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Abstract: A total of 1.7 million Virginians rely on private drinking water (PDW) systems and 1.3
million of those people do not know their water quality. Because most Virginians who use PDW
do not know the quality of that water and since strontium poses a public health risk, this study
investigates sources of strontium in PDW in Virginia and identifies the areas and populations most
vulnerable. Physical factors such as rock type, rock age, and fertilizer use have been linked to elevated
strontium concentrations in drinking water. Social factors such as poverty, poor diet, and adolescence
also increase social vulnerability to health impacts of strontium. Using water quality data from the
Virginia Household Water Quality Program (VAHWQP) and statistical and spatial analyses, physical
vulnerability was found to be highest in the Ridge and Valley province of Virginia where agricultural
land use and geologic formations with high strontium concentrations (e.g., limestone, dolomite,
sandstone, shale) are the dominant aquifer rocks. In terms of social vulnerability, households with
high levels of strontium are more likely than the average VAHWQP participant to live in a food desert.
This study provides information to help 1.7 million residents of Virginia, as well as populations in
neighboring states, understand their risk of exposure to strontium in PDW.
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1. Introduction

Clean drinking water is essential for a healthy life. The United Nations estimates that 502,000
people die from diarrhea due to contaminated drinking water every year [1]. In the United States,
the Environmental Protection Agency (EPA) enforces the Safe Drinking Water Act (SDWA) to regulate
water quality and promote public health [2]. As knowledge of contaminants increases and treatment
techniques improve, the EPA adds new contaminants to the SDWA [3]. Contaminants are added to the
SDWA if they are detrimental to human health, found in waters throughout the United States, and their
removal or reduction poses a meaningful opportunity to improve public health [3]. The third round of
new contaminant candidates included strontium due to its detrimental effects on bone growth [3,4].
However, strontium is still not regulated and, more important to this study, the SDWA only applies to
public drinking water systems (e.g., municipal, regulated systems). Thus, a significant gap exists for
the 1.7 million Virginia residents (22% of the population) and 15 million people nationally who source
drinking water from private drinking water (PDW) systems such as wells, springs, and cisterns [5].
Characterizing PDW quality has the potential to benefit the health of populations reliant on these
systems, especially in Virginia, where 80% of PDWs have never been tested or have been tested only
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once [5]. To address these issues, this study examines PDW quality across the state of Virginia with
a focus on strontium, which is relatively understudied, and on the candidate list to be added to the
SDWA as a regulated contaminant.

While studies on PDW quality exist [6-15], few examine strontium at a large scale and none
examine strontium in Virginia [16-18]. Data generated through the Virginia Cooperative Extension’s
Virginia Household Water Quality Program (VAHWQP) at Virginia Tech provide a unique opportunity
to characterize, analyze, and interpret the distribution of strontium concentrations in PDW in general,
and particularly in Virginia. Given this background, this study investigated the following questions:

1.  What is the level of strontium in PDW in Virginia?
2. What are the physical (geologic) vulnerabilities to strontium contamination in PDW in Virginia?
3. What are the social (human) vulnerabilities to strontium contamination in PDW in Virginia?

Literature Review

Strontium is a naturally occurring alkaline earth metal element closely related to calcium [4].
The natural abundance of strontium in Earth’s crust is 0.02%-0.03%, and the average concentration
of strontium in freshwater globally is 0.5-1.5 mg/L [4,19]. Strontium is present in many sedimentary
rocks and typically found in high levels in some calcite minerals [4,19]. Anthropogenic sources of
strontium include nuclear fallout, fertilizers, and industrial manufacturing [19-23].

Health problems associated with strontium have been identified as a public health risk [3].
The EPA considers strontium nontoxic to humans under standard environmental levels [4]. However,
when concentrations exceed 1.5 mg/L in water (the Health Reference Level or HRL), strontium can
enter the bloodstream and replace calcium in bones, making bones brittle and eventually leading to the
development of strontium rickets [4,19,24]. Strontium is particularly dangerous to children, especially
infants, since their bodies have higher rates of absorption into the bloodstream while simultaneously
experiencing higher rates of bone growth than adults [4,19]. Due to the potential health impacts of
strontium in drinking water, the EPA added it to the Third Drinking Water Contaminant Candidate List,
although a regulation decision has yet to be rendered [3]. Strontium can be removed from drinking
water through treatment processes such as lime softening [25], and impacts can also be mitigated by
consuming a diet rich in protein and calcium [4,19], which reduces the amount of strontium the body
can absorb. Thus, populations that experience financial barriers to adopting water softening to treat
drinking water or consume diets low in calcium and protein are at higher risk of strontium rickets,
particularly children and infants [26].

In terms of physical vulnerabilities to strontium in PDW, Virginians are at risk of elevated levels
due to the state’s physical geography. There are five physiographic provinces in Virginia: Appalachian
Plateau, Ridge and Valley, Blue Ridge, Piedmont, and Coastal Plain [27]. The Appalachian Plateau and
Ridge and Valley are characterized by shale, slate, coal, and limestone, which constitute rock types
known to be sources of strontium [19,27,28]. The Blue Ridge and Piedmont provinces are characterized
by igneous and metamorphic rocks that contain strontium not readily mobilized in water due to
the mineralogy [27,28]. The Coastal Plain is characterized by sandstones and unconsolidated sands,
which can also contain high levels of strontium [19,27,28]. Additionally, there are >8 million acres
of agricultural land use in Virginia that potentially receive phosphate fertilizers (known sources of
strontium), which may leach or run off, thereby impacting surface and groundwater sources [20-23,29].
In fact, studies have shown that the type of fertilizer (e.g., monoammonium phosphate, diammonium
phosphate, triple superphosphate), amount applied, and the cumulative legacy of use can contribute
up to one quarter of the total strontium found in drinking water sourced from private and public
wells [23].

As for social vulnerabilities, 6% of Virginians are under age five and >10% of the population lives
below the federal poverty line [30,31]. Figure 1 shows childhood poverty rates, with many counties
above 20% [32]. Additionally, nearly 19% of Virginians live in food deserts (areas with limited access to
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nutritious food), which exceeds the national rate by more than 7% [33]. This coupling of poverty and
food deserts means that many children in Virginia live below the poverty line and/or may lack access
to diets high in calcium and protein that mitigate strontium damage to bones [4,19,32-34]. Another
compounding social vulnerability is that 1.7 million Virginians (22% of the population) rely on PDW,
which are unmonitored and unregulated for strontium, among other contaminants, by the federal and
state governments [2,5].
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Figure 1. Childhood poverty rates in Virginia (% below federal poverty line).

Virginia exhibits physical and social vulnerabilities to elevated levels of strontium in drinking
water, and much of the state’s drinking water is supplied via unregulated PDWs. Thus, using a
large, state-wide dataset, this study examines strontium in PDW in Virginia by first characterizing the
concentration and spatial extent of strontium in PDW and subsequently examining physical and social
vulnerabilities to strontium health risks. Thus, poverty, (lack of) access to grocery stores, number of
children in an area, and a reliance on PDW interact with geology and land use to increase the risk to
strontium in drinking water.

2. Materials and Methods

2.1. Data Collection

This study used water 9779 PDW samples collected in Virginia by VAHWQP between January
2014 and December 2018. VAHWQP was established as a Virginia Cooperative Extension effort in 1989
and is operated by the Department of Biological Systems Engineering at Virginia Tech [5]. The program
conducts roughly 65 county-based drinking water clinics each year and has amassed data from every
Virginia County [5]. Clinics provide citizens with low-cost PDW quality tests as well as objective water
quality summaries and targeted PDW maintenance information [5]. Survey data reveal that 80% of
samples come from PDWs that have either never been tested or have been tested only once.

Participants fill four bottles provided in a test kit with water from the tap they typically use for
drinking, cooking, and other consumptive ends. One 250 mL sample is collected immediately after
the tap has been turned on after at least six hours of stagnation (first draw), and a second 250 mL
sample is collected after the water has run through the plumbing for at least one minute (flush draw).
First and flush draw samples are collected to help understand how the water interacts with pipes,
fixtures, and other components of the plumbing system and whether any contaminants (e.g., heavy
metals) present are from plumbing materials or the water source itself. Two additional 125 mL samples
are collected after the flush sample for analysis of remaining contaminants. Samples were transported
on ice (stored between 2 and 8 °C) to Virginia Tech on the morning of collection for analysis according
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to standard methods of the Environmental Protection Agency. All collection bottles were sterile,
autoclaved, and arrived at the lab in <6 hours for immediate testing of total coliforms and E. coli using
the IDEXX Colilert method. The first and flush draw samples were acidified and subsampled for metals
and elemental analysis. One 125 mL sample was used to analyze pH, electroconductivity, and anions
(F- and NOs-N), while the other was tested for the enumeration of total coliform and E. coli bacteria.
The geolocation, well information, and laboratory results for each sample were maintained in an Access
database stored on a password protected server. Sample location addresses were converted to GPS
latitude-longitude coordinates using geocod.io software and displayed at a scale preventing individual
households from being identified. In order to protect the identity of participants, all identifying
attributes, including names, email addresses, phone numbers, and mailing addresses, were removed
from the dataset before analyses were conducted.

Supplemental data were collected from multiple sources. A geologic map shapefile containing
rock types and ages was retrieved from the United States Geological Survey (USGS) [35]. The USGS
National Land Cover Database 2011 raster file that identifies land cover from 2006-2011 in 30-meter
resolution using 2011 Landsat imagery was also obtained [36]. Another USGS dataset used was a
physiographic province shapefile digitized from Fenneman’s map “Physical Divisions of the United
States” that divides the country into distinct areas based on topography, rock types and structures,
and geologic history [37]. Land use land cover data were downloaded as a raster dataset from the
United States Department of Agriculture (USDA) [36]. TIGER line data for census tracts—which
include social, economic, and demographic attributes—were gathered as a shapefile from the United
States Census Bureau [38], while data on food deserts were obtained as a CSV file from USDA [39,40].
Here, food deserts are defined as census tracts with 500 residents (33% of census tract population) that
live at least one mile in an urban area and 10 miles in a rural area from a grocery store [40]. Additionally,
20% or more of the population must fall below the federal poverty line or have a median family income
<80% of the statewide median family income. Based on this filtering, 20.2% of Virginia census tracts
are defined as food deserts [39,40].

2.2. Data Processing

There were 9804 PDW quality samples collected by VAHWQP between January 2014 and December
2018. However, samples lacking both a first and flush draw were removed, resulting in a total of 9779
samples. Water quality data were input into ArcMap 10.5.1 using the import x-y data tool. The TIGER
line census tract shapefile and food desert supplemental CSV file were added to ArcMap and joined
using the 11-digit county code number. The geographic extent of the physiographic provinces shapefile
was the continental US, so the ArcMap clip tool was used to select only provinces within the boundaries
of the state of Virginia using the census tract shapefile as the clip extent. Similarly, the extent of the
geology shapefile was clipped to remove data unnecessary for analyses. Finally, it is important to note
that this study defined 1.5 mg/L or more of strontium as a measure of “high” strontium concentration
(i.e., reference level set by the EPA).

2.3. Statistical Analysis

Strontium data summaries were generated using RStudio 1.0.153. These data include min-mayx,
mean, median, and first and third quartile values. Jarque Bera and Quantile-Quantile plots were used
to describe the distribution of the data. Concentrations of strontium were plotted against other water
quality parameters to identify relationship patterns in both first and flush draw samples. The R? value
was determined for each plot using RStudio. A regression line was fit to each set of data, and R?
values were used to calculate how closely data statistically fit the regression lines. These summary
and exploratory analyses provided both a statistical and a visual representation of strontium in PDW
samples. Kruskal-Wallis tests on water quality parameters included in the dataset were performed
using RStudio. Kruskal-Wallis is a non-parametric statistical test used to compare populations with
non-normal distributions. RStudio was also used to conduct comparative t-tests on samples with and
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without water softeners given that they have been shown to remove strontium in addition to calcium
and magnesium (i.e., hardness) [25]. These tests were performed to determine if water softeners
actually remove strontium from drinking water in practice in Virginia. A 95% confidence interval was
used for all statistical analyses.

2.4. Spatial Analysis

Anselin Local Moran’s I and Global Moran’s I tests were conducted using ArcMap. Anselin
Local Moran’s I is a technique to identify, among a geolocated dataset, statistically significant
geographic locations of hot spots, cold spots, and outliers [41-43]. Global Moran’s I is a measure of
spatial autocorrelation based on feature locations and attributes [41-43]. The technique determines
if data exhibit a statistically significant spatial distribution in terms of clustering (positive spatial
autocorrelation), repelling (negative spatial autocorrelation), or randomness [41-43].

LAND_COVER data were extracted for the state of Virginia and Ridge and Valley province using
the ArcMap extract-by-mask tool, and field data were stored and analyzed using Microsoft Excel 2016.
Land cover data for VAHWQP samples (all samples and high strontium samples) were collected using
ArcMap extract-to-point and summarize tools on the LAND_COVER field with the FID first value.
The four land cover datasets, the state of Virginia, Ridge and Valley province, all VAHWQP samples,
and high strontium samples were combined in Excel, and a percentage was calculated for each land
cover type as well as land cover type adjacent to high strontium sample locations. To determine
geologic influence on strontium contamination, a similar method was used with the exception that
values were extracted using the select-by-location and summarize tools in ArcMap to select data on
both UNIT_AGE and ROCKTYPEI1 fields by summing the AREA field.

The food desert CSV contained several measures of poverty, three of which were used in this
analysis: percent of population in poverty, percent of households without access to a vehicle (HUNV),
and percent of households receiving Supplemental Nutrition Assistance Program (SNAP) benefits.
SNAP is a federal program that combats food insecurity for low income individuals [40] HUNV was
included to identify households that earn too much to fall below the poverty line yet lack access to a
vehicle. Individuals in these households may have difficulty accessing diets high in calcium and protein
and may be less likely to be able to afford water treatment mechanisms if high strontium concentrations
are present in their PDW. Percent of population <19 (i.e., vulnerable age cohort) in each census tract
was calculated using the calculate field tool in ArcMap as a rate of the TractKids field and POP2010
field. Percent of HUNV and households receiving SNAP benefits were also calculated using the
calculate field tool using the TractHUNYV (for households without access to a vehicle), TractSNAP (for
households collecting SNAP benefits), and OHU2010 (for number of households in each tract) fields.

Percent of population <19, percent in poverty, percent of HUNV, percent living in a food desert,
and percent receiving SNAP benefits were displayed in ArcMap using five color categories with
approximately the same number of counties in each color bracket while still maintaining whole
numbers as percentage breaks. The Anselin Local Moran’s I tool was run on all five categories to
identify statistically significant geographic distributions of “hotspots” (high-high clusters), “cold spots”
(low-low clusters), and outliers (high-low, low-high, and high values surrounded by low values
and vice versa). The select-by-attribute tool was used in ArcMap to select high-high clusters and
high-low outliers for each of the categories for the state of Virginia. The total number of census tracts
and number of selected census tracts for each category were input to Excel. The select-by-location
tool was then used to categorize census tracts based on location in the Ridge and Valley province,
participation in VAHWQP, and presence of high strontium values. For each of these three selections,
the select-by-attribute tool was used to determine the number of high-low outliers and high-high
clusters for each subset of census tracts. Finally, the total number of census tracts and number of
selected tracts for each category, and each subset of tracts were input to Excel where percentages of
census tracts were calculated.



Water 2020, 12, 1053 60f15

3. Results

3.1. Level of Strontium in PDW systems in Virginia

Of 9779 PDW samples, 122 first and 124 flush draw samples exceeded 1.5 mg/L—a high level
that exceeds the HRL set by the EPA (Table 1). The highest first draw concentration was 28.75 mg/L,
and the highest flush draw concentration was 29.71 mg/L. However, the vast majority (close to 99%)
of samples had strontium concentrations below the reference level. Jarque Bera, Quantile-Quantile
analyses, and box and whisker plots determined that the distribution of strontium concentrations in
both first and flush draw samples were non-normal with a left skew, indicating that outliers existed.
The mean was nearly four times larger than the median, since mean was more sensitive to outliers.
A correlation of strontium concentrations in the first and flush draw samples resulted in an R? of
0.984, indicating a high degree of correlation between the two (i.e., first and flush samples were similar
in terms of strontium concentrations). Similarly, Kruskal-Wallis tests produced a p-value of <0.001,
further indicating that first and flush samples were statistically similar. Given these results, remaining
analyses were conducted only on first draw samples.

Table 1. Statistical summary of strontium first and flush draw samples.

First Draw (mg/L) Flush Draw (mg/L)

Range 0-28.750 0-29.710
Mean 0.158 0.160
Median 0.043 0.044
1st Quartile 0.014 0.014
3rd Quartile 0.109 0.109
Standard Deviation 0.808 0.833
High Strontium Samples (>1.5 mg/L) 122 124
Total Samples 9779 9779

A total of 2350 samples were from PDW with water softeners. Of the 2350 samples treated with
water softeners, 30 (1.28%) contained high strontium. Of the 7249 samples without water softener
treatment, 92 (1.27%) contained high strontium (note that 200 samples failed to report whether a softener
was or was not used). Samples with water softeners had an average concentration of 0.096 mg/L,
while samples without softeners had an average concentration of 0.190 mg/L, double the strontium
concentration of PDW with softeners. Comparative t-tests on strontium concentrations identified
statistically significant differences between PDW with and without softeners (p < 0.001), with samples
with water softeners exhibiting significantly less concentrations of strontium.

Locations of the 122 first draw samples with high strontium concentrations (>1.5 mg/L) were
plotted (Figure 2). Seventy percent of high concentrations were found in the Ridge and Valley province
that parallels Virginia’s western/northwestern border (Figure 2). A Global Moran’s I test for clustering
produced a p-value of <0.001 and z-score of 24.574, indicating a <1% chance that spatial distributions
(i.e., clusters) are a result of randomness. A Local Moran’s I test mapped the clusters (Figure 3),
demonstrating that geographic locations with high concentrations of strontium are near other high
concentration samples; the pattern of high-high and high-low clusters mirrors the southwest-northwest
trend of high strontium displayed in Figure 2.
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Figure 2. Map of 9779 Virginia Household Water Quality Program (VAHWQP) private drinking water
(PDW) samples collected 2014-2018.
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Figure 3. Local Moran’s I cluster analysis of strontium concentrations in first draw samples.
3.2. Physical Vulnerabilities to Strontium Contamination

Strontium was weakly correlated (R? > 0.100, p < 0.500) with calcium and magnesium but had
no correlation with 29 other water quality parameters (R? < 0.100, p > 0.500) that were tested. Jarque
Bera tests and Quantile-Quantile plots were used to determine the normality of sample concentrations
for the 29 water quality parameters, and Kruskal-Wallis tests determined the statistical correlation
between strontium and each analyzed water quality parameter. Results indicated that 16 water quality
parameters were statistically similar to strontium, while 16 parameters were also positively correlated
to a statistically significant degree. However, only three parameters satisfied both of these requirements
(Table 2).

Land use land cover analysis found that the highest number of high strontium samples were from
deciduous forests, hay/pasture, and developed open spaces. However, medium intensity developed
land, herbaceous, developed open space, and low intensity developed land had more high strontium
samples on a percentage basis (Table 3). While herbaceous and medium intensity developed land
cover types had a high percentage of pixels with high strontium samples, the total number of high
strontium samples was too low for a robust analysis and was not considered further. The Ridge and
Valley province, where most of the high strontium samples occurred, had higher rates of deciduous
forest and hay/pasture land use land cover compared to the rest of the state.
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Table 2. Statistical analysis of water quality parameter relationships to strontium.

First Draw Flush Draw

Parameter Jarque Kruskal Jarque Kruskal
R2 r Bera Wallis R? r Bera Wallis

p-Value p-Value p-Value p-Value
Mg 0.092 0717 <0.000 0.000" 0.094  0.722° <0.000 0.000"
Ca 0.122° 0.813" <0.000 0.000" 0.113 0.803" <0.000 0.000"
Hardness  0.125° 0.116 <0.000 0.250 0.119° 0.797" <0.000 0.094"

Sr 0.984°  0.971" <0.000 0.000™ N/A N/A <0.000 N/A

" Significant correlation R? > 0.100 or r > 0.700. ** Significant p-value <0.05. The following parameters were found
not to have a significant relationship to strontium: Al, Ag, As, Ba, Cd, Cl, Co, Cr, E, Fe, K, Mn, Mo, Na, Ni, P, Pb, pH,
Se, Si, SOy, Sn, Ti, U, electroconductivity, and presence of E. coli.

Table 3. Results of land use land cover (LULC) analysis.

Land Use Land Cover % LULC Occurring in %o LULC Occurring on High Sr

Ridge and Valley Samples (>1.5 mg/L)
Cultivated Crops 6.15 0.91
Evergreen Forest 11.82 1.10
Developed Medium Intensity 21.38 2.08
Herbaceous 22.37 2.06
Developed Open Space 22.97 1.19
Developed Low Intensity 2591 1.84
Deciduous Forest 35.51 1.09
Hay/Pasture 37.25 1.71
Total 26.91 1.25

Virginia is underlain by geologic formations spanning more than 500 million years from the
Cambrian to the Quaternary. Sedimentary rocks such as shale, sand, sandstone, and gravel are the
most common rock types in Virginia. The rock types most common where VAHWQP samples were
collected are sand, gravel, and shale, which is similar to the common rock cover in the state as a
whole (Table 4). The greatest number of high strontium samples were collected from locations where
Cambrian and Ordovician age rocks are found (35 of 102 high strontium samples). The Ridge and
Valley province, where most of the high strontium samples occurred, has >90% of the shale, dolomite,
limestone, and black shale in the state. High strontium samples were most commonly found on
limestone, dolomite, sandstone, shale, and black shale. Alluvium, anorthosite, conglomerate, quartz
monzonite, metasedimentary, and mylonite rock types each had only one high strontium sample and
were thus excluded from analysis. High strontium samples occurred on similar rock types and with a
similar spatial distribution as the most common rock types in the Ridge and Valley province.

Table 4. Results of rock formation analysis.

N N o X
#of # of Formations % of Formation # of Formations  # of Formations % of Formation

Rock Age l':orn}ati'ox}s in Ridge and Area in Ridge Vzljlflls\/e éP Un\t;l[:;{l;/l\llgélp Sr Ar;: gzgle‘fvgll?h
in Virginia Valley and Valley S 1 S 1 S 1
amples amples amples
Cambrian 591 246 49.3 162 14 21.3
Cambrian—Ord 148 108 84.4 46 8 26.1
Ordovician 442 374 91.1 100 13 425
Ordovician-De 10 10 100 2 1 27.8
Rock Type
Black Shale 98 97 99.9 17 2 65.1
Dolomite 234 223 99.3 82 15 32.7
Limestone 223 216 99.9 50 13 52.2
Sand 695 0 0 171 0 0
Sandstone 557 268 65.6 72 9 14.0
Shale 468 394 94.5 101 12 28.5

" High strontium defined as >1.5 mg/L.
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3.3. Social Vulnerabilities to Strontium Contamination

Fifteen percent of Virginia census tracts (296 of 1971 tracts) were determined to be food deserts
(Figure 4), and 20.2% of census tracts with high strontium samples are located in food deserts (Table 5).
Analyses indicate that census tracts with VAHWQP samples have lower rates of households without
access to a vehicle and a lower percentage of population below age 19 (Table 5). Additionally, census
tracts that participated in VAHWQP have lower rates of households receiving SNAP benefits while
census tracts with high strontium concentrations have even lower rates of households receiving SNAP
benefits. Census tracts with high levels of strontium exhibited lower rates of households in poverty
when compared to the remaining tracts participating in VAHWQDP, tracts in the Ridge and Valley
province, and the state as a whole. Spatial patterns in Figure 5 reveal that the northern portion of
Virginia is generally wealthier with more children, higher rates of households with vehicles, and lower
rates of households on SNAP benefits compared to the rest of Virginia. Each measure of vulnerability
indicates slightly different regions as most vulnerable to the health effects of strontium, but in general
the far southwest of Virginia along with Greensville, Sussex, and Southampton counties, which are
clustered near the southern border of Virginia south of the city of Richmond, were identified as the
most socially vulnerable areas.

Not a Food Desert I Pennsylvania ‘/Z"
- Food Desert New VYerse
District g’ﬂg | l \)'I'
o ofi€olumbia s b
West Virginia Marylaid
Kentucky
Tennessee Nort.h B N I <iometers
A Carolina 0 37575 150 225 300
Figure 4. Food deserts by census tract.
Table 5. Summary of social vulnerability analysis.
% Census % Tracts in Ridge ./o.Trac'ts . ./0 Tracts with
Tracts in VA and Valley Participating in High Sr Samples
VAHWQP (>1.5 mg/L)
High" Poverty Rate 23.2 21.8 13.0 11.6
High* Rate of
Households on SNAP 232 205 132 29
High" Rate of
Households w/o 16.8 5.9 3.8 0.0
Vehicle
High* % of Pop. <19 26.9 5.9 23.4 11.6
SR 15.0 19.6 14.6 203
Desert

“ Local Moran’s I test identified “high” as a statistically significant high-high cluster or high-low outlier census
tract. Supplemental Nutrition Assistance Program.
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Figure 5. Poverty related risk factors by census tract: (A) Distribution of poverty rates; (B) Cluster
analysis of poverty rates; (C) Distribution of rate of households without access to a vehicle; (D) Cluster
analysis of rate of households without access to a vehicle; (E) Distribution of rate of households
receiving SNAP benefits; (F) Cluster analysis of rate of households receiving SNAP benefits; (G) Percent
of population below age 19; and (H) Cluster analysis of percent of population below age 19.

4. Discussion

Only 1.2% of PDW samples exhibited high concentrations of strontium, defined here as at or
above the EPA health reference level of 1.5 mg/L. While this rate suggests that most Virginians are not
at risk from strontium contamination in PDW, the statistically significant pattern of high clusters and
high outliers indicates that populations in the Ridge and Valley province (e.g., Frederick, Shenandoah,
Rockbridge, and Botetourt counties) that rely on PDWs have a higher probability (3.5%) of exceeding
the HRL. There is also a cluster of high strontium concentrations around Prince William County in
Northeastern Virginia. After further examination, samples in Prince William County had high rates of
calcium, magnesium, and hardness, which is similar to what was observed in the Ridge and Valley.
There were 2350 samples from households that reported using water softeners. Of these samples,
1.3% exceeded the HRL for strontium, which mirrors the rate of the entire group. Here, it is critical to
note that nearly one quarter of households are using water softeners that have been shown to reduce
the amount of strontium in treated water; however, in this case softeners are reducing the amount of
strontium but not removing enough to drop levels below the reference level.
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In terms of land use land cover, >80% of sample locations with high strontium overlay with
hay/pasture, developed open space, and developed low intensity types, suggesting that human
development and human-environment interactions may impact strontium concentrations in PDWs.
Interestingly, high intensity development land use had no high strontium samples. We argue that
this is because most homes in that land use type are served by public/municipal water systems and
therefore do not have PDWs. Agriculture (cultivated crops and hay/pasture)—another land use
defined by human intervention—appeared to have a large impact on strontium given that 42.5% of
all high strontium samples overlay on land designated as agricultural. This indicates that phosphate
fertilizer applications on agricultural land may impact strontium concentrations in PDWs. Phosphate
fertilizers—known sources of strontium—can leach and enter surface and groundwater sources [20-23],
and studies have demonstrated that type of fertilizer (e.g., monoammonium phosphate, diammonium
phosphate, triple superphosphate), amount applied, and legacy of use can contribute up to 25% of the
total strontium in drinking water sourced from private and public wells [23]. Ultimately, there is a
high rate of high strontium occurrence in areas associated with human intervention (>80%), and more
research should be conducted to determine if this risk is connected to fertilizer applications not only
for agriculture, but also in urban spaces for purposes of lawn care and to increase the aesthetics of
parks, golf courses, and other landscapes.

The five most common rock types in Virginia (limestone, dolomite, sandstone, shale, and black
shale) account for 90% of high strontium concentration samples. The southwest-northeast spatial
pattern of these rock types is similar to the southwest-northeast spatial pattern of high strontium
samples, and these patterns mirror and are particularly evident in the Ridge and Valley province.
This indicates that geology influences strontium concentrations. Therefore, this study finds an
association between rock type and strontium concentrations but cannot determine with certainty if
rock types are the source of strontium without samples of aquifer source rock for each PDW. However,
this does indicate high physiographic (geologic) vulnerability for households with PDWs located on
those particular rock types.

The only factor that revealed social vulnerability in areas of high strontium concentration was food
deserts. This is significant because access to a nutritious diet high in calcium and protein is essential to
counteract adverse health impacts from ingesting excess strontium, and because Virginia has a higher
rate of people living in food deserts compared to the national average [31]. While physical vulnerability
factors follow the Ridge and Valley province, social vulnerability factors do not overlap the physically
vulnerable regions. Findings indicate that the southwest corner of Virginia (Appalachian Plateau) and
southside/southeast Virginia (e.g., Greensville, Sussex, and Southampton counties) have unusually
high rates of poverty (defined by federal poverty rates), percent of households receiving SNAP benefits,
and percent of households without access to a vehicle. Census tracts in northern Virginia have the
highest percentage of children population (below age 19) but are also relatively wealthy. Less than
6% of census tracts in the Ridge and Valley province have a high percentage of children population
compared to 23% for all VAHWQP sample locations and 11% for high strontium sample census tracts.

In terms of addressing issues of social vulnerability, this study has the most potential to benefit
census tracts with higher percentages of children. Interestingly, census tracts with higher percentages
of children actually participated in VAHWQP at greater rates; however, these tracts also happen to
be relatively wealthier. One reason for this economic bias is that VAHWQP is a voluntary program
with a monetary cost of approximately $60 for water quality testing, which can present an economic
barrier to participation among relatively less wealthy households. Furthermore, samples must be
collected according to specific instructions and dropped at specific locations on specific dates at specific
times—which presents additional barriers related to access to transportation, mobility, economics,
education, class, and social location broadly. Another caveat is that most samples are from participants
who own their home and thus own the PDW—this makes sense as such participants are likely in charge
of PDW operation and maintenance and thus may have greater incentive to participate. This caveat
may bias the dataset in favor of relatively wealthier households and inadvertently skew the dataset
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away from renters and residential contexts such as mobile home parks [5]. These populations may be
experiencing issues with their PDW but lack the (economic and political) capacity, agency, or perhaps
feel apprehensive (out of fear of retaliation) to seek water quality testing through VAHWQP [44,45].
Given this background, locations where many VAHWQP samples were collected tend to have lower
poverty rates, lower SNAP benefit rates, and greater rates of access to a vehicle compared to the
Virginia as a while. On the other hand, since poverty and percent of children population may be
biased by voluntary, economic, and other social barriers to VAHWQP entry, this study therefore likely
underreports social vulnerability in locations with high poverty and/or rental rates. Other factors that
may lead to underreporting social vulnerability are representative samples from populations who lack
trust in the government, scientists, and institutions such as VAHWQP and those who perceive their
PDW as “safe” to begin with [45,46].

5. Conclusions

With 1.7 million Virginians relying on PDW and few knowing the status of their water quality,
there is urgent need to understand the public health risks these residents face. Strontium has the
potential to cause damage to health (especially children) and as such is being considered for regulation
by the EPA with a reference level of 1.5 mg/L. Strontium can be removed via water softening, so it is
critical to inform the public of the risks, so they can mitigate health hazards and keep their families and
communities safe. Thus, this study provides an initial characterization of the prevalence, concentration,
spatial distribution, and physical and social vulnerabilities associated with strontium in PDW in
Virginia in order to inform the public and address an understudied issue of public health concern.
While studies on PDWs exist [6-15], few examine strontium at a large scale and none examine strontium
in Virginia [16-18]; further, 80% of the PDWs were either never tested or have been tested only once.

Overall, areas of Virginia with high concentrations of strontium generally exhibit low social
vulnerability to strontium, with the exception of those living in a food desert. This is particularly
important because diets high in calcium and protein counteract the effects of drinking water with
high levels of strontium. Individuals living in the Ridge and Valley province have the highest
physical (geologic) vulnerability to elevated strontium in PDW, and prevailing rock types (limestone,
dolomite, sandstone, shale, and black shale) in the region also tend to contain high levels strontium.
Based on findings, this study postulates that there is greater physical vulnerability to strontium in
PDW when those rock types are present. Agricultural and developed land use were also linked to
high concentrations of strontium, indicating increased physical vulnerability to strontium in PDW
when human interventions/activities are present on the landscape. However, further work should be
conducted to specifically examine the origin of strontium in PDW and the extent human interventions
impact strontium in PDW.

This research can assist Virginians with PDW to understand how they may be vulnerable to
the health impacts of strontium and, subsequently, how to take actions to protect their families and
communities from the risks. Broader impacts of this research, however, reach far beyond those who
rely on PDW in Virginia. All residents with PDW in the United States—especially those in states
near Virginia that contain part of the Ridge and Valley province (e.g., Alabama, Georgia, Tennessee,
West Virginia, Maryland, Pennsylvania, New York)—could benefit from this research. Furthermore,
since a portion of public drinking water provided by local water authorities in the Ridge and Valley
province is sourced from groundwater, many Virginia residents (and residents in similar states with
geophysical landscapes) are consuming the same source water as PDW consumers. Thus, consumers
of water from PDW and public supplies in the Ridge and Valley province and adjacent states are both
physically vulnerable to strontium contamination. This again underscores the need for strontium to
be included in the EPA SDWA and additional outreach and testing for water consumers that rely on
PDWs. In particular, consumers that should be targeted with clear information on the health risks of
drinking unsafe water are those who cannot afford testing, renters, and those with perceptions that
their water is “safe” or who lack trust in science and institutions. This is critical as such populations
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may be unwittingly exposed to contaminants. Communication of science and health risks associated
with drinking water is a field ripe for advancement—especially given recent international events such
as Flint, Michigan. Thus, we argue for community-level approaches demonstrated by Dettori et al. [46],
Arcipowski et al. [47], and Virginia Cooperative Extension’s VAHQWP in their county level PDW clinics
and informational material (see https://www.wellwater.bse.vt.edu/vahwqp.php). These approaches of
building a “trust ecology,” combined with accessible resources for unbiased water quality testing (e.g.,
the tests conducted through VAHWQP), represent potential steps in the right direction.
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