Supporting materials

Spatiotemporal dynamics of nitrogen transport in the Qiandao Lake Basin, a large hilly monsoon basin of southeastern China

Dongqiang Chen ^{1, 2}, Hengpeng Li ^{2, *}, Wangshou Zhang ², Steven G. Pueppke ^{3, 4}, Jiaping Pang ², Yaqin Diao ^{1, 2}

¹ University of Chinese Academy of Sciences, Beijing 100049, China

- ² Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; dqchen@niglas.ac.cn
- ³ Center for Global Change and Earth Observations, Michigan State University, 1405 South Harrison Road, East Lansing, MI 48823, USA; pueppke@msu.edu
- ⁴ Asia Hub, Nanjing Agricultural University, Nanjing 210095, China
- * Correspondence: hpli@niglas.ac.cn; Tel.: +86 025-87714759

Figure S1. Land use classes used for SWAT analysis of the Qiandao Lake basin.

Figure S2. The soil types map of the Qiandao Lake basin that was generated for use in SWAT analysis.

Figure S3. Temporal and spatial heterogeneity of precipitation as recorded by individual rainfall stations (dots) compared to that recorded at two meteorological stations (dashed lines). Stations in Anhui Province are in red, and those in Zhejiang Province are in blue. The locations of the stations are given in Figure 1. (A) Interannual rainfall heterogeneity. (B) Monthly rainfall heterogeneity.

Table S1. Fertilization and other agricultural management operations

Operation		Heat unit (HU) scheduling			Date scheduling		
Number	Dry land	HU	Orchard	HU	Tea land	Date	

1	Growing season	0.15	Growing season	0.15	Growing season	Jan 1
2	Fertilization	0.16	Fertilization	0.16	Fertilization	Feb 25
3	Fertilization	0.34			Harvest	Apr 26
4	Harvest	1.20				

* Fertilizer application rates were 100, 457, and 532 kg/ha, respectively, for dry land, orchard, and tea.

Parameters	Value	Definition
USLE_C	0.0001	Minimum value of USLE C factor for land cover/plant
BLAI	5.2	Maximum potential leaf area index for land cover/plant
LAIMX	0.15	Percent growing season corresponding to first point on the optimal leaf
		area development curve for land cover/plant
GSI	0.005	Maximum stomatal conductance for land cover/plant (m/s)
BIO_E	15	Biomass/energy ratio or radiation use efficiency value for land
		cover/plant [(kg/ha)/(MJ/m²)]
VPDFR	4	Vapor pressure deficit corresponding to the second point on the stomatal
		conductance curve
WAVP	7	Rate of decline in radiation use efficiency per unit increase in vapor
		pressure deficit
HVSTI	0.073	Harvest index for land cover/plant [(kg/ha)/(kg/ha)]
RDMX	0.5	Maximum root depth for land cover/plant (m)
CHTMX	1.4	Maximum canopy height for land cover/plant (m)
T_OPT	21	Optimal temperature for growth of land cover/plant ($^\circ\mathbb{C}$)
T_BASE	10	Minimum temperature for growth of land cover/plant (°C)
FRGRW	0.1	Fraction of BLAI corresponding to first point on the optimal leaf area
		development curve for land cover/plant
FRGMAX	0.75	Fraction of maximum stomatal conductance corresponding to the second
		point on the stomatal conductance curve
MAT_YRS	4	Number of years required for tree species to reach full development
		(years)
BIO_LEAF	0.3	Fraction of the biomass accumulated each year that is converted to
		residue during dormancy
BMX	2.2	Maximum biomass (metric tons/ha)
CNYLD	2.46	Normal fraction of nitrogen in seed for land cover/plant (kg N/kg seed)
RSDCO_PL	0.05	Plant residue decomposition coefficient
WSYF	0	Lower limit of harvest index
ALAI_MIN	0.75	Minimum leaf area index for plant during dormant period (m ² /m ²)

Table S2. Main localized crop parameters of tea land