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Abstract: In recent years, drought disaster has occurred frequently in China, causing significant
agricultural losses. It is increasingly important to assess the risk of agricultural drought disaster
(ADD) and to develop a targeted risk management approach. In this study, an ADD risk assessment
model was established. First, an improved fuzzy analytic hierarchy process based on an accelerated
genetic algorithm (AGA-FAHP) was used to build an evaluation indicator system. Then, based on the
indicators, the ADD assessment connection numbers were established using the improved connection
number method. Finally, the entropy information diffusion method was used to form an ADD risk
assessment model. The model was applied to the Huaibei Plain in Anhui Province (China), with the
assessment showing that, in the period from 2008 to 2017, the plain was threatened continuously
by ADD, especially during 2011–2013. The risk assessment showed that southern cities of the study
area were nearly twice as likely to be struck by ADD as northern cities. Meanwhile, the eastern
region had a higher frequency of severe and above-grade ADD events (once every 21 years) than
the western region (once every 25.3 years). Therefore, Huainan was identified as a high-risk city
and Huaibei as a low-risk city, with Suzhou and Bengbu more vulnerable to ADD than Fuyang and
Bozhou. Understanding the spatial dynamics of risk in the study area can improve agricultural
system resilience by optimizing planting structures and by enhancing irrigation water efficiency.
This model could be used to provide support for increasing agricultural drought disaster resilience
and risk management efficiency.

Keywords: risk assessment; agricultural drought disaster; connection numbers; entropy information
diffusion method

1. Introduction

At present, drought is a major natural hazard affecting many parts of the world, due to lower
levels of rainfall or changing rainfall patterns. The drought development process is gradual and
the onset is often difficult to identify [1]. If insufficient precipitation levels continue for a long time,
it can result in severe disaster conditions, including a shortage of water sources, deterioration of
the ecological environment, and a major worsening in living conditions for many people. Drought
is a relatively regional issue, because different regions have specific climatic features. China is a
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typical drought-prone country, and, since 1949, drought has accounted for nearly 35% of the annual
agricultural losses among all natural disasters [2]. In the last decade, China has been frequently and
heavily affected by drought disasters [3]. In particular, three large-scale severe droughts struck China
from 2009 to 2010, causing considerable social, economic, and ecological losses [4]. As an important
defense, risk assessment is an effective way to quantitatively recognize the characteristics of drought
disasters. Furthermore, based on the assessment, risk management can be used as a fundamental tool
to formulate disaster countermeasures [5], shifting from reactive to proactive management [6].

Drought is generally classified into four categories: meteorological, hydrological, agricultural, and
socioeconomic drought [7]. Among them, agricultural drought disaster (ADD) refers to the phenomenon
of water deficit in the process of crop growth caused by a lack of water, which ultimately leads to
yield reduction and potentially crop death. ADD has already severely restricted the sustainability of
agricultural development, especially in terms of food supply security [8]. At present, the perspectives
used to assess the risk of ADD include the following: (1) Evaluation models based on the risk index
(Group 1). The risk of agricultural drought disaster can be evaluated using the fuzzy comprehensive
evaluation method [9]. By constructing an indicator system, the impact of inducing factors can
be assessed, such as the disaster risk index (DRI), supported by the United Nations Development
Program (UNDP) and the United Nations Environment Program (UNEP) in 2000, which is suitable
for preliminary and rapid assessment of disaster risk on a large spatial scale [10,11]. Furthermore,
evaluation models are often used to carry out analyses of vulnerability and capacity of a system to
insure against ADD [5,12]. (2) Evaluation models based on the process of agricultural drought loss
(Group 2). These models reflect the mechanism of ADD by implying a regression relationship between
events and the scale of agricultural loss [13]. With the assistance of actual field trials, crop growth
models can be used to obtain the risk of agricultural loss, such as the denitrification–decomposition
(DNDC) model [14], the erosion productivity impact calculator (EPIC) model [15,16], and the Decision
Support System for Agro-Technology transfer (DSSAT) model [17]. (3) Evaluation models based on
agricultural loss frequency analysis (Group 3). These models work on the principle that the statistical
characteristics of agricultural loss can be reproduced and predicted in the future. They rely on future
quantitative forecasts of all kinds of agricultural loss. However, there are some practical problems
when insufficient historical disaster data are available and when there are fewer than 30 samples
included, resulting in outcomes potentially fluctuating greatly [18].

In summary, Group 1 models can reflect the overall risk of agricultural drought on a large scale
with low data requirements. Based on crop growth models, Group 2 models have become an effective
and commonly applied research direction. Group 3 models focus on the theories of probability and
statistics, although long series of data on agricultural losses are often quite difficult to obtain. Therefore,
fuzzy mathematical methods based on information diffusion were introduced to ensure the stability of
the evaluation results in Group 3 models [19,20].

This paper provides an ADD risk assessment model based on the improved connection number
and entropy information diffusion method. We used the fuzzy analytic hierarchy process based on an
accelerated genetic algorithm (AGA-FAHP) to determine the indicators’ weight; based on this, we
built an evaluation indicator system. Then, the grey correlation coefficient was introduced into the set
pair analysis (SPA) method to the obtain connection numbers. In the past, studies often focused on a
single affected area, using an inundated area and a crop failure area under agricultural drought as
the disaster index in Group 3 models [21,22]; however, we used the connection numbers above. SPA
method is a systematic methodology to quantitatively describe the system, proposed by Zhao Keqin
in 1989. The core idea is firstly to construct a pair with two relevant sets, and then to calculate the
corresponding connection numbers in the integrated system. The connection number can express the
proximity between the object and its evaluation criteria. In addition, previous studies were mostly
carried out at the regional level, with less original research performed in small unit areas. This study
was based on empirical research at the city level for the Huaibei Plain in Anhui Province.
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2. Study Area

The Huaibei Plain is in the northern part of Anhui Province, China (from 114◦58′–118◦10′ E to
32◦45′–34◦35′ N), between the Yellow River and the Huai River, as shown in Figure 1. The Huaibei
Plain is an important part of the North China Plain, with a total land area of 37,400 km2. The study
area comprises the cities of Suzhou, Huaibei, Bozhou, Fuyang, Bengbu, and Huainan.
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Figure 1. Schematic map of the geographical location and composition of the study area.

The Huaibei Plain is within a warm, temperate, semi-humid monsoon climate zone. The annual
average temperature is about 15 ◦C, and the annual average precipitation is about 890 mm. Controlled
by the upper northwest circulation and the subtropical high in the Pacific Ocean, the annual distribution
of precipitation in this region is uneven, with frequent droughts and floods. In terms of the multiyear
average, the water resources per capita amount to 530 m3 in the study area, accounting for only half of
the average level in the province and a quarter of that in China. Corresponding to the relatively scarce
water resources, the total value of agricultural production in all six cities in the study area reached
1158.7 billion Chinese yuan (170 billion USD), while the total population working in agriculture in
the study area reached about 25 million in 2017 [23–25]. These two agricultural indicators account for
about half of the total in Anhui Province, suggesting that the study area is an important region for
agricultural production in the province. In addition, according to the available statistics, the central
disaster region of agricultural drought in the province is in the Huai River Basin within the study
area [23–25].

3. Methodology

The risk assessment model was divided into three parts:
1. The ADD evaluation indicator system was built, with the fuzzy analytic hierarchy process

based on an accelerated genetic algorithm (AGA-FAHP) method used to determine the weight of each
subsystem and indicator.

2. The grey correlation method was used to improve the difference coefficient calculation, which is
the foundation for establishing connection numbers. The connection numbers were used to represent
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the agricultural drought disaster index (ADDI), with the spatial and temporal distribution of ADD
assessed using the ADDI.

3. The entropy information diffusion method was used to determine the information diffusion
coefficient, based on the principle of maximum entropy. Therefore, the risk assessment results could be
obtained by estimating the probability distribution of the ADDI.

3.1. Development of an Evaluation Indicator System

The evaluation indicator system was divided into four subsystems: the disaster breeding
environment, disaster factors, the disaster affected body, and disaster prevention and mitigation
measures. These subsystems were further separated into 14 indicators, as shown in Figure 2.
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Using statistical materials [24,25] and information from the National Meteorological Information
Center, the Water and Drought Information Network of Anhui Province, and the Meteorological
Information Sharing System in the Huai River Basin, the following statistics were collected for each
city in the Huaibei Plain, covering the period 2008–2017:

• The disaster breeding environment, including precipitation, evaporation, and amount of water
resources. It is the average value from the year in question to 10 years prior.

• The disaster factors, including annual average temperature and shallow groundwater depth.
The 12-month Standardized Precipitation Index (SPI) was calculated using monthly rainfall data
from 1983 to 2017 provided by the six national weather stations located in the six cities.

• The disaster affected body, including the area of grain planting, cultivated land, dry land,
and drought-affected land, along with the value of agricultural production, agricultural water
consumption, and total grain output.

• Disaster prevention and mitigation measures, including the area of effective irrigated land, per
capita disposable income of rural households, and water supply capacity for drought-resistant
water sources.

3.2. Evaluation Method

3.2.1. Determination of the Weight of the Agricultural Drought Evaluation Indicators

For the subsystem of the evaluation indicator system of ADD, experts were asked to rank the
importance of each indicator {x(k, j)|k = 1, 2, 3, 4; j = 1, 2, . . . , nk} (where nk is the number of indicators
in subsystem k), adding the importance ranking value to a questionnaire. Smaller ranking values
indicate greater importance of the indicator.

Using Equation (1), an average of all experts’ rankings of the importance y(k, j) of indicator j in the
subsystem was obtained:

y(k, j) =

∑ne
e=1 ye(k, j)

ne
(1)

where ye(k, j) denotes the importance ranking value of one expert for indicator j in subsystem k (e = 1,
2, . . . , ne) and ne is the total number of experts. The fuzzy complementary judgment matrix Ak was
obtained using Equation (2) [26]:

Ak = a(k, j, l), a(k, j, l) = y(k, l)/(y(k, l) + y(k, j)) (2)

where k = 1, 2, 3, 4; j = 1, 2, . . . , nk; and l = 1, 2, . . . , nk; a(k, j, l) indicate the relative importance of
indicator j and indicator l in subsystem k. The fuzzy complementary judgment matrix Ak met the
conditions 0 ≤ a(k, j, l) ≤ 1, a(k, j, l) + a(k, l, j) = 1, and a(k, j, l) = 0.5, meaning that indicator j was as
important as indicator l; and a(k, j, l) > 0.5, meaning that indicator j was more important than indicator l.

The improved fuzzy analytic hierarchy process based on an accelerated genetic algorithm
(AGA-FAHP) method was used to simultaneously correct the consistency of Ak and to calculate the
subjective weight of each indicator {ws(k, j)|k = 1, 2, 3, 4; j = 1, 2, . . . , nk}. If Ak met the following
condition in Equation (3), it was referred to as the fuzzy consistency judgment matrix [23]:

(a(k, j, m) − 0.5) − (a(k, m, l) − 0.5) = (a(k, j, l) − 0.5) (3)

where m = 1, 2, . . . , nk. If Ak was completely consistent:

nk∑
j=1

nk∑
l=1

∣∣∣0.5(nk − 1)[ws(k, j) −ws(k, l)] + 0.5− a(k, j, l)
∣∣∣/n2

k = 0 (4)
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where the term to left of the equal sign is the consistency index of Ak [27,28]. If this value was not
greater than a certain threshold, then Ak was said to have satisfactory consistency, and, when Ak did
not have satisfactory consistency, a further matrix correction was required.

As shown in Equation (5), Bk refers to the correction matrix of Ak, and, for simplicity, the weights
of Bk were still recorded as {ws(k, j)|k = 1, 2, . . . , 5; j = 1, 2, . . . , nk}, resulting in the minimum fuzzy Bk

being called the optimal fuzzy consistency judgment matrix of Ak [29]:

minCIC(nk) =

∑nk
j=1

∑nk
l=1|b(k, j,l)−a(k, j,l)|

n2
k

+
nk∑

j=1

nk∑
l=1

∣∣∣0.5(nk − 1)[ws(k, j) −ws(k, l)] + 0.5− b(k, j, l)
∣∣∣/n2

k = 0

s.t.


b(k, j, j) = 0.5
nk∑

j=1
ws(k, j) = 1

1− b(k, j, l) = b(k, l, j) ∈ [a(k, j, l) − d, a(k, j, l) + d] ∩ [0, 1]

(5)

where d is a nonnegative parameter, which can be selected from 0 to 0.5, as required [28]. CIC(nk) is the
consistency index coefficient, with smaller CIC(nk) values indicating a higher degree of consistency.
Numerous calculation experiments have been reported [23,26,29], with data indicating that, when the
CIC(nk) value is less than 0.2, Ak can be considered to have satisfactory consistency with an acceptable
sort weight. Otherwise, it is necessary to adjust parameter d until Ak exhibits satisfactory consistency.

3.2.2. Assessment of Agricultural Drought Disaster

According to SPA theory, for given sets A and B, it is assumed that there are S features in which
two sets are shared, with P features being opposite and F features being uncertain. From this, the
connection number between A and B was established, as shown in Equation (6):

µA-B = S/m + (F/m) × I + (P/m) × J (6)

with S/m = a, F/m, and P/m = c, resulting in Equation (7), where the basic expression of connection
numbers is established, as follows [30]:

µ = a + bI + cJ (7)

where I is the discrepant coefficient and J is the opposite coefficient, which is generally equal to
−1. This theory was applied to the assessment of ADD, generating the connection number between
assessment samples and grades in a certain region, as shown by Equation (8):

ur(i, g)=ar(i, g) + br(i, g)I + cr(i, g)J (8)

where ur(i, g) represents the connection numbers between the assessment samples and grades; i is the
year (i = 1, 2, . . . , N); g is the grade (g = 1, 2, . . . , G); and G = 5 in this study. In addition, smaller g
values indicate a smaller degree of ADD; ar(i, g), br(i, g), and cr(i, g) are the connection components;
ar(i, g) represents the identity of assessment samples and grade g in year i; br(i, g) represents the
discrepancy; and cr(i, g) represents the opposition. Then each connection component can be calculated
by Equation (9):
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ar(i, g) = wr(i, g)br(i, g) =



wr(i, 2), g = 1
wr(i, 1) + wr(i, 3), g = 2
wr(i, 2) + wr(i, 4), g = 3
wr(i, 3) + wr(i, 5), g = 4
wr(i, 4), g = 5

cr(i, g)

=



wr(i, 3) + wr(i, 4) + wr(i, 5), g = 1
wr(i, 4) + wr(i, 5), g = 2
wr(i, 1) + wr(i, 5), g = 3
wr(i, 1) + wr(i, 2), g = 4
wr(i, 1) + wr(i, 2) + wr(i, 3), g = 5

(9)

where wr(i, g) represents the sum of indicator weights within grade g in year i. ξba(i, g) is the
grey correlation coefficient of br(i, g) and ar(i, g), with the calculation performed according to
Equation (10) [31]:

ξba(i, g) =
∆min + ξ∆max

∆ba(i, g) + ξ∆max
(10)

where ξ(0 < ξ< 1) is the resolution coefficient and ξ= 0.5 [32,33]; ∆ba(i, g) = |br(i, g) – ar(i, g)|, ∆ba(i, g) is the
absolute value of difference; ∆min = min

i
min

g

∣∣∣br(i, g) − ar(i, g)
∣∣∣; and ∆max = max

i
max

g

∣∣∣br(i, g) − ar(i, g)
∣∣∣.

This resulted in the correlation between br(i, g) and ar(i, g) being defined as shown in Equation (11):

rba =
1
N
×

1
G

i=N,g=G∑
i=1,g=1

ξba(i, g) (11)

where rba is the average value of all grey correlation coefficients. Similarly, rbc can be calculated
by Equations (10) and (11). Here, the difference coefficient I in Equation (8) was calculated using
Equation (12) as follows:

I =
rba

rba + rbc
−

rbc
rba + rbc

(12)

Equation (12) divides the difference coefficient into two parts. When the difference coefficient is
determined by comparing the size of rba and rbc (if rba > rbc, then I = rba; if rba < rbc, then I = −rbc), it has
the limitation of losing important information when rba and rbc are close. We allocated the difference
coefficient according to their association, which ensured better utilization of the information.

By using the grade eigenvalue method [34] and establishing the connection numbers between
assessment samples and grades ur(i, g), the connection numbers for agricultural drought disaster
assessment CN (r, i) can be obtained as shown by Equation (13):

CN (r, i) =
G∑

g=1

u ∗r (i, g) × g∑G
g=1 u ∗r (i, g)

(13)

where u*r (i, g) = 0.5 + 0.5 × ur(i, g). CN (r, i) was divided into four grades, as shown in Table 1.
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Table 1. Grades of evaluation parameters for agricultural drought disaster assessment.

Evaluation
Indicator

Connection
Numbers

Agricultural Drought
Disaster Index Agricultural Drought Disaster

g CN (r, i) si

1 [0, 2.5] [0, 0.5] No drought
2 (2.5, 3] (0.5, 0.6] Grade I (mild drought)
3 (3, 3.5] (0.6, 0.7] Grade II (moderate drought)
4 (3.5, 4] (0.7, 0.8] Grade III (severe drought)
5 [4, 5] [0.8, 1] Grade IV (extremely severe drought)

3.2.3. Risk Assessment of Agricultural Drought Disaster

The information diffusion method is a fuzzy mathematical method that compensates for a lack
of information, with normal distribution being one of the simplest models in this theory [18]. When
supposing that the set of agricultural drought disaster indices is S = {si|i = 1, 2, . . . , N}, the set of
risk assessment domains is U = {um|m = 1, 2, . . . , n}. um is the discrete real value obtained by the
dispersion in the interval [0, 1]. Therefore, S can spread the carried information to all points in U and
the corresponding expression is shown in Equation (14) [18,21]:

fr(i, um) =
1

h
√

2π
× exp

− (si − um)
2

2h2

 (14)

where si is transformed into interval [0,1] by si = 0.2 × CN (r, i) and h is the information diffusion
coefficient, which is generally determined empirically. Hence, in this study it was determined by the
principle of maximum entropy, as shown in Equation (15):

H(x) = −
∫ +∞

−∞
p(x) ln p(x)dx

s.t.
∫ +∞

−∞
p(x)dx = 1,

∫ +∞

−∞
xp(x)dx = µ,

∫ +∞

−∞
(x− µ)2p(x)dx = σ2

(15)

Substituting Lagrange multipliers α, β, and γ into the above equation, L(p,α, β,γ) =

−

∫ +∞

−∞
p(x) ln p(x)dx + α(

∫ +∞

−∞
p(x)dx− 1) + β(

∫ +∞

−∞
xp(x)dx− µ) + γ(

∫ +∞

−∞
(x− µ)2p(x)dx − σ2 and

∂L
∂p = − ∂

∂p

∫ +∞

−∞
p(x) ln p(x) − αp(x) − βxp(x) − γ(x− µ)2p(x)dx = 0. The first part is a general function

of p(x) and x, considered as ∂
∂p

[
p(x) ln p(x) − αp(x) − βxp(x) − γ(x− µ)2p(x)

]
= 0. This results in

p(x) = Ceβ(x−µ+
α
2β )

2
, where C (C > 0) is a constant. Since p(x) is integrable on the domain and symmetric

about the axis of the line x = µ− α
2β , it can be established that α = 0.

According to the constraint shown in Equation (15), p(x) can be established as shown in
Equation (16) [35]:

p(x) =
1

σ
√

2π
exp

− (x− µ)2σ2

2 (16)

However, sinceµ= 0 in this study, the maximum entropy was established as shown in Equation (17):

H(x) =
∫ +∞

−∞
p(x) ln p(x)dx =

∫ +∞

−∞

1
σ
√

2π
e−

x2

2σ2 ln( 1
σ
√

2π
e−

x2

2σ2 )dx

= ln(σ
√

2π) ×
∫ +∞

−∞

1
σ
√

2π
e−

x2

2σ2 dx + 1
2σ2

∫ +∞

−∞

x2

σ
√

2π
e−

x2

2σ2 dx

= ln(σ
√

2π) + 1
2 = ln(σ

√
2πe)

(17)
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Substituting Equation (17) into the equation H(x) = ln(N), it can be established that σ = N/
√

2πe.
Therefore, the information diffusion coefficient can be calculated as shown in Equation (18) [36]:

h =

 σ(b−a)
N−1 , N > 11
σ(b− a), N ≤ 11

(18)

where a and b are the maximum and minimum values of the samples in the period, respectively.
Substituting Equation (18) into Equation (14), the agricultural drought index sample fr(si, um) is
established. The membership function of the corresponding fuzzy subset is established as shown in
Equation (19) [18,35]:

fr′(si, um) =
fr(si, um)∑n

m=1 fr(si, um)
(19)

When f ′′r (si, um) =
∑N

i=1 f ′r (si, um), the probability of agricultural drought disaster assessment
samples falling at um is established, as shown in Equation (20) [18,35]:

pr(um) =
f ′′r (si, um)∑n

m=1 f ′′r (si, um)
(20)

The probability value of transcending um can be established using Equation (21), to obtain a better
risk assessment result for agricultural drought disaster [18,35]:

Pr(um) =
m∑

k=1

pr(uk) (21)

4. Results

4.1. Weight Analysis of Evaluation Indicators of ADD of the Huaibei Plain in Anhui Province

Twenty experts were invited to estimate the relative importance of the four subsystems and
each indicator based on agricultural development and the actual agricultural droughts that occurred
in this region in past years, as shown in Figure 2. The experts were composed of the scholars from
universities and scientific research institutes in the field of water resources management and drought
prevention and control, as well as government staff in the department of water administration. The five
fuzzy complementary judgment matrices were established by combining Equations (1) and (2) to give
the following:

A =


0.50 0.75 0.75 0.60
0.25 0.50 0.50 0.33
0.25 0.50 0.50 0.33
0.40 0.67 0.67 0.50


A1 =


0.50 0.33 0.33
0.67 0.50 0.50
0.67 0.50 0.50

 A2 =


0.50 0.50 0.33
0.50 0.50 0.33
0.67 0.67 0.50



A3 =


0.50 0.50 0.43 0.60 0.75
0.50 0.50 0.43 0.60 0.75
0.57 0.57 0.50 0.67 0.80
0.40 0.40 0.33 0.50 0.67
0.25 0.25 0.20 0.33 0.50


A4 =


0.50 0.33 0.25
0.67 0.50 0.40
0.75 0.60 0.50
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The element values of the fuzzy complementary judgment matrices above were substituted into
Equation (4) as initial values. The weight of each subsystem and its indicators could be obtained as
shown in Figure 3. The consistency coefficients of each matrix are 0.004, 0.0035, 0.0014, 0.0109, and
0.0039, respectively, which meets the condition that the coefficient must be less than 0.2.

Based on the judgment of experts, the weight of the disaster factors subsystem was established as
0.31, which is equal to that of the disaster affected body subsystem. The weight of the disaster prevention
and mitigation measures subsystem is 0.23, and the weight of the disaster breeding environment
subsystem is 0.15. As shown in Figure 3a, X1 is the most important indicator in the subsystem, with
annual rainfall being an objective reflection of regional climate characteristics, which can be taken as
an important natural background for the formation and development of ADD. In Figure 3b, X4 and X5
can be identified as important indicators in the subsystem. The decrease in rainfall and the increase in
temperature in the region can significantly affect the intensity of ADD and the expansion of agricultural
drought loss. As shown in Figure 3c, X10 and X11 are important indicators reflecting the level of
agricultural production in a region. Agriculture systems are more likely to be affected by drought
when they depend on a large amount of water for effective production. X11 reveals the influence
on crop growth by identifying the area reduced by more than 10% compared with to normal yields.
As shown in Figure 3d, X12 refers to the area that can be normally irrigated under the conditions of
certain water sources and irrigation facilities, which is an important guarantee for food security and
agricultural drought resilience.Water 2020, 12, x FOR PEER REVIEW 10 of 19 
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Figure 3. The four subsystems and each indicator in them for the indicator evaluation system of Huaibei
Plain in Anhui Province: (a) disaster breeding environment subsystem; (b) disaster factors subsystem;
(c) disaster-affected body subsystem; and (d) disaster prevention and mitigation measures subsystem.

4.2. Assessment of Agricultural Drought Disaster of the Huaibei Plain

According to the evaluation indicator system for ADD, as shown in Figure 2, the grey correlation
coefficients ξba(i, g) and ξbc(i, g) were obtained by applying the evaluation criteria and the weights
of the indicators shown in Figure 3 to Equations (9) and (10). The evaluation indicator criteria were
divided by the collected indicator values. Then, using Equations (8), (11), and (12), the connection
numbers between the assessment samples and grades ur(i, g) for the Huaibei Plain from 2008 to 2017
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were obtained. The normalized connection numbers u*r(i, g) were calculated and their annual averages
are shown in Table 2.

Table 2. Average annual values of the normalized connection numbers u*r(i, g) for Huaibei Plain from
2008 to 2017.

Huaibei Bozhou Suzhou Bengbu Fuyang Huainan

u*r(i, 1) 0.317 0.186 0.146 0.156 0.189 0.069
u*r(i, 2) 0.306 0.253 0.223 0.234 0.234 0.200
u*r(i, 3) 0.183 0.236 0.269 0.263 0.226 0.323
u*r(i, 4) 0.125 0.202 0.248 0.234 0.227 0.224
u*r(i, 5) 0.069 0.123 0.113 0.114 0.125 0.184

As shown in Table 2, larger values indicate a stronger connection between the agricultural drought
degree and grade g (Table 1) in the corresponding u*r(i, g). The smaller is the value of g, the smaller
is the degree of agricultural drought disaster; therefore, as shown in Table 2, the highest value in
Huaibei was 0.317 and the connection with g = 1 (no drought). For the other cities, the biggest numbers
were those with g = 2 (mild drought) and g = 3 (moderate drought) in their corresponding u*r(i, g).
These findings illustrate that through the comprehensive analysis of a 10-year dataset, except for
Huaibei, the remaining five cities of the Huaibei Plain generally experienced mild to moderate degrees
of agricultural drought disaster from 2008 to 2017.

To further assess the ADD status of the Huaibei Plain, the connection numbers CN (r, i) from 2008
to 2017 were obtained, as shown in Figure 4.

As shown in Table 2 and Figure 4, from the perspective of spatial distribution, in the period from
2008 to 2017, the chance of ADD in the southern regions, represented by Fuyang, Huainan, and Bengbu,
was obviously more than in the northern regions, represented by Bozhou and Huaibei. Furthermore,
the connection numbers in the southern plain were commonly larger than in the north, indicating that
the ADD in the southern region was more serious than in the north. In particular, in 2013, it can be
clearly seen that a moderate degree of ADD occurred in Fuyang, Huainan, and Bengbu, while the
northern region experienced a higher degree of ADD than in previous years, with a lighter ADD status
than in the south.

From a temporal perspective, in the period from 2008 to 2017, there were widespread ADD events
in the six cities across the Huaibei Plain. The period was roughly divided into three subperiods:
(1) From 2008 to 2010. In 2008, the connection numbers of the six cities were relatively small, while,
in the following two years, the numbers increased continually and the scope expanded. In 2010,
a moderate degree of ADD gradually spread to the whole southern region. (2) From 2011 to 2013.
During this stage, ADD was more serious than in the previous period. Although the status in 2011 was
somewhat reduced compared to 2010, the occurrence of ADD in the following two years increased
rapidly in the southern region. In 2013, Huainan exhibited a severe degree of ADD. (3) From 2014 to
2017. During this stage, the status in the region was alleviated compared to the previous period and
the degree of ADD in each city of the Huaibei Plain was mainly mild from 2014 onward.
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4.3. Risk Assessment of Agricultural Drought Disaster for the Huaibei Plain

Based on the comprehensive assessment of ADD using the CN (r, i) of the Huaibei Plain, the risk
of ADD in the region was assessed. Applying the set of risk assessment domains as U = {um|um = 0.1,
0.15, 0.2, 0.25, ..., 1} and substituting Equation (18) into Equation (14), the agricultural drought index
fr(si, um) values for each city in the plain were obtained.

To visually analyze the spatial distribution and time characteristics of risk across the plain, the
probability values pr(um) of the agricultural drought disaster index si fell at um, as calculated by
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Equations (19) and (20). The transcending probability Pr(um) at um was obtained using Equation (21).
It was found that the ADDI of each city was reduced, generally in the interval of um∈[0.5, 0.7], and
therefore the probability value pr(um) was refined in the modified interval and the corresponding
transcending probability was established. The inverse of transcending probability is the year return,
and the year returns of si at different um values are shown in Table 3.

Table 3. Year returns of agricultural drought disaster index (ADDI) (si) at different values of um.

si City
um

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

Year
return

Huaibei 2.8a 2.9a 2.9a 3.2a 4.0a 5.2a 6.4a 8.1a 14.4a 18.5a 30.4a
Bozhou 1.8a 1.8a 1.9a 2.1a 2.3a 2.5a 3.4a 6.2a 12.4a 14.7a 25.8a
Suzhou 1.2a 1.3a 1.5a 1.7a 1.9a 2.3a 2.9a 5.1a 11.0a 13.0a 21.3a
Bengbu 1.2a 1.2a 1.4a 1.5a 1.6a 1.9a 2.7a 4.2a 8.2a 11.0a 20.7a
Fuyang 1.4a 1.5a 1.7a 1.9a 2.1a 2.7a 3.6a 6.2a 12.8a 14.5a 24.8a

Huainan 1.1a 1.1a 1.1a 1.2a 1.3a 1.5a 1.8a 2.2a 3.8a 5.0a 9.8a
Average 1.6a 1.6a 1.8a 1.9a 2.2a 2.7a 3.5a 5.3a 10.3a 12.8a 22.1a

According to the data presented in Table 3, the average frequency of ADDI at um ≥ 0.5 in the Huaibei
Plain was once every 1.6 years, while the frequency at um ≥ 0.7 was once every 22.1 years. This result
clearly shows that the impact of ADD, in terms of both frequency and extent, was large. Therefore, ADD
was one of the most important natural disasters affecting the Huaibei Plain, highlighting that ADD
prevention and control measures are important considerations in natural disaster risk management in
the future. The transcending probability Pr(um) values across the whole interval are shown in Figure 5.
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Risk refers to the possibility of future adverse events and the losses caused as a result [37].
As shown in Figure 5, the whole interval was divided into three parts: um ∈ [0,0.5], um ∈ (0.5,0.7],
and um ∈ (0.7,1]. The transcending probability Pr(um) of si falls in these three intervals, indicating the
different probabilities of ADD occurring to different degrees.

Figure 5a shows that the transcending probability value of si falls in the range of um ∈ [0,0.5],
indicating that the risk of ADD events occurring is not high in each city. Figure 5a shows that most
areas except Huaibei are light green, which indicates that the area faces a high risk of ADD. Combined
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with Table 3, these findings show that the frequency of ADD at um > 0.5 is once every 2.8 years in
Huaibei, with the possibility of ADD events every 2–3 years, representing the lowest ADD risk of all of
the cities assessed. The average frequency for the southern four cities is once every 1.2 years, which is
more frequent than the 2.3 years in Huaibei and Bozhou in the north. In the present study, the southern
region was found to be nearly twice as likely to be struck by ADD as the northern region.

Figure 5b shows that the transcending probability value of si falls in the range of um ∈ (0.5, 0.7],
indicating mild and moderate degrees of ADD risk in each city. The probability that Suzhou and
Bengbu in the eastern region will experience ADD is higher than that of Fuyang and Bozhou in the
western region. Combined with Table 3, the average frequency of ADD at um > 0.6 for Fuyang and
Bozhou is once every 2.6 years and at um > 0.7 is once every 25.3 years. In contrast, the frequency
of ADD at um > 0.6 for Suzhou and Bengbu is once every 2.1 years and at um > 0.7 is once every 21
years. Based on these findings, the risk of ADD events in Suzhou and Bengbu is higher than in Fuyang
and Bozhou.

Figure 5c shows that the transcending probability value of si falls in the range of um ∈ (0.7, 1],
indicating the chances of severe ADD in each city. Most parts of the map are light red, indicating lower
risk. Combined with Table 3, it can be seen that the probability of severe ADD occurring across the
whole Huaibei Plain is relatively small, with an average frequency of 22.3 years. Except for Huainan,
which is once every 11 years in the south, the average frequency of ADD at um > 0.7 is once every
25 years. Therefore, it is considered that Huainan represents the city at highest risk for ADD on the
Huaibei Plain in Anhui Province.

5. Discussion

In theory, the drought disaster system is a complex system formed by the interactions of four
factors: the disaster breeding environment, disaster factors, the disaster affected body, and disaster
prevention and mitigation measures [38]. As a kind of drought disaster, ADD involves the impact
of meteorological drought on agriculture [7,39]. The occurrence and severity of ADD depends on
the variation of natural factors and the ability of agricultural systems to withstand these changes.
The main differences between ADD and other types of drought include aspects of the disaster affected
body, as well as the disaster prevention and mitigation measures. The disaster affected body of ADD
basically refers to regional agricultural production, as well as to the most direct and far-reaching parts
of human society affected by drought. The weights of the four different subsystems in Figure 3 show
that the disaster factors and the disaster affected body may be the key factors affecting the spatial and
temporal distribution of ADD.

In addition, the disaster prevention and mitigation measures of ADD mainly include economic
and social conditions, drought emergence condition, water-saving facilities, and field management.
As the most directly affected, rural households are the most important part of the social and economic
conditions. Likewise, water supply capacity of drought-resistant water resource is a quantitative index
reflecting the efficiency of water resource management. However, when faced with severe drought, the
ability of these measures to function effectively would be limited by objective conditions. Therefore,
the importance of the disaster prevention and mitigation measures subsystems is slightly less than that
of the former two subsystems. In large-scale research, the disaster breeding environment is crucial due
to the obvious differences in meteorological environment, geographical conditions, and management
policies across the region. However, in small units such as the present study area, the differences
between components are not obvious, thus the importance of this subsystem is relatively weak.

Based on the comprehensive assessment in Section 3.2, due to the influence of natural and social
factors, a mild to moderate degree of ADD occurred frequently across the Huaibei Plain from 2008 to
2017, with the status being relatively serious in 2013. Since 2014, the impact of ADD in the various cities
has reduced. The SPI is a standardized index comparing precipitation over a period of time with the
same period in the location’s history. It is often used to monitor the severity of drought. We calculated
the 12-month SPI of each city using the monthly rainfall history data from 1983 to 2017, obtaining the
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average value in the cities across the Huaibei Plain from 2008 to 2017 (Figure 6). Figure 6 shows that
the number of negative SPI values increased from 2009, and only slightly improved until 2015, which
shows that the rainfall in the whole Huaibei Plain was less in this period. In particular, from 2011 to
2013, the SPI value fluctuated from −0.5 to −1, indicating that the drought was more serious, which is
consistent with the comprehensive evaluation results.Water 2020, 12, x FOR PEER REVIEW 15 of 19 
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Figure 6. The average value in cities of 12-month Standardized Precipitation Index (SPI) across the
Huaibei Plain from 2008 to 2017.

Figure 7 shows that drought-affected areas make up a large part of the cultivated land area,
indicating different degrees of ADD occurring in cities across the Huaibei Plain from 2008 to 2017.
Combined with the average percentage every year, the results show the relatively largest affected area
across the observed period was in 2013, accounting for nearly 35%, while the affected area has decreased
since 2014 [24,25]. This finding is consistent with the results of the comprehensive evaluation presented
in Section 3.2. According to statistics, there was a rare weather system with high temperatures and
low rainfall in southern China in 2013, which lasted for a long duration. The extreme maximum
temperature, average temperature, and number of continuous rain-free days on the Huaibei Plain
exceeded the averages in previous records for the same period, resulting in the frequent occurrence of
ADD in the study area, especially in the summer.
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Figure 7. Percentage of drought-affected areas in the cities across the Huaibei Plain from 2008 to 2017.

Based on the risk assessment results of ADD, the cities of the Huaibei Plain, ranked from high to
low risk, are: Huainan > Bengbu >Suzhou > Fuyang > Bozhou > Huaibei. The data [24,25] show that
the annual temperatures in the southern region are generally higher, especially in Huainan, which
is 1.5–2 ◦C warmer than the other cities (Figure 8a). At the same time, Huainan and Bengbu have a
relatively small percentage of dry fields, with the farmland generally being paddy fields, resulting in
highly vulnerable agricultural systems (Figure 8b). Furthermore, the water consumption per kilogram
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of grain production in Huainan, Bengbu, and Fuyang is about 0.3 m3/kg, while in Huaibei and Bozhou
it is about 0.15 m3/kg (Figure 8c). This shows that agricultural production in Huaibei and Bozhou
has more effective utilization of irrigation water and is less likely to be affected by water shortages.
Expect for Huainan and Huaibei, the rate of effective irrigation area of other cities is relatively small
(Figure 8d), indicating that the rural water conservancy infrastructure in this area needs to be improved
urgently, and the comprehensive agricultural production capacity needs to be improved.Water 2020, 12, x FOR PEER REVIEW 16 of 19 
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Therefore, we suggest that high-risk cities such as Huainan and Bengbu in the study area could
improve the resilience of their agricultural systems in the future by optimizing planting structures and
enhancing irrigation water efficiency. Increasing drought-tolerant and high-yield crops can realize
an increase in production and efficiency. In addition, constructing agricultural water conservancy
facilities and providing guidance for farmers on how to apply scientific technology to expand effective
irrigation areas would be effective methods to reduce the risk of ADD.

6. Conclusions

In this study, a comprehensive agricultural drought disaster index was constructed using
the improved connection number method, which not only reflects the loss factor, such as the
drought-affected area, but also represents the coincidence of natural and social factors, both temporally
and spatially. This was found to be a reasonable and effective method, able to describe the development
of ADD accurately. The risk assessment based on entropy information diffusion theory shows the
probability of ADD occurring to different degrees. This method conforms to the basic laws of natural
disaster risk analysis and provides a scientific basis for proposing targeted risk control recommendations
specific to local conditions. The application results for the Huaibei Plain in Anhui Province indicate
the following:

1. Using weight analysis, the disaster factors and the disaster affected body were found to be key
elements of the agricultural drought disaster system in small units such as the Huaibei Plain. It
was also found that the average annual precipitation from the year in question to 10 years prior
(X1), 12-month SPI (X4), the annual average temperature (X5), water consumption per kilogram of
grain production (X10), percentage of drought-affected area (X11), and rate of effective irrigation
area (X12) are more important than other indicators in their corresponding subsystems.

2. Based on a comprehensive analysis of the connection numbers CN (r, i) for the Huaibei Plain from
2008 to 2017, five cities (except Huaibei) had a mild to moderate degree of ADD in the period
assessed. The conditions during 2011–2013 were relatively serious, especially in 2013. The chance
of ADD in the southern area, represented by Fuyang, Huainan, and Bengbu, was greater than
in the northern area, represented by Bozhou and Huaibei. Furthermore, ADD in the southern
region was more serious than in the north.

3. The frequency of ADD for each city is mainly once every 1–3 years, and, with an increased
agricultural drought disaster index value, the frequency is significantly reduced. The frequency
of severe and above-grade ADD is once every 10–30 years. The risk of ADD for the Huaibei
Plain is characterized by frequent, mainly mild to moderate risk, making prevention and control
measures key for effective risk management of natural disasters in the future.

4. The southern region of the study area was found to be nearly twice as likely to be struck by
ADD as the northern region. Meanwhile, the eastern region has a higher frequency of severe
and above-grade events than the western region. The frequency of ADD is once every 2.8 years
for Huaibei, which is lower than the average value of the southern four cities. Huainan, in
contrast, has a frequency of severe and above-grade ADD of once every 11 years. Based on the
risk assessment results above, the cities of the Huaibei Plain were ranked from high to low risk as:
Huainan > Bengbu > Suzhou > Fuyang > Bozhou > Huaibei.

5. In this study, some suggestions were proposed for ADD prevention and mitigation based on the
analysis of risk assessment results and the background of disaster formation. It is necessary for
high-risk cities in the study area, such as Huainan and Bengbu, to improve the resilience of their
agricultural systems in the future by optimizing planting structures and enhancing irrigation
water efficiency. These results confirm overall that the proposed method is feasible and effective
and that the results are reasonable.
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