheric
Administration/National Center for Environmental Prediction) with the WAM model, and has been
used in the field of wave forecasting. Wave and its components are numerically solved based on the
random phase spectral action density balance equation for wavenumber-direction spectra [34–37].
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Table 1. Model description of the typhoon.

Items AD1 AD2

Model WRF 3.7.1

Initial and boundary NCEP/FNL (0.25-degree)

Horizontal resolution 9 km 3 km

Vertical level 41 41

Numerical grid 600 × 600 1099 × 1321

Physical specs.

Microphysics WDM6

Cumulus Kain-Fritsch -

PBL YSU PBL

Radiation RRTMG(LW) RRTMG(SW)

Land surface NOAH LSM

• AD (Atmosphere Domain)
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Table 2. Model description of the surge.

Items OD1-S (Surge Modeling)

Model FVCOM 3.2.1

Atmospheric condition AD2 of WRF modeling (3 km)

Open boundary Tidal Model Driver (TMD)

Dimension 2D

Number of cells 602,807

Horizontal mixing Smagorinsky’s parameterization

• OD (Ocean Domain)

For the CHABA hind-cast (from 3rd to 6th in October; 72 h), high resolution WRF was applied
using reanalysis data produced by NCEP/FNL (National Center for Environmental Prediction/Final)
0.25-degree for the boundary and initial conditions. The horizontal resolution of two domains (AD1 and
AD2) in WRF simulation, considering two-way nesting, was 9 km (600 × 600) and 3 km (1099 × 1321),
respectively (Figure 2), and the number of vertical layers was 41. High-resolution data (wind speed,
direction, and pressure) in AD2 were used as the meteorological input of surge and wave simulation.

For the simulation of the typhoon-induced coastal inundation, the 1-way downscaling technique
was applied using an unstructured grid model, FVCOM for surge and SWAN (simulating wave
nearshore) for waves. The grid generation of FVCOM and SWAN in OD1 is exactly the same, and the
number of unstructured grids with variable resolution ranging from 10 m to 2 km was 602,807.

First, the wind and pressure of AD2 produced by WRF was used as the initial and boundary
condition to simulate the surge (FVCOM) and wave (SWAN) in a mother domain in ocean modeling.
Then, the coastal inundation in the downscaled domain (OD2) ranged near Busan was predicted
using FVCOM (Figure 2). To consider the effects of both surge and waves, the surge and waves data
obtained from the mother domain (OD1-S and OD1-W) was combined and applied in the simulation.
The number of unstructured grids in the downscaled domain (OD2) used to simulate the coastal
inundation, was 315,909 and the minimum resolution was approximately 10 m.

To account for the effect of wave on the coastal flooding, we first generated an irregular waves
height using JONSWAP spectrum [32] based on the wave model (OD1-W) results (significant wave
height and peak frequency). JONSWAP spectrum is the following as:

S j(ω) =
αg2

ω2 exp
[
−

5
4

(ωp

ω

)4
]
γr (1)

r = exp

−
(
ω−ωp

)2

2σ2ωp2

 (2)

where Hs, wp, α, γ and σ are the significant wave height, peak frequency, the slope parameter, peak
enhancement factor and relative measure of the width of peak (0.07 or 0.09), respectively. In this
research, we assumed that α is 0.0081 and γ is 1.6. The number open boundary nodes in the OD2
model is 45, and the irregular wave height was generated and applied at each open boundary. Figure 3
shows the irregular wave height using JONSWAP spectrum at the 1st node of open boundary in OD2.
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As we compared the spectrum of generated irregular wave with theoretical spectrum, two
spectrums are almost identical. The generated wave time signal from spectrum with 1 s interval was
combined with surge height with 1 s interval, and we observed that the seawater flooding occurs near
the lower coastal region. The computation time for typhoon modeling, surge and wave modeling,
and inundation modeling was about six hours, 30 min and one hour, respectively using about 50 TF
(terra Flops per second) of KISTI’s Tachyon 2 system (SUN Blade 6275, Rpeak is about 300 TF). Also,
the size of each data set of three models was (400, 200, and 100) GB, respectively. Relatively large
computing resources are required for typhoon modeling in the prediction system. For faster and more
efficient typhoon prediction, it might be necessary to develop a parallel computing technology for use
in the GPU (Nvidia’s Graphic Processing Unit) or KNL (Intel’s KNights Landing) environment.

3. Results and Discussion

The downscaling technique was applied to improve numerical model accuracy owing to the
limitation of computational resources in this research. To compare the regional variation, major stations
were selected near the shoreline in south coast of the Korean Peninsula including Jeju island (Figure 4).
The meteorological forcing plays dominant role in surge and wave, and the error of meteorological
forcing results in problem of the timing of peak surge and wave in the modeling. If the accuracy of
the atmospheric model is secured, the accuracy of the surge and wave simulation can be also secured.
First of all, the simulated data of typhoon modeling using WRF was compared with the observation
data (wind speed, direction, and pressure) at five locations near shore (Figure 5). When the typhoon
‘CHABA’ reached near South Korea, maximum wind speed is about 30 m/s, and minimum pressure is
about 960 hPa. The simulated results of wind speed and direction are similar with observation data,
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in particular, during peak period. Except for some areas, the simulation results were similar to the
actual measured values.
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Figure 6 shows that the visualization of the cloud and accumulated precipitation of typhoon
CHABA calculated from WRF. VAPOR (Visualization and Analysis Platform for Ocean, Atmosphere,
and Solar Researchers) module provides a Python editor that can make new variable. Because there
is no variable in WRF output for visualization of the cloud and accumulated precipitation, we tried
to make new variable for the cloud and accumulated precipitation using Python editor. To describe
the cloud like satellite image, a new variable is created by combining QCLOUD (liquid water mixing
ratio) and QICE (ice mixing ratio) of WRF variables, and is visualized using Direct Volume Rendering
(DVR) module on high resolution cartographic map, which is generally used for realistic visualization
of 3D variables. The distribution of accumulated precipitation, which is obtained from combination
of RAINC (cumulus scheme of precipitation) and RAINNC (microphysics scheme of precipitation),
is visualized the 2D module at a time. Through this figure, the change of accumulated precipitation
could be investigated along moving trajectory of typhoon. To clarify the trajectory of the typhoon
cloud, the color map of 60 mm or less was treated transparently in order to consider only the movement
characteristics for the extreme rainfalls by the typhoon.
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Figure 7 shows that the visualization of storm surge height around South Korea calculated from
FVCOM. Because FVCOM is unstructured grid model, VAPOR does not support the direct visualization
of FVCOM’s results yet. Thus, we have to convert the data from unstructured grid to structured
grid using the Inversed Distance Weight (IDW) interpolation within variable effective circle for the
treatment of coastal landward boundaries. FVCOM calculates the variation of water level due to the
typhoon’s property, such as pressure and wind forcing around South Korea Sea.

Figure 8 shows the comparison of time series of surge height between the simulation and
observation. FVCOM underestimated the surge height about 30 cm averagely. An inverse barometer
effect is estimated the atmospheric pressure anomaly, and cause the sea level rise about 1 cm per 1 hPa
anomaly [33]. In other words, the sea level due to the inverse barometer effect is smaller about 20 cm
than real phenomenon. As mentioned above, the underestimation of typhoon-driven air pressure in
WRF result in the underestimation of surge during typhoon ‘CHABA’. As the typhoon approaches,
the surge height is increased due to the strong wind and low pressure, and a negative surge was
generated in the Eastern Sea because the water body might be transported to the southern sea of the
South Korea due to the counterclockwise movement of the typhoon.Water 2020, 12, x 8 of 16 
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Wave setup increases the mean sea level due to the wave breaking toward shore [29]. But,
our surge modeling did not consider wave setup which plays important role in surge, and this
additionally affected the underestimation of surge height. Therefore, to consider the wave-driven effect
on downscaling for coastal inundation, we simulated the wave motion using CoWW3 model [32,33].
The simulated wave height is depicted in Figure 9 with the contour map. The maximum significant
wave height is about 12 m, and the peak period is about 10–15 s when typhoon ‘CHABA’ approaches
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near South Korea. The significant wave height is increased by the approaching typhoon southern sea
of the South Korea, and it was found that the simulation is not much different from observed data.Water 2020, 12, x FOR PEER REVIEW 6 of 8 
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The Korea Hydrographic and Oceanographic Agency (KHOA) is the national observation agency
for the hydrography and oceanography in South Korea and provides the public observation of the
oceanic phenomena such as tides, ocean currents, water temperature and salinity. To prove the accuracy
of the model application in this research, the validation data were collected from KHOA and compared
with the simulated results of case OD1 (Figure 10 and Table 3).
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Table 3. RMSE results of the model simulation (unit: mm).

Stations OD1-A (Tide only) OD1-B (Storm Tide)

Tongyeong 44.20 43.54

Busan port 44.05 38.66

New Busan port 29.06 25.12

Gaduk 20.86 15.25

From the results of comparison, the applied model captures the observed wave elevation well
with both cases, OD1-A (tide only) and OD1-B (storm tide case). And differences of the OD1-A case
were calculated slightly larger than OD1-B. It is concluded that the consideration of wind speed can
improve the model accuracy.

The typhoon-induced coastal inundation in the Busan could result from the strong wave and
surge simultaneously. The mean sea level was raised by the typhoon-induced surge, and at same time
the typhoon-induced wave with a long period of more than 10 s actually led to the coastal inundation.
Finally, Figure 11 shows the simulation result of coastal inundation near Busan combining the surge
and wave effect, and the inundation occurred on the southeast coast of Busan, and the inundation
height was about 2.5 m near Marine City. In the simulation, considering only surge, a maximum
surge height was about 1 m, and the coastal inundation was not estimated. While, by considering
the irregular wave height with 1 s interval obtained by JONSWAP spectrum, the flooding near the
lower coastal region could be revealed with consideration of surge height and wave height together.
Additionally, it is remarkable that the two regions where the inundation height of the simulation results
were relatively high are very vulnerable to damage due to the high population density (Haeundae
beach and Marine city) and the container dense area (Gamman container terminal). Fortunately, due to
the installation of a submerged breakwater to prevent the loss of sand at Haeundae Beach, the beach
is not damaged. On the other hand, the Marine city suffered massive property damage and human
damage from flood inundation as simulated (Figure 12).
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4. Conclusions and Future Works

In the absence of an integrated system to prevent and respond to various natural disasters at
present, it is important to predict and analyze future natural disasters scientifically, accurately, rapidly,
and efficiently. Particularly in the case of typhoons, which cause great damage in Korea. The frequency
of typhoons in the Western Pacific region is expected to decrease, but their intensity is expected to be
greater as climate change accelerates, which is why a more active prevention and response system
is needed. Moreover, to respond to disaster immediately and to understand physical phenomena,
more accurate prediction system with high resolution is absolutely necessary. The prediction system
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in K-DMSS (KISTI Decision-Making Support System) is an optimal disaster prediction automation
system based on the HPC optimized in South Korea.

In this work, WRF, FVCOM, unSWAN, and downscaled FVCOM were operated for prediction of
the Typhoon ‘CHABA’-induced inundation, based on the KISIT HPC system. The coastal inundation
could be caused by typhoon-driven surge and wave, and we combined the storm tide height obtained
from surge modeling and the irregular wave height which is calculated by JONSWAP spectrum, and
applied combined result to the one-way downscaling for coastal inundation to simultaneously consider
the effects of surge and wave. From the comparison of the simulation results, model accuracy of the
downscaling method has proved. Thus, we have found new possibilities in downscaling methods for
coastal inundation.

However, our numerical simulation of coastal inundation is overestimated because of ignoring the
effect of submerged breakwater installation. The initial purpose of the submerged breakwater was wave
energy dissipator which can reduce the wave-driven inundation in beach and coast. Therefore, the
submerged breakwater must be considered in numerical simulation for integrated coastal inundation
to analyze flood inundation [28].

In addition, the installation of the submerged structures had significant effect on coastal flooding,
that is, the structure dissipates the energy of water motion [3,34–36]. The detail land cover of coastal
landward boundaries must be applied to the numerical study for coastal flooding. In addition, 2D
numerical simulation tends to underestimate storm surge as compared with 3D simulation, because
the stratified condition accounts for much of the water elevation [1,29,37]. Although 3D simulation
requires a relatively high computing cost, this is very necessary for the accurate prediction of surge
and coastal inundation.
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