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Abstract: This study addresses the visible light-induced bacterial inactivation kinetics over a
Bi2WO6 synthesized catalyst. The systematic investigation was undertaken with Bi2WO6 prepared
by the complexation of Bi with acetic acid (carboxylate) leading to a flower-like morphology.
The characterization of the as-prepared Bi2WO6 was carried out by X-ray diffraction (XRD), scanning
electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SSA),
and photoluminescence (PL). Under low intensity solar light (<48 mW/cm2), complete bacterial
inactivation was achieved within two hours in the presence of the flower-like Bi2WO6, while under
visible light, the synthesized catalyst performed better than commercial TiO2. The in situ interfacial
charge transfer and local pH changes between Bi2WO6 and bacteria were monitored during the
bacterial inactivation. Furthermore, the reactive oxygen species (ROS) were identified during
Escherichia coli inactivation mediated by appropriate scavengers. The ROS tests alongside the
morphological characteristics allowed the proposition of the mechanism for bacterial inactivation.
Finally, recycling of the catalyst confirmed the stable nature of the catalyst presented in this study.

Keywords: flower-like Bi2WO6; E.coli inactivation; reactive oxygen species (ROS); photocatalysis;
solar disinfection; water treatment; pollution

1. Introduction

Over the last few decades, environmental contamination has shifted from the exclusive focus
of organic and inorganic pollutants [1], towards the inclusion of bacteria and other organisms [2–4].
Therefore, well-organized methods are urgently required to control the spread [5] or eradicate
microorganism-related issues [6]. In recent times, beside the traditional bacterial inactivation
methods such as UV disinfection and chlorination, a green, efficient, and cost-effective semiconductor
photocatalysis has appeared to be a more promising technique [7,8]. TiO2 has been extensively reported
as an effective bactericidal semiconductor photocatalyst due to its high stability, strong redox potential,
low cost, and non-toxic nature, but its band-gap of 3.2 eV allows light absorption up to 387 nm which
makes up just over 4% of the total solar spectrum [9–11].
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Since solar radiation contains more visible light (∼47%) than UV, the appropriate use of this
fraction becomes necessary through the employment of efficient visible-light photocatalysts [12]. As a
promising visible-light-driven photocatalyst with good chemical and thermal stability, Bi2WO6, beside
its non-toxic and environmentally friendly nature, is a typical n-type semiconductor composed of
accumulated layers of alternating (Bi2O2)2+ layers and (WO4)2− octahedral sheets [13,14]. The valence
band of Bi2WO6 consists of O 2p and Bi 6s hybrid orbitals, its narrowed band gap increases visible
light absorption capacity, and photoactivity [15,16], while its photocatalytic activity greatly depends
on morphology, particle size, surface area, and interface structure [17,18]. Constructing a unique
micro/nano hierarchical structure usually shortens the pathways of water pollutants, absorb incidental
light more efficiently, because of multiple-scattering increase, and easily separated from wastewater by
filtration or sedimentation methods [13,19,20].

However, despite the long presence of this catalyst as a possible solution, most studies on
Bi2WO6 have focused on the photocatalytic degradation of organic pollutants, with only a few
studies investigating the photocatalytic inactivation of microorganisms. Ren et al. [21] reported
Escherichia coli degradation in a few hours on Bi2WO6 nest-like structures in a pseudo-first order
process. Helali et al. [22] prepared a 20 m2/g SSA Bi2WO6 leading to E. coli inactivation within four
to five hours under solar light on a hydrothermally grown mixture of Bi-nitrate and Na-tungstate
in a 65–35% ratio while a similar study has been reported by Amano et al. [23]. However, there is a
relatively wide gap in literature on effective preparation of robust structures with high specific surface
areas in order to promote efficient disinfection, and a gap in interpreting the pathways to bacterial
inactivation by this catalyst.

This study aims to assess a facile preparation method for flower-like Bi2WO6 photocatalysts
destined for disinfection applications. As such, we assess the preparation parameters (aging,
temperature, pH) in order to modify the structural (crystalline) and morphological characteristics
(flower-like, nanoparticles). These modifications are envisioned to create a series of catalysts, and their
activity under low-intensity solar or visible light will be assessed. Furthermore, the robustness of the
catalyst in serial reuse cycles will be evaluated for its stability. Last but not least, special focus will be
given to the identification of the pathways that lead to bacterial inactivation in an effort to decrypt the
mechanistic action mode of the flower-like Bi2WO6.

2. Materials and Methods

2.1. Synthesis of Flower-Like Bi2WO6 Samples

All chemicals were of analytical grade. They were used as received without any further
purification and were purchased from Merck, Germany. All solutions were prepared with Milli-Q
water (18.2 MΩ cm). In a typical hydrothermal procedure for the synthesis of flower-like Bi2WO6,
0.5 mmol of Na2WO4·2H2O was dissolved in an 80 mL solvent containing 16 mL acetic acid and 64 mL
Milli-Q water until attaining a clear solution. Then, 1 mmol of Bi(NO3)3·5H2O solid was added to
the solution, and a white precipitate immediately emerged. Next, the reaction mixture was stirred
for 1 h, transferred into a 120 mL Teflon-lined stainless-steel reactor, and heated at 160 ◦C for 12 h.
The as-formed yellow precipitates were collected, washed with distilled water, and dried in vacuum at
70 ◦C for 10 h. A schematic representation of the synthesis is illustrated in Scheme 1. The influence of
the hydrothermal reaction time and temperature has been explored as shown in Table 1. In order to
investigate the effect of morphology on photocatalysis, Bi2WO6 nanoparticles (BWO6) were prepared
applying the same hydrothermal method at 200 ◦C for 24 h by the regulation of pH to 10.
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Scheme 1. Schematic illustration of the preparation of flower-like Bi2WO6 by hydrothermal method. 

Table 1. Bi2WO6 obtained at the different synthetic conditions. 
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BWO1 12 160 
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BWO5 24 200 
BWO6 24 200 (pH = 10) 
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The crystallinity and phase identification of the as-prepared samples were determined by 
powder X-ray diffraction (XRD) using an X’Pert MPD PRO (Panalytical) analyzer, equipped with a 
ceramic tube (Cu anode, λ = 1.54060 Å), and with a continuous scanning rate in the range of 5° < 2θ < 
80°. The results were studied with Rietvield refinement by the FullProf program. The morphology 
developments of the samples were characterized using scanning electron microscopy (SEM, FEI 
Quanta 200). Before SEM imaging, the samples were coated with a thin layer of gold. The specific 
surface area and porosity size were obtained using Brunauer–Emmett–Teller (BET) analysis, 
performed with a BELSORP-mini II analyzer, Japan. The photoluminescence (PL) measurement was 
carried out using a fluorescence spectrophotometer (Perkin Elmer LS55) equipped with a xenon lamp 
at an excitation wavelength of λ = 340 nm. The surface atomic percentage of the element in the as-
synthesized sample was analyzed using an AXIS NOVA photoelectron spectrometer with a mono-
chromatic Al Ka X-ray (hν = 1486.6 eV) source (Kratos Analytical, Manchester, UK). The interfacial in 
situ voltage and pH variation during the bacterial inactivation was monitored in a pH/mV/Temp 
meter (Jenco 6230N) equipped with a microprocessor and a RS-232-C IBM interface for data 
recording. 

2.3. Photocatalytic Antibacterial Activity on Bi2WO6 and Light Sources  
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prepared according to previous research reported by our laboratory [24,25]. The bacterial 
concentration of the samples was measured in Colony Forming Units (CFU/mL) and was determined 
by plating on a non-selective cultivation media, namely, Plate Count Agar (PCA). A total of 1 mL of 

Scheme 1. Schematic illustration of the preparation of flower-like Bi2WO6 by hydrothermal method.

Table 1. Bi2WO6 obtained at the different synthetic conditions.

Samples Reaction Time
(h)

Reaction Temperature
(◦C)

BWO1 12 160

BWO2 18 160

BWO3 24 160

BWO4 24 180

BWO5 24 200

BWO6 24 200 (pH = 10)

2.2. Physical Characterization of the Bi2WO6 Flakes

The crystallinity and phase identification of the as-prepared samples were determined by powder
X-ray diffraction (XRD) using an X’Pert MPD PRO (Panalytical) analyzer, equipped with a ceramic tube
(Cu anode, λ = 1.54060 Å), and with a continuous scanning rate in the range of 5◦ < 2θ < 80◦. The results
were studied with Rietvield refinement by the FullProf program. The morphology developments of
the samples were characterized using scanning electron microscopy (SEM, FEI Quanta 200). Before
SEM imaging, the samples were coated with a thin layer of gold. The specific surface area and porosity
size were obtained using Brunauer–Emmett–Teller (BET) analysis, performed with a BELSORP-mini
II analyzer, Japan. The photoluminescence (PL) measurement was carried out using a fluorescence
spectrophotometer (Perkin Elmer LS55) equipped with a xenon lamp at an excitation wavelength of λ
= 340 nm. The surface atomic percentage of the element in the as-synthesized sample was analyzed
using an AXIS NOVA photoelectron spectrometer with a mono-chromatic Al Ka X-ray (hν= 1486.6 eV)
source (Kratos Analytical, Manchester, UK). The interfacial in situ voltage and pH variation during
the bacterial inactivation was monitored in a pH/mV/Temp meter (Jenco 6230N) equipped with a
microprocessor and a RS-232-C IBM interface for data recording.

2.3. Photocatalytic Antibacterial Activity on Bi2WO6 and Light Sources

The bacterial strain used was a wild type E. coli K12, supplied by the German Collection of
Microorganisms and Cell Cultures, DSMZ (No. 498). The master plate and stock solution were
prepared according to previous research reported by our laboratory [24,25]. The bacterial concentration
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of the samples was measured in Colony Forming Units (CFU/mL) and was determined by plating on a
non-selective cultivation media, namely, Plate Count Agar (PCA). A total of 1 mL of the sample was
withdrawn after each interval and then serial dilutions were made in a sterile 0.8% NaCl/KCl solution.
A 100 µL aliquot was pipetted onto a nutrient agar plate and processed using the standard plate count
method. The plates were incubated at 37 ◦C followed by the bacterial evaluation. Experimental results
were carried in triplicate runs applying statistical analysis for the calculation of mean and standard
deviation (reported in the graphs). Samples were irradiated in the cavity of a SUNTEST solar simulator
CPS (Atlas GmbH, Hanau, Germany) with an overall light irradiance of 48 mW/cm2 (~0.8 × 1016

photons/s, Supplementary Figure S1). A cut-off filter was used in the SUNTEST cavity to filter the light
<310 nm. A second cut-off filter was also used during bacterial inactivation under visible light with a
cut-off blocking the wavelength < 405 nm rendering (Supplementary Figure S2). Finally, after the two
filters, the visible light irradiance reaching the sample was 38 mW/cm2.

3. Results

3.1. Synthesis and Characterization of Bi2WO6: X-Ray Diffraction (XRD), Scanning Electron Microscopy
(SEM), X-Ray Photoelectron Spectroscopy (XPS), and SSA Determination

Figure 1 depicts the XRD patterns of the as-synthesized Bi2WO6 via the hydrothermal method
at different reaction times and temperatures. All of the XRD patterns illustrated that characteristic
peaks were in good agreement with the orthorhombic phased Bi2WO6 in the standard JCPDS card
(39-0256) [26]. No other diffraction peaks arising from possible impurities were detected. With the
holding time increasing to 24 h, the characteristic peaks became much sharper due to an increase in
crystallinity. Understandably, the increment of the temperature with the constant reaction time for 24 h
resulted in the same trend because of grain growth. Table 2 illustrates the crystallite size of the samples
(using the Scherrer formula based on the half-width of their (113) peak) calculated by the Rietveld
method using the FullProf program.
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Figure 1. X-ray diffraction patterns of the Bi2WO6 samples: (a) BWO1, (b) BWO2, (c) BWO3, (d) BWO4, 
(e) BWO5, and (f) BWO6. Profiles are shifted in y-scale for clarity. 

Table 2. Rietveld structural parameters of the samples. 

Samples Crystallite Size (nm) 
BWO1 9 
BWO2 10 
BWO3 17 

Figure 1. X-ray diffraction patterns of the Bi2WO6 samples: (a) BWO1, (b) BWO2, (c) BWO3, (d) BWO4,
(e) BWO5, and (f) BWO6. Profiles are shifted in y-scale for clarity.
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Table 2. Rietveld structural parameters of the samples.

Samples Crystallite Size (nm)

BWO1 9

BWO2 10

BWO3 17

BWO4 20

BWO5 22

BWO6 31

The scanning electron microscopy (SEM) images of the Bi2WO6 samples prepared under different
experimental conditions are shown in Figure 2. Heating at 160 ◦C for 12 h and 18 h (Figure 2a,b)
led to aggregated irregular small Bi2WO6 nanoparticles and flower-like microspheres. However,
when the heating time was prolonged to 24 h (see Figure 2c), organized hierarchical flower-like
Bi2WO6 microspheres composed of nanoplates were obtained and the aggregated nanoparticles totally
disappeared (Figure 2e,f). The SEM images of as-prepared Bi2WO6 nanoparticles are also shown in
Figure 2f. The joint effect of nanoparticles assembly followed by the localized ripening mechanism as
well as the hierarchical assembly of nanoplates have been also previously reported for the formation
mechanism of flower-like microspheres [27,28]. Owing to the absence of discrete nanoplates according
to the SEM images at different reaction times (Figure 2), the former mechanism seems to predominate.

Scheme 2 illustrates the proposed formation mechanism of flower-like Bi2WO6 microspheres.
Nanoparticles initially aggregated, then the self-assembled nanoparticles preferentially grew along
<010>. Longer reaction times and higher temperatures result in dissolution of some nanoplates leading
concomitantly to re-deposition by Ostwald ripening [27,28].

The relevant reactions leading to the Bi2WO6 synthesis in aqueous solutions when working in
acetic acid media can be suggested as follows:

Bi(NO3)3 → Bi3+ + 3NO3
−, (1)

Na2WO4 → 2Na+ + WO4
2−, (2)

CH3 −COOH + H2O→ CH3 −COO− + H3O+ pKa4.75, (3)
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The initial complex between Bi and acetic acid presents a stability constant of 102.6–2.7 [29], which is
not in the range found for insoluble complexes/precipitates >1011–12 [30–32]. This coordination complex
is suggested in Equation (4) (Bi = M). The complex formation which is the precursor of Bi2WO6 does
not lead to precipitate formation and gradually decomposes releasing Bi3+ which reacts with WO4

2−.
Therefore, the nanoplate formation leads to aggregates which present inner pores/voids and provide
the required contact area for the photocatalytic bacterial inactivation.

In addition to the crystal structure and morphology, the surface chemical composition of the
as-synthesized flower-like sample at 200 ◦C for 24 h was examined by XPS. As shown in the survey XPS
spectrum in Figure 3, the Bi, O, W, and C elements were present in the pure Bi2WO6. The C element
peak can be attributed to adventitious carbon from the sample preparation and/or the XPS instrument
itself [33]. The surface atomic concentration ratio of Bi:W:O estimating from XPS peak areas is around
2.0:0.8:5.4, which further confirms its composition of Bi2WO6. Furthermore, the peaks centering at
164.7 and 159.4 eV are attributed to the binding energies of Bi 4f5/2 and Bi 4f7/2, respectively (inset
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of Figure 3), confirming Bi3+ ions in the crystalline structure [34–36]. The W4f energy region can be
designated to be the +6 oxidation state of tungsten in accordance with previous reports [33,36].
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The N2 adsorption–desorption isotherms of the well-organized flower-like (BWO5) and 
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seen that the isotherm shape for both samples exhibited a typical type IV isotherm with a clear 
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Figure 3. XPS survey spectra of the hydrothermally prepared Bi2WO6 sample at 200 ◦C for 24 h. Inset
is the zoom of XPS scans over the Bi4f7/2 peak in the 154–170 eV region.

The N2 adsorption–desorption isotherms of the well-organized flower-like (BWO5) and
nanoparticles (BWO6) Bi2WO6 are presented in Figure 4. According to IUPAC classification, it can
be seen that the isotherm shape for both samples exhibited a typical type IV isotherm with a clear
hysteresis loop H3, suggesting the presence of mesopores in the size range of 2–50 nm [37].The insets
show the Barrett–Joyner–Halenda (BJH) pore-size distributions and present the evidence for the



Water 2020, 12, 1099 8 of 19

existence of mesopores (2–50 nm). Table 3 summarizes the BET specific surface areas (SSA) and the
pore volumes of BWO5 and BWO6.
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Bi2WO6. The insert shows the pore size distribution.

Table 3. Brunauer–Emmett–Teller (BET) parameters of the Bi2WO6 samples at various temperatures.

Samples Surface Areas
(m2 g−1)

Total Pore Volumes
(cm3 g−1)

BWO5 14.475 0.142

BWO6 6.87 0.0532

3.2. E. Coli Inactivation Kinetics: Effect of the Bacterial Concentration, Amount of Catalyst, Light Dose, and
Applied Light Wavelength

Figure 5 shows the complete bacterial inactivation mediated by the BWO5 being faster under
low-intensity simulated solar light, compared to the other samples. The E. coli inactivation was 95%
after 2 h. The effectiveness of a disinfection process resides in the time necessary to inactivate a
determined percentage of bacteria. In the Chick–Watson model [38,39], the simplest inactivation
model, the inactivation rate shown in Figure 5 is seen to be dependent on the residual bacteria after
each specific time during the inactivation process and this allows comparing the effect of the different
Bi2WO6 samples. Neither irradiation in the absence of Bi2WO6 (photolysis) nor runs in the presence of
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this catalyst in the dark lead to bacterial inactivation of up to 4 h. The latter provides the proof that
Bi2WO6 is not toxic to E. coli and a photocatalytic process is required for their inactivation. As the
treatment time increased, the photocatalytic process became more effective, owing to the formation of
hierarchical flower-like Bi2WO6 microspheres and loss of aggregates and the higher crystallite size.
Nevertheless, the nanoparticles (BWO6), which presented lower specific surface area than BWO5,
led to lower inactivation rates. The pseudo first-order rates of the Bi2WO6 samples during flower-like
development (BWO1 and BWO5) compared with Bi2WO6 nanoparticles (BWO6) are given in the
supplementary material, Figure S3. The pseudo first-order rate constants (kapp) of the BWO1, BWO5,
and BWO6 were estimated to be 0.0331 min−1, 0.0488 min−1, and 0.0195 min−1, respectively. As can be
seen, the photocatalytic inactivation of bacteria mediated by as-developed flower-like Bi2WO6 (BWO5)
is around 2.5 times faster compared with nanoparticles.
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Figure 5. Photocatalytic inactivation of Escherichia coli in aqueous dispersions on different Bi2WO6

samples in the dark and under simulated solar light (SSL). Experimental conditions: [Catalyst]0 =

0.2 g/L, [bacteria]0 = 2 × 106 Colony Forming Units (CFU)/mL and light intensity: 48 mW/cm2.

The photoluminescence spectrum of the prepared catalysts was used as a practical method to
verify the separation efficiency of photo-generated electron–hole pairs in the semiconductors. Generally,
a lower photoluminescence (PL) intensity represents a lower recombination rate of photo-generated
charge carriers. The photoluminescence (PL) spectra of the Bi2WO6 samples during the flower-like
development (BWO1 and BWO5) in comparison with Bi2WO6 nanoparticles (BWO6) is shown in
Figure 6. The wide absorption-band was observed between 350 nm and 600 nm which is due to
the Bi2WO6 electron-hole recombination giving rise to the free and bound-exciton luminescence [40].
The PL spectra of the as-synthesized samples through flower-like development (BWO1 and BWO5)
exhibited significantly decreased PL intensity related to that of the Bi2WO6 nanoparticles. It could
be ascribed that the recombination of photo-generated charge carriers is greatly inhibited in the
hierarchically flower-like composed of nanosheets. Hence, the efficient separation of photo-generated
electron–hole pairs and rapid transfer of electrons to the surface of crystal would be obtained. Moreover,
the lower PL-intensity bands shown in BWO5 reflected a higher crystallinity in comparison with
BWO1, allowing a lower amount of crystal defects, leading to a higher electron-hole separation and an
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increased photocatalytic activity [41], a fact that corroborates with the faster inactivation of bacteria
(Figure S3).
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Figure 6. Photoluminescence (PL) spectroscopy of the synthesized samples at different conditions.
BWO1: 12 h, 160 ◦C. BWO5, 24 h, 200 ◦C. BWO6: 24 h, 200 ◦C. pH = 10.

Following, the effects of initial catalyst or bacterial concentration were studied, and the results are
summarized in Figure 7. The effect of the Bi2WO6 concentration on E. coli inactivation is shown in
Figure 7a. Although increasing Bi2WO6 concentration of up to 0.2 mg/mL resulted in higher inactivation
rates, increasing the catalyst concentration to 0.4 mg/mL resulted in a slower bacterial inactivation
kinetics, most possibly due to a loss in surface area by catalyst agglomeration (particle–particle
interactions), as well as a decrease in the penetration of the photon flux by the solution opacity,
thereby decreasing the photocatalytic inactivation rate [42]. The effect of the initial concentration on
the E. coli kinetics mediated by Bi2WO6 catalysts is presented in Figure 7b, showing a delay in the
time necessary for bacterial inactivation at higher bacterial concentrations. Although this effect can be
ascribed to the exhaustion of surface active sites due to opacity in solution [43], we note here that in
absolute numbers, the higher the amount of bacteria in solution, the higher the number of available
bacteria (for inactivation). Hence, by calculating the amount of cells inactivated in 4 h per mg of
catalyst and per minute, we get 2075, 208, and 21 cells min−1 mg−1 for 108, 107, and 106, respectively.
As a result, we report that this catalyst can effectively disinfect higher amounts of microorganisms,
albeit in a higher residence time.
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Figure 7. Effect of catalyst and bacterial concentration on inactivation kinetics. (a) E. coli survival on
Bi2WO6 samples in the dark and under low intensity solar simulated light. Experimental conditions:
(bacteria)0 = 2 × 106 CFU/mL and light intensity: 48 mW/cm2. (b) Initial concentration of E. coli
(CFU/mL) effects on the bacterial inactivation kinetics mediated by Bi2WO6 (200 ◦C for 4 h) under
low intensity solar simulated light. Experimental conditions: (Catalyst)0 = 0.2 g/L and light intensity:
48 mW/cm2.

Next up in the operational parameters investigation, we assessed the possibility of photonic
limitation or saturation of the system. As such, Figure 8a,b shows the effects of the light intensity and
composition (UVA–vis or Vis only) on the bacterial degradation kinetics. A higher light dose accelerated
the bacterial inactivation because of a higher amount of charges generated in the semiconductor during
bacterial disinfection under band-gap irradiation (Figure 8a), since the direct inactivation by light was
previously excluded. Figure 8 b illustrates that under visible light, a solution containing 0.2 g/L of
Bi2WO6 was still efficiently inactivating bacteria and was more effective compared to commercial TiO2

P25 Degussa (used as reference). These results come from the optical absorption of up to ~450 nm
in the visible region by Bi2WO6, which is significantly wider than that of TiO2 P25 Degussa with an
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absorption of up to 387 nm for the 20 nm particles, making up the bulk of this mixed TiO2 P25 Degussa
rutile–anatase [44].
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Figure 8. Effect of light irradiance and composition on inactivation kinetics. (a) E. coli inactivation
on Bi2WO6 (200 ◦C for 24 h) under different solar light irradiation intensities. (b) E. coli inactivation
mediated by Bi2WO6 (200 oC for 24 h) and TiO2 under low intensity solar simulated (48 mW/cm2)
and visible light (38 mW/cm2). Experimental conditions: (Catalyst)0 = 0.2 g/L and (bacteria)0 = 2 ×
106 CFU/mL.

3.3. Mechanistic Interpretation: ROS-Species Involvement, Interfacial Charge Transfer, and Catalyst Reuse
During Bacterial Inactivation

The reactive oxygen species (ROS) such as ·OH, O2
·−, and vb (h+) play a pivotal role in the

photo-degradation of organic pollutants and bacterial inactivation [22,45–47]. To determine the main
ROS followed by the photodegradation mechanism, appropriate radical-scavengers such as isopropanol
(·OH scavenger), sodium oxalate (a vbh+ hole scavenger), and superoxide dismutase (O2

·− scavenger)
were used in the present study. Figure 9 depicts the results of scavenging experiments mediated by the
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optimized flower-like Bi2WO6 (BWO5). The photocatalytic bacterial inactivation could be remarkably
suppressed by the addition of isopropanol and sodium oxalate. It is very likely that ·OH and h+

intervene jointly in the bacterial inactivation. Meanwhile, the addition of SOD (O2
·− scavenger) inhibits

the bacterial inactivation to a smaller degree compared to vb(h+) and the ·OH-radical as shown in
Figure 9, traces (a) and (b).
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Figure 9. Effect of the scavengers during E. coli inactivation on Bi2WO6 under solar simulated light for
(a) isopropanol as OH-radical scavenger, (b) sodium oxalate a hole vb(h+) scavenger, (c) superoxide
dismutase (SOD) as an O2

.- scavenger, (d) no scavenger. Runs under low intensity solar simulated light
(48 mW/cm2). The solutions contained Bi2WO6 (0.2 g/L) and scavenger concentration of 0.1 mM.

The possible reaction mechanism for the inactivation of E. coli mediated by Bi2WO6 can be proposed
as the following, which is shown in Scheme 3. Under visible-light irradiation, the photo-excitation of
Bi2WO6 implies the transfer of an electron from the valence band (Equation (6)).

Bi2WO6 + hv→ e−(CB) + h+(VB). (6)

As mentioned before, the valence band of Bi2WO6 is a hybrid band made up by the O2p and
Bi6s orbitals. Under light irradiation, the O2p and Bi6s hybrid orbitals increase the charge transfer in
the W5d orbitals of Bi2WO6. This moves the valence band (VB) potential to a more positive potential
energy narrowing the band-gap and inducing a higher photocatalytic activity [48].

Based on the references, CB and VB potentials of Bi2WO6 are 3.08 and 0.36 eV, respectively [49,50].
The redox potential for the dissolved oxygen/superoxide couple (E0 (O2/ O2

·−)), O2/HO2
·, and OH-/·OH

are −0.33 eV, −0.046 eV, and 1.98 eV vs NHE [49], respectively. Comparing the band edge energy level
of Bi2WO6 with the redox potentials of ROS, it is obvious that the excited holes in the valence band of
Bi2WO6 were sufficiently more positive than that of OH-/·OH, suggesting that the photogenerated
holes on the surface of Bi2WO6 could react with OH-/H2O to form “non-selective” ·OH radicals
(Equation (7)). However, the conduction band edge potential of Bi2WO6, which is more positive than
the standard redox potential of O2/ O2

·− and O2/HO2
·, cannot directly reduce O2 to O2

·− or HO2
·.

As shown in Figure 9, the bacterial inactivation is reduced in the presence of SOD-scavengers, which
confirms the presence of the HO2

· radicals. Considering the redox potential of O2/H2O2 = +0.682 eV
vs NHE [51], H2O2 seems to be generated initially (Equation (8)) which is followed by the formation of
different species according to the relations 9–10 in the photocatalytic reaction. It is worth noting that
the powerful hole can directly attack bacteria cells in the photocatalytic oxidation process, which was
also confirmed by the hole scavenger [45,52].
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Scheme 3. Schematic diagram showing the photocatalytic inactivation of bacteria on the Bi2WO6.

h+(VB) + H2O→ HO•+ H+, (7)

O2 + 2H+ + 2e− → H2O2, (8)

H2O2 + e− → OH•+ OH−, (9)

H2O2 + h+ → O−2 •+ 2H+ or HO−2 •+ H+. (10)

Figure 10 shows the variation of the interfacial potential and the local pH shift under simulated
solar light. At pH ~6, the bacterial inactivation preferentially proceeds via the O2

·− species over HO2
−·

as shown in Equation (11) and Figure 9, trace (c).

HO2
−·
⇔ O2

·− + H+ pKa 4.8. (11)

The initial pH at time zero in Figure 10 was observed to decrease slightly from 6.0 to 5.9 within
four hours of irradiation. The initial pH of 6.0 in this figure is seen to decrease drastically to 5.4 after
8000 s due to the concomitant production of long-lived intermediates carboxylic acids, owing to the
degradation of the bacterial membrane. The interface potential is shown to drastically drop within
8000 s (2.2 h) when the bacterial reduction is reduced by 99.90%, which is equivalent to 3 logs as
shown in Figure 5. The interface potential recovers to its initial value as shown in Figure 10 after the
inactivation of bacteria [52]. The recovery to the initial pH-level occurs when the intermediate acids
are mineralized to CO2 by the photo-Kolbe reaction according to Equation (12) [53,54].

RCOO− + solar light→ R + CO2. (12)
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Figure 10. Evolution of the interfacial potential and local pH of an E. coli suspension in contact with
Bi2WO6 under low intensity light irradiation (48 mW/cm2). Catalyst concentration 0.2 g/L.

Finally, we provide the evidence for synthesizing a stable Bi2WO6 flower-like photocatalyst by a
repetitive inactivation of a E. coli test, which results are shown in Figure 11. In order to evaluate the
bacterial inactivation after each cycle, the pseudo first-order rate constants (kapp) were calculated and
are reported in Table 4. The recycled sample used in Figure 11 was thoroughly washed after each cycle.
Practically, no loss of bacterial inactivation was observed. These results show the stable repetitive
bacterial inactivation mediated by flower-like Bi2WO6 up to five cycles and confirm the potential for
the practical application of this photocatalyst in E. coli inactivation.
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Figure 11. Reusability of flower-like Bi2WO6 under low intensity solar simulated light (48 mW/cm2).
Solution parameters: (Catalyst)0 = 0.2 g/L and (bacteria)0 = 2 × 106 CFU/mL.
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Table 4. Pseudo first-order rate constants (kapp) for E. coli inactivation under different conditions
consistent with Figure 11.

Cycle Number kapp (min-1)

First 0.0488 ± 0.005
Second 0.0494 ± 0.004
Third 0.0484 ± 0.005

Fourth 0.0480 ± 0.006
Fifth 0.0471 + 0.007

4. Conclusions

In the present study, Bi2WO6 flower-like samples were prepared at 200 ◦C attaining a high
crystallinity and led a low amount of crystal by hydrothermal growth in acetic acid media. By SEM,
XRD, XPS, and PL analysis, the properties of the flower-like Bi2WO6 samples and nanoparticles were
investigated. These catalysts resulted in effective bacterial inactivation even under visible light and
were faster than TiO2. In addition to higher SSA of flower-like Bi2WO6, its lower PL intensity leads
to lower recombination of photo-generated electron–hole pairs as a consequence of more efficient
photocatalytic activity. The photocatalytic inactivation of bacteria mediated by as-developed flower-like
Bi2WO6 (BWO5) is around 2.5 times faster when compared with nanoparticles. The samples under light
lead to effective Bi2WO6 charge separation and the generation of ROS inducing bacterial inactivation.
The intermediate ROS species produced by Bi2WO6 were identified by the use of the appropriate
scavengers, and the ·OH-radical was identified to be the dominant inactivation mechanism. Finally,
the stable performance of the synthesized catalyst during recycling indicates its robustness and may
suggest practical application potential.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/1099/s1,
Figure S1. SUNTEST solar simulator light wavelength emission spectrum (Manufacturer: Atlas, CPS+/CPS
Instruments Brochure), Figure S2. Transmittance of the polymethylmethacrylate filter used to block UV light,
Figure S3. Pseudo first-order rates of the Bi2WO6 samples during flower-like development (BWO1 and BWO5)
compared with Bi2WO6 nanoparticles (BWO6).
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