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Abstract: The composition of wastewaters collected during one year was evaluated based on the
Shannon information entropy. Eleven physico-chemical parameters, biochemical oxygen demand
(BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), total suspended
solids (TSS), total dissolved salts (TDS), pH, ammonium, phosphate, cyanide and phenol, were
determined for their characterization. Entropy of the parameters calculated by means of their
histograms decreased in the order: phosphate > ammonium > TDS > TN > pH > BOD > COD >
TSS > TP > phenol > cyanide. Entropy weights of the parameters were calculated for the evaluation
of wastewater composition by means of the entropy weighted index (EWI) defined according to
the simple additive weighting (SAW) model. The EWI values were statistically processed by us
to observe temporal wastewater composition changes and were verified by means of the principal
component weighted index (PCWI). The EWI values were statistically analyzed by univariate statistics.
The outlaying samples were also confirmed by multivariate analysis. The entropy-based approach
allowed us to simply evaluate wastewater composition by means of one index instead of several
parameters. The main advantage of EWI is the simple histogram-based calculation of entropy with
no need of the normal distribution of the used parameters.

Keywords: information entropy; entropy weighted index; wastewater; evaluation; composition

1. Introduction

Real waters represent very complex systems containing organic and inorganic compounds,
suspended solids, dissolved gases and different microorganisms. The physico-chemical properties can
be characterized by several physical and chemical parameters and, therefore, the evaluation of water
composition is a multidimensional problem. The parameters are of different magnitudes and scales,
often mutually correlated and non-normally distributed. Some of them, such as chemical oxygen
demand (COD), biochemical oxygen demand (BOD), electrical conductivity, total suspended solids
(TSS) and total dissolved salts (TDS), characterize groups of similar compounds, while the others
provide information about the concentrations (magnitudes) of individual compounds, such as anions
and cations, heavy metals and many types of organic compounds.

The concept of entropy was introduced by R. J. E. Clausius (1822-1888) as a measure of dissipated
and useless heat. With the development of thermodynamics in the 19th century, L. Boltzmann
(1844-1906) defined entropy as a simple function of all possible ordered states W as S = kInW, where
k is the Boltzmann constant, which means that entropy increases with higher disorder of a system.
J. W. Gibbs (1839-1903) substituted the number of possible states with n states with probabilities p;
and derived the relationship S = —kn i pi Inp; which inspired C. E. Shannon’s (1916-2001) concept of

=1

1
information entropy [1,2].
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Unlike a majority of statistical methods based on normal distribution, entropy-based statistics
is applicable to any distribution and even in cases when distributions are a priori unknown
Maruyama, et al. [3]. It has been commonly used in physics [4,5], chemistry [6,7], informatics [8]
and bioinformatics [2,9,10], image processing [11,12], for the evaluation of business organisations [13],
economics and finance processes [14] and company systems performance [15,16]. The concept has
been used also for the analysis of urban ecosystems [17], environmental analysis [3,18-20], medical
records [21-23] and in scientometrics [24,25]. Several papers focusing on river and groundwater quality
assessment have been published as well [26-31]. However, to date no papers have been published on
the topic of wastewaters evaluation.

The aim of this paper was to statistically evaluate raw wastewaters composition based on the
concept of entropy in the information theory. The variance of wastewater parameters was expressed
by entropy, and the changes of wastewater composition were evaluated by the single index composed
of the parameters and their entropy weights. The entropy weighted index (EWI) values were verified
by comparison with the values of principal component weighted index (PCWI) computed based on
robust principal component analysis (RPCA) which was introduced recently [32].

2. Materials and Methods

2.1. Sample Collection and Analysis

The 343 wastewater samples were taken at an inlet of a biological wastewater treatment plant
(BWWTP). The BWWTP was designed for the capacity of 640,000 population equivalents for the
treatment of municipal and industrial wastewaters. Water analyses were performed according to ISO
and EN standard procedures: EN 1899-1: 1998 (BOD), ISO 6060: 1989 (COD), EN ISO 6878: 2004 (total
phosphorus (TP) and phosphate), EN 25663: 1993 (total nitrogen (TN)), EN 872: 1996 (TSS and TDS),
ISO 10523: 2008 (pH), ISO 7150-1: 1984 (ammonium), ISO 6703-1: 1984 (cyanide) and ISO 6439: 1984
(phenol). The summary statistics of all samples is given in Table 1.

Table 1. Summary statistics of wastewater composition.

Param. Mean Median St. Dev. MAD Min. Max. Skew. Kurt.
NH,* 35.5 36.1 10.7 8.90 5.56 68.9 -0.033 3.42
BOD 194 191 70.6 54.9 25.7 625 1.25 8.79
COD 387 381 144 113 80.1 1350 2.14 14.2
Phenol 0.18 0.16 0.14 0.059 0.02 1.57 493 40.1
PO, 5.22 5.13 2.63 3.32 0.526 12.1 0.044 1.97
CN~ 0.174 0.146 0.165 0.0786 0.016 2.03 6.40 63.2
TN 40.0 40.8 9.30 741 13.2 90 0.050 5.52
TSS 280 256 141 94.9 44 1665 3.61 31.0
TP 6.26 6.25 2.54 1.39 1.40 34.7 5.06 52.4
pH 7.74 7.75 0.188 0.178 6.89 8.22 -0.623 5.21
TDS 706 730 129 91.9 276 1088 —0.856 4.32

Note: MAD is median absolute deviation. Except for pH, the units of all parameters were mg/L.

2.2. Entropy Calculation

In general, information entropy H; of each variable x; (the number of variables is 1) describing n
observations can be defined by Shannon’s relationship [1] as

n
H] = —Z pi,]'ll’lpi,j (1)
i=1



Water 2020, 12, 1095 30f10

n
where p; ; is the probability of x; occurrence; it holds: } p;; = 1. The maximal entropy is defined as
i=1
Hjmax = Inn. The probabilities p; ; can be approximated with relative frequencies f;; calculated using

histograms for N intervals as follows

N

Hj=-Y fInfij 2)
i=1

In analogy with the simple additive weighting (SAW) model [33], EWI describing composition of

a water sample i was calculated as
m

o
EWIL; = ijﬂ 3)

=
where y; is the mean of parameter x; calculated from n samples and wj is the entropy weight. It holds:
m .
2. w; = 1. The ratio % compensates the different scales and units of the parameters and can be

j=1
considered as a relative concentration. The entropy weights were calculated as

1 —h]‘

W=y )

Y 1-h

=1
where —
H; 1 —

hj=—"— = _—H. 5
P Hjpyaxy  Inn/ ®)

2.3. Principal Component Analysis

Principal component analysis looks for new latent variables of n samples, which are statistically
independent [34]. Each latent variable—principal component (PC) is a linear combination of p variables
x; and describes a different source of total variation

X=TWI+E (6)

where X(n x m) is the data matrix, T(n x p) and W(m x p) are the matrix of principal components scores
and loadings, respectively, and E(n x m) is the residual matrix representing noise. Classical PCA can
be performed by eigenvalue decomposition of a correlation matrix or singular value decomposition
(SVD) of an original data matrix [35,36]. RPCA was performed by the eigenvalue decomposition of
an estimated correlation matrix with the lowest possible determinant computed using a minimum
covariance determinant (MCD) algorithm [37-39]. It was computed using a subroutine (mcdcov) in
MATLAB (see below).

2.4. Mahalanobis Distance

The Mahalanobis distance of a variable x; can be computed as

MD = \J(x- )" (x—p) %

where i is the mean vector of n variables x;, x is the row vector of variable x; and C is the covariance
matrix. The robust Mahalanobis distance of the variable x; can be computed as

-1
RMD = \/(x—#mTZ(x—uM) ®)
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where x is the row vector of variable x; s is the MCD estimation of location and X is the MCD
estimated covariance matrix. The MCD estimator is considered to be a highly robust estimator of
multivariate location and scatter.

2.5. Statistic Calculations

An original data matrix of wastewater samples was processed in MS Excel. The MCD estimators
were calculated by means of the LIBRA MATLAB Library [40] using MATLAB R2015b (MathWorks,
USA). Statistical calculations were performed using the software packages QC.Expert (TriloByte, Czech
Republic) and XLSTAT 2019 (Addinsoft, Boston, MA, USA). The data smoothing was performed
by a fast Fourier transform (FFT) algorithm in the program OriginPro 9.0.0. (Origin Corporation,
Northampton, MA, USA).

The data were standardized in order to avoid misclassifications arising from different orders of
magnitude of variables. For this purpose, the data were mean (u) centred and scaled by standard

x—pt

deviations (o) as y = —-.

3. Results and Discussion

3.1. Entropy and Entropy Weights of Wastewater Parameters

The raw wastewaters mixed from municipal and industrial ones were characterized by the 11
parameters listed in Table 1. The wastewater data were standardized as mentioned above: the original
parameters x; were scaled and centred to obtain the transformed parameters y; which were further used
by us to approximate their density functions p; ; by relative frequencies f(y; ;) to be used in Equation (2).
Two examples of histograms with the highest (PO,3~) and lowest entropy (CN~) are shown in Figure 1.
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Figure 1. Histograms of phosphate and cyanide.

The entropy values summarized in Table 2 decreased in the sequence PO,%~ > NH,* > TDS >
TN > pH > BOD > COD > TSS > TP > phenol > CN~. Based on explanatory analysis, for example
the P-P plot shown in Figure S1 (Supplementary Materials), the parameters were separated into two
groups: the first group contained the parameters with higher entropy, such as PO,3~, NHy*, TDS, TN,
pH, BOD and COD, and the second one consisted of TSS, TP, phenol and CN~ with lower entropy.
It is obvious that entropy decreased with increasing kurtosis and skewness. The high values of
kurtosis and skewness are typical for the variables, which changed in narrow intervals and existed in
low magnitudes and, thus, their distributions were tailed. This is the case for the parameters in the
second group.
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The parameters of the first group were of higher entropy, that is, higher uncertainty, documented
by the higher median absolute deviation (MAD) values. From a practical point of view, they should
be monitored more frequently than the others by, for instance, the continual determination of pH,
phosphate, ammonium, TN and COD. BOD and COD characterize mostly organic compounds, similar
to TN and ammonium, which is the prevailing nitrogen form mostly resulting from hydrolysis of urea.
Dissolved phosphate also enters wastewaters in the form of urea and detergents [41].

Table 2. Entropy and entropy weights of wastewater parameters.

Parameter Entropy Entropy Weight
PO43- 4.196 0.0282
NH,* 3.999 0.0417

TDS 3.801 0.0554
TN 3.695 0.0628
pH 3.653 0.0656
BOD 3.573 0.0712
COD 3.456 0.0793
TSS 2.647 0.135
TP 2.497 0.1453
Phenol 2.384 0.1531
CN~ 2.250 0.1624

The parameters of the second group were of lower entropy, that is, lower uncertainty. Cyanide
and phenol came from coke-making factories; their contractions were of 0.15-0.16 mg/L. The high
kurtosis of TSS was caused by tailing of its distribution curve due to heterogeneity of wastewaters
including sedimentation of solid particles during physico-chemical analyses.

3.2. Entropy Weighted Index

The calculated entropy weights were used by us to construct the entropy weighted index and
to characterize the wastewater composition. A similar approach has been already used for the
ground water quality assessment [26,27,31]. This is a simple way to describe complex water systems
by one parameter. On the similar principle, for example, soil quality index (SQI) composed from
several soil composition indicators (pH, TN, TP, cation exchange capacity, soil organic matter, etc.)
has been successfully used for soil composition assessment [42,43]. An analogy with the SAW
model, EWI was calculated for every sample i according to Equation (3). The difference 1-h; is
called the relative redundancy and can be interpreted as a degree of diversification of information
provided [15,16,18,25,30,44]. In information theory, the entropy weights represent useful information
on variables (parameters). In other words, the higher the entropy weight, the more useful information
on the parameter and vice versa.

The EWI plot was constructed in order to demonstrate the temporal changes of wastewater
composition during a year as shown in Figure 2. The samples were labeled according to their sequence
of sampling, therefore the plot demonstrates their temporal composition changes. The EWI values
were smoothed by the FFT algorithm by us to clearly see some trends in the data. In the first half of
the year, the EWI values slightly increased during January and February and then oscillated around
the mean (see the next paragraph) until a period between June and August. The minimal EWI value
of 0.610 was reached at the end of July. In this period, people spend their time outside cities and
production in some companies is reduced. In addition, higher temperatures accelerate chemical and
biochemical processes in wastewaters. Conversely, during winter and autumn EWI increased due to
the reduced migration of inhabitants and lower temperatures, which decelerated the chemical and
biochemical processes in wastewaters. The EWI plot was compared with the plot of COD (Figure 3),
which is the simple and typical wastewater parameter. Both plots were found to be similar as expected.
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Figure 2. Entropy weighted index (EWI) plot of wastewaters during year. The labels identify
the samples.
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Figure 3. Chemical oxygen demand (COD) plot of wastewaters during year. The labels identify
the samples.

3.3. Statistical Analysis of EWI Data

The EWI values were statistically processed by exploratory analysis and outlaying samples
corresponding to EWI > 1.65 were identified: samples 38, 164, 272, 290, 302, 323, 324 and 326.
The composition of the outliers is given in Table S1 (Supplementary Materials); the outlaying parameters
detected by box-and-whisker plots were highlighted in bold. All the outliers were confirmed by means
of the robust Mahalanobis distances calculated according to Equation (8). The cut-off limit was set at

\ /%1 0.975= 4.682 for the 97.5% quantile.
The outlaying samples were excluded from the dataset and remaining 335 were tested for

normality which was proved by D’ Agostino, Kolmogorov-Smirnov and moment tests (kurtosis = 3.403,
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skewness = —0.110). The EWI mean and standard deviation were calculated at 0.965 and 0.227,
respectively; the EWI median was 0.972. The lower warning limit (LWL) and upper warning limit
(UWL) were calculated at 0.511 and 1.419, respectively, and the lower control limit (LCL) and upper
control limit (UCL) were calculated at 0.284 and 1.646, respectively (Figure 2). All these limits are
commonly used for the statistical regulation of various processes and can be used for the regulation of
the EWI values.

3.4. Verification of EWI

The principal component weighted index [32] was employed in order to verify the EWI data.
RPCA was applied for this purpose. PCWI was defined as follows

q
PCWI = Z ma ©)
k=1

where uy stands for the weight of k-th principal component calculated as

Ak
q

2 Ax

k=1

uy = (10)

where Ay is the eigenvalue of k-th PC and g is the number of selected principal components.
The objectivity of PCWI is based on the following facts: (i) principal components are orthogonal and
thus independent which is consistent with the SAW theory and (ii) the weights of principal components
correspond to their eigenvalues expressing their importance. When all 11 principal components were
used (g = 11) their weights were equal to their variabilities. The scree and cumulative plots are shown
in Figure 4.
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Figure 4. Cumulative and scree plots of principal components.

The significant linear correlation between EWI and PCWI (r = 0.910) is shown in Figure 5.
It demonstrates a strong agreement between both indexes and confirms the validity of EWI.
The outlaying samples (38, 164, 272, 290, 302, 323, 324 and 326) not included into the regression are
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also clearly visible. In addition, the scree plot indicated four main principal components and PCWI
composed from them also correlated well with EWI: the correlation coefficient » = 0.900.

244

«323

PCwW1

T T X T T T T
0 1 2 3 4
EWI

Figure 5. Linear regression between principal component weighted index (PCWI) and EWL
4. Conclusions

The wastewater composition was evaluated using the Shannon entropy. Entropy of the wastewater
parameters calculated based on their histograms decreased in the order: PO,%~ > NH;* > TDS > TN >
pH > BOD > COD > TSS > TP > phenol > CN™. According to the entropy values the parameters were
separated into two groups: (i) phosphate, ammonium, TDS, TN, pH, BOD and COD and (ii) TSS, TP,
phenol and cyanide. The parameters from the first group should be monitored frequently because of
their higher uncertainty in terms of the higher temporal changes.

The entropy weights were calculated by us to define the entropy weighted index analogous to
the SAW model. The EWI plot showed the temporal changes of wastewater composition during one
year. The EWI values were statistically analyzed by univariate statistics and the limits for statistical
regulation, such as UCL, LCL, UWL and LWL, were calculated. In addition, the outlaying samples
were detected by univariate and multivariate analyses. EWI was verified by comparison with PCWI
composed from the robust principal components. EWI agreed well with PCWI which was documented
with their correlation coefficient » = 0.910 for all principal components and r = 0.900 for four main ones.

The validation confirmed the capability of EWI to reliably characterize wastewater composition as
the single indicator and could be of interest to BWWTP operators as well as other experts and decision
makers in this field. The main advantage of EWI is the simple histogram-based calculation of entropy
with no need of the normal distribution of the used parameters. Based on the results mentioned above
one can conclude that information entropy is suitable for the evaluation of wastewater composition.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/1095/s1,
Figure S1: P-P plot of parameter entropies, Table S1: Composition of identified outlaying samples.
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