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Abstract: Frontier efficiency methods have been recurrently used in the water sector to assess the
performance of water utilities. These methods are also used for yardstick regulation, with greater
efficiency being sought by creating competition between the utilities, which can have an impact on
decision-making processes, such as tariff setting. This study analyzes the adequacy and limitations of
these methods for regulatory purposes, particularly how they deal with data uncertainty and their
capacity to manage large number of variables. In order to achieve this, two representative methods—a
nonparametric technique (data envelopment analysis) and an econometric one (stochastic frontier
analysis)—are applied to an audited sample of 194 water utilities. Results will show that the results
from the methods may not be considered conclusive in the water sector and their application should
be carried out with considerable reservations.

Keywords: regulation of water services; frontier efficiency methods; performance assessment; data
envelopment analysis; stochastic frontier analysis; efficiency of water services; yardstick regulation

1. Introduction

Urban water services are natural monopolies because regardless of the number of companies
providing the service, the demand can be covered at a lower cost by only one company [1].

Due to the monopolistic nature of the water sector, utilities have little incentive to improve the
quality of service or their efficiency, unless a regulatory framework encourages it. Yardstick regulation
appeared as a tool to incentivize the competition among utilities in a monopolistic market. For that
purpose, the performance of the different utilities is compared, creating an artificial competitive market,
in order to promote efficiency [2].

The rationale for yardstick regulation is clear in the case of identical utilities. The ones with the
worst performance must become more inefficient. However, the presents a challenge when comparing
utilities with different exogenous characteristics that affect performance, as is the case in the water
sector. In order to overcome this drawback, Shleifer [2] suggested first listing the characteristics
by which the utilities differ. Then, regression techniques can be used to perform the comparison,
considering these exogenous characteristics.

According to Coelli and Walding [3] and CEPAL (United Nations Economic Commission for Latin
America and the Caribbean, CEPAL stands for its acronym in Spanish) [4], there are four main families
of methods used to assess the efficiency of a utility:
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• Partial efficiency measures;
• Average efficiency measures;
• Econometric frontier efficiency methods;
• Non-parametric frontier efficiency methods.

Efficiency methods are widely used in the water sector to assess the relative efficiency of utilities
and promote competitiveness [4]. In order to determine the specific tools water regulators use to assess
efficiency, the authors conducted a survey. This survey was sent to 141 water regulatory authorities
around the world, and was answered by 27% of them. The results include regulators from 28 different
countries located in America, Europe, and Africa. Some of them are regional water regulators, while
others regulate at the national level. Figure 1 shows the answers to the question regarding the tools of
choice for water regulators to assess the efficiency of utilities.
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Figure 1 reveals that although performance indicator systems are the preferred methods
for assessing efficiency in regulated water sectors, frontier efficiency methods represent a
significant proportion at 13%. This work is focused on the latter, and more specifically on two
methods—econometric and non-parametric frontier efficiency methods. The aim of these methods is
to obtain an efficiency frontier and use it for comparison against the performance of utilities, thereby
determining their degree of inefficiency.

There are plenty of studies on frontier efficiency methods applied to water distribution systems
(e.g., [5,6]). These methods are used to compare the efficiency of water utilities and analyze any drivers
affecting this (e.g., economies of scale and scope, public vs. private operation, or the effect of regulation
in efficiency and productivity [5]). These references use a wide range of methods, model configurations,
and variables, depending on what is being analyzed. The literature shows that results are highly
dependent on the context of the sample and the methodology employed.

Furthermore, very few studies have been carried out to determine the impact of data quality on
results or to determine whether the limited number of variables a model can handle is enough to
completely characterize water utilities and determine their efficiency.

Despite some reasonable doubts about their adequacy, frontier efficiency methods have been and
are being used by water sector regulators, as shown in Figure 1. These methods are often used in
tariff-setting processes by regulators such as OFWAT (Office of Water Services—England and Wales) or
the Danish Competition and Consumer Authority (the Danish regulator under the Ministry of Industry,
Business, and Financial Affairs [7,8]).

The main benefits of these methodologies are that they do not introduce any bias when assessing
the utilities’ performance, as results do not rely on the opinion of the regulator’s expert analysts.
Additionally, they reduce the resources needed to regulate the market compared to detailed analyses
of performance [9].
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This paper analyzes if these methodologies are appropriate for regulating the efficiency of the
water sector, and more specifically, for water distribution services. For this purpose, the study will try
to determine the impact that some factors may have on the results from a regulatory perspective.

Firstly, the impact of real data quality on the two frontier efficiency models will be determined
(the water sector is well-known for data inaccuracies resulting from the nature of its assets). In order to
achieve this, a real and audited dataset (with information on the quality of data) will be used to test
the methods.

Secondly, the paper will explore further limitations of these methods. As the literature suggests,
these models have limitations relating to the maximum number of variables they can consider [10].
The paper will try to determine if the methods can cope with all the variables needed to properly
evaluate the utilities’ efficiency. Variables used will include the quality of service aspects expected by
users according to ISO 24,510 [11] and the exogenous characteristics that differentiate utilities (such as
topography and size).

Finally, the consistency of both methods will be compared to determine their appropriateness as
regulatory tools.

2. Methods

There are numerous methods and variants of efficiency models. However, they can be grouped
into two main families—econometric (e.g., ordinary least squares (OLS) modified least squares (MLS),
stochastic frontier analysis (SFA)) and nonparametric (data envelopment analysis (DEA)). This paper
analyzes the ability of DEA and SFA models to assess the efficiency of water utilities (one from each
family). The selection of these two models is based on the fact that they have been widely applied in
the water sector [6,12] for regulatory purposes [8,13]. Input and cost minimization approaches are
used for DEA and SFA, respectively, as it was assumed that water companies aim to minimize their
inputs or costs.

DEA is a non-parametric method that uses mathematical programming to obtain efficiency scores
of a set of individuals, called decision making units (DMUs), for water utilities. The method identifies
the most efficient utilities, locates them in the efficiency frontier, and compares the remaining utilities
against this frontier. The DEA model used in this paper was run with General Algebraic Modeling
System (GAMS) software, which is a high-level modeling system for mathematical optimization.

The main benefits of DEA are that it does not require any assumption concerning the shape of
the frontier and it allows for multiple inputs and outputs [4,10]. In addition, the weights of inputs
and outputs are determined intrinsically by the model, reducing any subjective interpretation. The
optimal input and output weights are obtained by solving the mathematical programming, so the
efficiency of the underevaluated unit is maximized. In other words, the objective function of the
optimization model is to maximize the efficiency score by selecting the most desirable weights for
inputs and outputs [14]. As a disadvantage, DEA is sensitive to outliers and data uncertainty, although
some authors have proposed improvements to tackle this issue [15].

The linear programming model used to estimate the efficiency of several water companies in our
study is described below.

Let us assume that j water companies exist in the industry that use a set of inputs xn where n = 1,
. . . , N to generate a set of outputs ym, where m = 1, . . . , M. The linear programming model is written
as follows:
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Minϕ = [D(x, y)]−1

st
J∑

j=1
λjyjm ≥ yim, m = 1, . . . , M

J∑
j=1
λjxjn ≤ ϕxin, n = 1, . . . , N

λj ≥ 0
J∑

j=1
λj = 1

(1)

where ϕ is the efficiency score, which presents the contraction of inputs required so that a unit can be
included in the efficiency frontier, λ is the intensity variable used to build the frontier, and the equality
ensures that the model is ran under variable returns to scale (VRS).

Parametric or econometric methods have also been used for regulation in the water sector. For
instance, OFWAT (Office of Water Services) has employed them to calculate the efficiency of English
and Welsh utilities and set their tariffs according to the results [7]. The Danish Competition and
Consumer Authority uses them together with a DEA approach to assess the efficiency of the regulated
water utilities. According to Berg and Marques [16], 58% of studies performed in the water sector
are parametric.

These methods estimate the efficiency frontier following a predetermined function (linear,
quadratic, logarithmic, etc.) [4] and determine the efficiency of the sample against the estimated frontier.
They can be deterministic (e.g., ordinary least squares (OLS) or corrected ordinary least squares (COLS))
or stochastic. In the first case, the difference between the frontier and the efficiency score is entirely
attributed to the inefficiency of the utility. The aim of the latter is to separate inefficiency from random
errors, which are those outside the control of the utility, such as droughts and data measurement
errors [17].

The econometric method used in this study (stochastic frontier analysis, (SFA)) is a stochastic
method, as its name suggests. Its main benefit is allowing separation of the error term from the
inefficiency. However, in order to properly formulate the problem, there is an elevated number of
decisions to be made beforehand (such as the functional form of the frontier [4]). The SFA model used
for this paper was simulated with LIMDEP, an econometric and statistical software package.

SFA is a parametric efficiency analysis approach that assumes a Cobb–Douglas, log-linear, or
translog functional form for the underlying technology [18,19]. Following past studies ([20–22] and
others) a Cobb–Douglas functional form is employed, as the study sample is small and this method
does not need many degrees of freedom compared to the translog functional form. The estimated cost
frontier takes the following form:

lnCj = lnC(y, z;β) + vj + uj (2)

where j denotes the number of water companies (observations); C is the total cost of any company j,
which is a function of the output y and environmental variable (quality of service) z; β is the estimated
parameter; ν presents random noise; and u is the cost inefficiency, which follows the exponential
distribution [23,24]. The cost efficiency of any company j (CEj) in the sample is then calculated as

CEj = exp
(
uj

)
. In this study the volume of water delivered, the number of connections, and the length

of mains are used as proxies for density. Additional cost drivers are used to capture the quality of
service, such as volume of water loss and the number of water service interruptions. Similar variables
were also employed in Murwirapachena et al. [22] in the context of water and in Kuosmanen [25] and
Jamsbab et al. [26] in the electricity sector.

This work explores the sensitivity of both methods to uncertain data and their limitations,
especially their response to an elevated number of variables. The consistency of the methods is of
special interest for regulatory purposes (i.e., if utilities obtain similar results regardless of the method
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or the data uncertainty), as utilities could argue whether the calculated efficiency is in fact real or a
method dependent. For this reason, the paper will also focus on how the efficiency score and the
position in the ranking may vary depending on the data and methods used.

Description of the Sample

The sample used to conduct the empirical application is a 2015 dataset collected by ERSAR (the
Portuguese water and wastewater regulatory authority) [27]. This dataset was selected because the
data were publicly available, they were audited by ERSAR, and all variables had an uncertainty band
associated, reflecting the quality of data (e.g., if the data from the utility water meters have 0%–5%
uncertainty, this means that the reported value could be up to 5% greater or smaller).

The data sample was chosen considering that reliable data in the water sector are very scarce. The
data published by ERSAR are the only data in the world that are publicly available, validated by a
third party, and contain information on the uncertainty of each data element.

The results of this work are focused on evaluating whether frontier efficiency methods (and more
specifically DEA and SFA) are adequate tools for the regulation of water services. The analysis of
the results has a global application and the origins of the dataset used do not limit the validity of the
results from a geographical point of view.

From the 265 water utilities in the actual dataset, 194 were selected for the study, as the data
uncertainty information for the remaining ones was incomplete. All 194 utilities provide water supply
services, although some of them are multi-utilities, providing other services such as wastewater.

Uncertainty in the dataset is recorded in the following tolerance bands: 0%–5%, 5%–20%, 20%–50%,
50%–100%, 100%–300% and >300%. Most variables in the dataset fell under the 0%–5% and the 5%–20%
tolerance bands. However, some utilities reported uncertainties for some variables between 50% and
100%, or even up to 300% (the uncertainty band is reported by the utility to the regulator and may be
externally audited).

Regarding the selection of variables, following Marques et al. [28], three criteria were considered:
(i) the particularities of the water industry; (ii) the actual data elements available in the Portuguese
dataset, and (iii) examples in the literature [16,29].

The variables used for both DEA and SFA models were network length (km), total expenses
(€/year), volume of real water losses (m3/year), service interruptions (number/year), volume of produced
water (m3/year), and number of households covered by the water service (No.). The description of
each variable can be found in the ERSAR Technical Guide [30]. Table 1 summarizes the use of these
variables in each model.

Table 1. Configuration of the variables for the data envelopment analysis (DEA) and stochastic frontier
analysis (SFA) models.

Variables DEA Model SFA Model

Network length (km) Input Independent/Output
Total expenses (€/year) Input Dependent

Volume of real water losses (m3/year) Input Independent/Environmental
Service interruptions (number/year) Input Independent/Environmental
Volume of produced water (m3/year) Output Independent/Output

Number of households covered by the
water service (number/year) Output Independent/Output

All these variables have been extensively cited in literature for use in assessing the performance of
water utilities [5,6], the exception being the total expenses, which were selected instead of the operating
and manpower costs (the typical variables used for these studies). Total expenses, which include
capital and operating expenses, are not commonly used due to the discrepancies in this valuations
between utilities. However, in this case, the data come from a regulated environment, guaranteeing
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that all utilities calculate this variable following the same definition and procedure, and results are,
thus, comparable. Table 2 reports the descriptive statistics of the variables used in the study.

Table 2. Descriptive statistics.

Variables Unit Mean Standard Deviation Minimum Maximum

Volume of water produced m3/year 3,994,778 8,971,219 133,259 107,304,807
Number of households

covered by the water service nr/year 22,161 36,715 1157 308,986

Network length km 448 479 7 3960
Total expenses €/year 3,777,639 7,114,562 0.001 72,270,048

Volume of real water losses m3/year 751,023 975,151 8000 5,694,343
Service interruptions nr/year 15 31 0.001 233

Observations 194

3. Impacts of Data Quality and Uncertainty

3.1. General Considerations

The water sector is well-known for having low-quality and uncertain data. There are several
factors that contribute to this fact. Firstly, most water networks were built a long time ago (many are
over 100 years old), and as the networks are mainly buried, there may be high uncertainty concerning
the location, characteristics, and state of at least some of the network’s assets. Secondly, there are
variables that cannot be measured accurately at a reasonable cost. For instance, domestic water meters
are required by standards to keep their error below 2% in steady flow and 5% in transition flow [31].
However, these measurement errors correspond to brand new meters that have been properly selected
for each type of use, and in practice errors can be significantly higher [32]. Finally, there are variables
which are not measured but rather calculated, including estimated values (e.g., water losses). In these
cases, the uncertainty is even greater, as several uncertainties are combined or estimations are included.

These uncertainties are not avoidable; rather, they are intrinsic to the water sector (with the
current technology they can be reduced but not completely eliminated). This is why the Manual of Best
Practice for performance indicators of the IWA (International Water Association) stresses the need to
consider data quality as part of any performance assessment system [33,34]. If input variables cannot
be limited to a single value, but rather include a range of values, it seems logical that econometric
methods should include a range of outputs rather than being limited to a single output.

3.2. Data Envelopment Analysis Model

The impact of data quality on the results of a DEA model were explored in detail by the authors
in a previous paper [35], and a brief summary with the major findings is included below in order to
compare them to SFA results.

In order to determine the impact of data uncertainty on the results, a DEA tolerance approach
was used with the described dataset. A tolerance interval was established for each variable to
account for uncertainty (as variables could actually take any value within this interval). Following
Molinos-Senante et al. [35], 81 (34) DEA scenarios were run with different combinations of values for
variables. The three are the alternatives which correspond to the situations considered for each utility
(DMU): favorable, unfavorable, and original. The number four are the possible combinations of inputs
and outputs were used for the analyzed utility. These are inputs and outputs for the analyzed DMU
and inputs and outputs for the remaining DMUs. Thus, the best case scenario for the evaluated utility
is has the lowest values for inputs and the highest for outputs.

The results of 81 simulations in the DEA tolerance model with the complete sample of 194 utilities
showed a wide range of variability in the efficiency, similar to the results presented by Cabrera et al. [36].
Specifically, the average change in the efficiency of the utilities due to data uncertainty was 71%,
reaching 97% for the worst case. As regulators usually base their yardstick regulation approach on the
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ranking of utilities from best to worse, the impact this change in efficiency had on the ranking was
also analyzed. Based on the efficiency scores, the DMUs (water utilities) were ranked. The average
variation in ranking was 103 positions, with a maximum variation of 193 positions (out of 194).

Given the results and the high uncertainties that some utilities showed for some variables, a
second DEA tolerance run was performed with a reduced set of utilities [36]. DEA is very sensible
to outliers, and therefore these high uncertainties have a relevant effect on the results, as they may
impact the frontier and the efficiency scores of all utilities. In this second simulation, utilities with
more than 20% uncertainty in any of their variables were removed from the sample. As a consequence,
the reduced sample contained 108 utilities. The results in this second sample, as expected, had less
variance. Figure 2 displays the results of this simulation. This figure represents the maximum and
minimum efficiencies obtained by utilities from the 81 simulations and their original scores. The
original DEA score corresponds to the DEA simulation without considering data uncertainty.
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Figure 2. Minimum, maximum, and original data envelopment analysis (DEA) results for the reduced
sample [36].

As this figure shows, even in this case the variability was still large, with the average change in
efficiency being 17% and the highest variability being 43%. Concerning ranking positions, on average
utilities changed 13 positions in the ranking, with 49 positions being the maximum change. These
results demonstrate how sensible DEA is to uncertain data. This is particularly relevant if results are
to be used for regulatory purposes. The results of the 81 simulations for both complete and reduced
samples are available in the Supplementary Data File.

These results demonstrate the relevance of the collection, validation, and consideration of data
quality when assessing the performance of utilities. DEA is a consistent method as long as data are not
uncertain, which is not the case for the water sector. In addition, the resources needed to reduce such
uncertainty are considerable, which raises questions about the validity of this method as a regulatory
tool for the water sector.

3.3. Stochastic Frontier Analysis Model

In order to provide a more complete picture for this paper, the DEA experiment was repeated
with a parametric frontier efficiency method—the SFA method. This required some minor adjustments.
There is no equivalent of the DEA tolerance approach in SFA. Therefore, the cases needed to be created
manually. Two case scenarios were created in addition to the “original scenario” in order to assess the
variability that data quality had on efficiency results. The original scenario does not consider data
uncertainty. The two additional cases were built as follows. In one case all variables were set to their
most favorable value (e.g., losses and costs set to minimum values), while in the other case they were
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set to their most unfavorable value. It must be stressed that this is only a minimum sample of the
variability for this dataset, as it is very unlikely that the values of all variables for all utilities would
actually present their best or worst values in unison.

The SFA case was performed with the reduced and most accurate set of utilities (108 in total).
Using the data from all 194 utilities was impossible due to convergence issues in the SFA model.
Considering that these data are from a regulated environment where data quality is actually recorded,
this raises questions about the practicality of using SFA as a regulatory method in some environments.

The Appendix A (Tables A1–A3) shows the econometric results from the estimation of the cost
frontier model for the three case scenarios: original, best, and worst scenarios. The coefficient of the
variables is interpreted as elastic, because the data were normalized around their mean [24]. Output
variables are significant across the three models, with volume of water delivered and connections being
the major cost drivers, as shown by their coefficients. Technical speaking, if all other factors remain equal,
a 1% increase in total expenses may lead to an increase of 0.789%, 0.287%, and 0.145% in the volume of
water delivered, connections, and length of mains, respectively. As for the environmental variables,
water losses had a statistically significant impact on total costs, which is consistent across models.

Figure 3 displays the results obtained (the detailed complete results are available in the
supplementary data file). As this figure shows, none of the utilities are included in the efficiency
frontier (efficiency = 1). Additionally, there is less variability of results compared to the DEA study.
This is due to the lower effect outliers have in this model, but also a result of the methodology followed
to create the cases, especially the best scenario. The scenario considered for each variable is its best
performance (from within the variable’s tolerance range). As a result, for most variables the best value
is the one with the lowest tolerance value. In those cases where the tolerance band ranges from 0% to
5%, there is no variation from the original scenario (value + 0% tolerance), giving similar results for the
two considered scenarios.
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Figure 3. Minimum, maximum, and original stochastic frontier analysis (SFA) results for the
reduced sample.

In any case, the average variability of efficiency is 8%, and the average variation in the ranking
position is higher than 8 positions (as in the DEA model, ranking is obtained from the efficiency scores
for utilities, which are obtained from the simulations). The maximum variability in efficiency is 23%,
and the maximum change in the ranking is 25 positions. Table 3 displays the variation in the ranking
for some utilities.
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Table 3. Example of variation of utilities in the ranking.

ID Utility
Original Simulation Simulation 1 Simulation 2

Max
∆PositionRanking Position Ranking

Position ∆Position Ranking
Position ∆Position

49 34 30
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evaluated options was also smaller, this still raises significant questions about the convenience of 
SFA as a regulatory tool. After all, the results shown in Table 3 would make a great argument for a 
regulated utility when trying to discredit the methodology used by the regulator and the 
conclusions obtained about which utility provides a better, more efficient service.  

4. Further DEA and SFA Limitations 
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These results are slightly better than those of the DEA simulation with the reduced dataset.
However, considering that the larger set could not be studied with SFA and the number of evaluated
options was also smaller, this still raises significant questions about the convenience of SFA as a
regulatory tool. After all, the results shown in Table 3 would make a great argument for a regulated
utility when trying to discredit the methodology used by the regulator and the conclusions obtained
about which utility provides a better, more efficient service.

4. Further DEA and SFA Limitations

Besides the clear impact of data uncertainty on these methods, further limitations should be
explored when considering their use for regulatory purposes.

4.1. Limitation of the Number of Variables

As previously stated, econometric methods are limited by the maximum number of variables they
can consider. This has not been an obstacle in the applications of the methods reported in the literature,
as the number of variables has always been kept within the limits, as seen in the recompilations of
frontier efficiency studies from Abbot et al. [5] and Ferro et al. [6].

However, quality of service variables are often overlooked or simplified in these studies. This is
critical, as the cost of the service and its quality are intrinsically linked [37], with a consequent impact
on efficiency. In other words, if the quality of service provided is not properly considered, a better (and
more expensive) service may be considered more inefficient than a worse (but cheaper) service.

The number of quality of service variables in the water sector is higher than in other sectors (e.g.,
gas or electricity). This implies that more variables need to be assessed and considered when evaluating
the kind of service the users are provided. Table 4 displays a list of users’ expectations (corresponding
to quality of service variables) for the gas, electricity, and water sectors. User expectations for water
are based on ISO standard 24510:2007 [11], while the rest were compiled by the authors of [9].

Table 4. Users expectations in gas, electricity, and drinking water or wastewater services.

Gas Electricity Drinking Water/Wastewater

Continuity Continuity Continuity
Suitable rates Suitable rates Suitable rates

Correct customer management Correct customer management Correct customer management
Suitable voltage/current Suitable pressure/flow rate

Drinkability
No taste
No smell

No residual flooding
Minimum environmental impact

Frontier efficiency methods have been traditionally used for energy and gas regulation, and were
later applied to the water sector [38]. As the number of quality of service aspects to be considered in
the water sector is greater, it has to be assessed whether these models can deal with all the variables
needed to fairly assess the efficiency of utilities.
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In addition to the quality of the service, there are exogenous aspects outside the control of the
utilities that have an impact on costs and efficiency (e.g., weather, topography, raw water quality, water
sources, population density). These aspects can be estimated by SFA models as random errors, but not
by DEA.

Worthington [17] shows how, on average, the number of variables in these models is usually less
than 10 (inputs and outputs or dependent and independent variables).

For DEA, there is a rule that fixes the maximum number of inputs and outputs according to the
number of DMUs analyzed. This is called Cooper’s rule, n ≥ max

{
m× s; 3(m + s)

}
, where n is the

number of DMUs, m is the number of inputs, and s is the number of outputs [10].
This rule is a limitation for DEA models when the number of utilities assessed is low, such as the

DEA model referred to in the previous section, which has 4 inputs and 2 outputs, requiring a minimum
of 18 DMUs. A DEA model considering all the user expectations from ISO standard 24510, in addition
to context information (topography, etc.), would require even more utilities.

As an example, let’s suppose that in addition to the 6 variables used in the previous chapter, the
following inputs are considered: the infrastructure value index (IVI), as a measure of the sustainability
of the infrastructure; the average pressure in domestic connections; the percentage of water quality
tests passed; and the average topographic elevation of the network. Additionally, the following two
explanatory variables are considered as inputs as well: customer satisfaction and type of water source.
In this case, the number of minimum DMUs would increase to 36. This is not a problem in the specific
dataset from the Portuguese water sector, as the number of utilities is large, but this is a limitation in
areas with fewer utilities, such as the United Kingdom, the Netherlands, or Australia.

The selection of variables in the SFA is more delicate, as the dependent variable has to be expressed
as a function of the independent variables. When selecting the variables, a basic descriptive analysis
should always be performed in order to detect possible sources of errors in the model, such as
heteroscedasticity or multi-collinearity (at least 2 variables are highly linearly related).

There is no maximum number of independent variables that should be used in a SFA model. This
number depends on the degrees of freedom of the model and the number of observations (in our case,
number of utilities). If there are few observations and the number of variables is high, there will not be
enough degrees of freedom left and the model will not work properly.

Therefore, in both the DEA and SFA models, the number of variables admitted depends on the
size of the sample. In large samples, such as the Portuguese sample used previously, the model could
admit as many variables as needed, while in smaller samples (e.g., the UK) there is a limitation and
most quality of service or context variables will be discarded.

However, a larger number of utilities is not the only answer to the problem, as the more variables
the model has, the more likely it is to have multi-collinearity problems between those variables.
Multi-collinearity is usually present in samples from the water sector [17], and models with a larger
number of variables are more likely to have this. There is evidence that if the correlation between
variables is higher than 0.8, the model can be biased and results of the model can be affected, especially
in SFA [39]. Possible solutions include enlarging the sample (difficult in a regulated environment, as
it would require the number of utilities assessed with the model to be increased) or reducing highly
correlated variables, although in the latter case, the problem of misspecification in the model [39] could
appear, misrepresenting reality.

4.2. Other Limitations of Frontier Efficiency Methods for Regulatory Uses

As established in The Lisbon Charter [40], any regulatory body should be based on the principle
of transparency. One of the responsibilities of these bodies, according to this charter, is “providing
reliable, concise, credible information that can be easily interpreted by all, covering all operators,
regardless of the management system adopted for service provision.” Frontier efficiency methods may
not be the best suited for regulation based on these principles. As complex methods, the average citizen
does not understand the process followed to rank utilities and make regulatory decisions. As a result,
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users need to trust the regulatory experts and believe the process followed is the most appropriate
for the task. This is not ideal, and when the regulator changes each price review method, users may
question the validity of the results from previous reviews, as could be the case for OFWAT [7,13,41,42].

The selection of variables is another key part of the process (DEA is particularly sensitive to
variable selection [17]). This is not trivial, since there are many variables to select from, as previously
stated. Abbot and Cohen [5] and Ferro et al. [6] published reviews of frontier efficiency methods
applied to the water sector. An analysis of the inputs, outputs, and environmental variables of these
reviews shows that there are more than 20 different variables considered in the literature as inputs, 45 as
outputs, and 30 as environmental variables. The selection of variables will determine the adequacy of
the model and has to be related to the sample’s context. The expertise and knowledge of the water
sector is needed for proper selection of variables and to accurately model real situations. Since the
results will change depending on the variables used, the variable selection may always be disputed by
utilities who understand that they would be perceived as more efficient with different variables.

Finally, there are several technical decisions to be made, such as the functional form in SFA or
variable and constant returns of scale in DEA [4]. These decisions have direct impacts on the results.
According to Worthington [17], there are so many configurations in frontier efficiency models that even
with the same model results can widely differ due to their configuration. Once more, this is a serious
challenge in their use for regulatory purposes, as those utilities with less favorable efficiency results
can argue that results are due to an unfair model that does not entirely capture the context, and could
propose similar models with the same variables but different parameters, whereby the utility receives
better results [43].

5. Consistency Check of DEA and SFA Models

Few authors have compared the performance of the SFA and DEA approaches to evaluate
the consistency of their performance (efficiency and productivity change). Some examples are
Kirkpatrick et al. [43], Berg and Lin [44], Molinos-Senante and Maziotis [45], and Corton and Berg [46].

As DEA and SFA methods are based on different principles, their efficiencies can differ [4]. For the
purpose of this comparison, results of these methods are considered to be consistent if the efficiencies
and rankings are similar and the methods identify the same groups of best and worst performers.

The inconsistency of the results between the two methods has previously been reported in the
literature. For instance, a study comparing the performance of six Latin American countries using SFA
and DEA found that a utility that was close to the top in the DEA model was the lowest ranked in the
SFA model [46].

Another relevant example for water sector regulation is the case of OFWAT. In the previous price
review for 2014 (PR14), this regulator obtained the efficiencies of utilities with three different models.
The reason was that none of the models was considered to entirely capture the efficiency or to be
completely reliable. In addition, the results provided by these models were different. Therefore, in
order to minimize the impact of selecting an inaccurate model, the result of each was triangulated to
obtain the efficiency score for each utility [7].

This procedure led companies to complain, as they did not consider the models to be accurate
enough to act as the baseline for the price review and base tariffs. As argued by Kumbhakar [47], the
average of three models when one or more is inaccurate ruins the results from the accurate one, and
the efficiency score is likely to be incorrect.

The Danish regulator also performed DEA and SFA simulations in a best-of-two approach [8], a
procedure that raises the same questions as in the OFWAT case.

For the purposes of this study, in order to assess the consistency of DEA and SFA methods for
regulatory purposes, the differences of the efficiency scores and the positions in the ranking between
the original simulation of these two models will be compared. For this comparison it will be used the
reduced sample of 108 utilities described previously.
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As can be observed in Figure 4a, utilities generally show better efficiencies when evaluated with
the SFA, although when using DEA efficiencies are more disperse. None of the utilities under the
SFA model reaches the efficiency frontier, whereas in the DEA model, 18 utilities reach the frontier.
Concerning the lowest efficiencies, both methods have efficiencies as low as 35%. The average efficiency
for SFA is 79%, whereas the average efficiency for DEA is slightly lower at 68%. This difference is not
surprising as, SFA generally obtains better efficiencies than DEA [39].

1 
 

 
(a) (b) 

 Figure 4. Comparison of the efficiency scores from the reduced sample for SFA and DEA models:
(a) efficiency results for both SFA and DEA models: (b) differences in the ranking positions between
both methods.

As previously mentioned, regulators using frontier efficiency methods for yardstick regulation
generally use ranking positions rather than the efficiency score itself. Therefore, although SFA and
DEA models may provide different efficiency scores for utilities, if ranking positions were similar,
results would be probably be acceptable (and could be considered consistent).

The variation in the ranking position obtained with each model was compared. On average,
utilities had a variation of 44 positions in the ranking between both models, with a maximum variation
of 107 positions (out of 108) and a minimum of 2 positions. As seen in Figure 4b, utilities occupying the
central 50% of the sample change between 21 and 62 positions. These outcomes suggest that results
from DEA and SFA are not consistent, as they do not identify the same group of utilities as good or
bad performers. In other words, utilities that are considered good performers by one method do not
receive the same result from the other. Consequently, the use of these methods for regulation could be
questioned by utilities.

As suggested by Molinos-Senante and Maziotis [45], the deviations between SFA and DEA results
are firstly due to the fact that the SFA requires a functional form for the unknown technology, which
DEA does not, as it is a deterministic approach. Secondly, the DEA method is more sensitive to data
variation than the SFA method.

Additionally, part of the difference in results between both methods may be due to the fact that SFA
separates inefficiency into real inefficiency and random effects. Thus, any differences in the efficiency
results between DEA and SFA could be attributed to the assumptions implied by these two methods.

However, with no further data concerning the context of utilities, it is not possible to know if there
is any other reason for these differences and comparisons between both methods are inconclusive. An
extensive analysis of the context and external factors affecting water utilities would be needed in order
to determine the reason behind the discrepancies between methods.

6. Conclusions

This paper analyzed the adequacy of frontier efficiency methods for the regulation of the water
sector, and more specifically DEA and SFA. Their adequacy was assessed based on three aspects:
(i) how they behave with the uncertain data from the sector; (ii) how other limitations affect their use
for regulatory purposes; and (iii) the consistency of the results obtained with both methods.
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Results show that DEA is very sensitive to data uncertainty, and therefore the ranking of utilities
will be affected by normal data variations within the range data of uncertainty. The SFA model shows
less variance, although it is still significant.

The number of variables to be considered in order to fully evaluate the efficiency of a water
utility for regulatory purposes is large, as the quality of service and the utility’s context need to be
characterized. It has been found that in both models, if a large set of variables is to be modelled, the
size of the sample (number of utilities) also has to be large. For DEA, Cooper’s rule has to be fulfilled.
For SFA, the degrees of freedom must be preserved. Even for large samples where many variables can
be considered (as in this study), issues of multi-collinearity between the variables may appear. When
the number of utilities is low, the number of variables will be a limitation for assessing efficiency with
these methods.

These methods are hard to understand for the average user, and they represent a barrier between
the regulator and the users, discouraging public participation and interest in the regulatory process.

Finally, there are important differences in the efficiency values and ranking positions obtained
with both methods, something that is further confirmed by other examples in the literature. This
lack of consistency may have a significant impact on the credibility of the results, especially when
considered as regulatory tools.

In consequence, the use of these methods for regulatory purposes may not be recommendable, as
the decisions made based on them can be questioned by utilities and users.

This conclusion does not call into question the validity of the methodologies, which has been
extensively demonstrated in the literature. However, the specific conditions of the water sector have a
direct and noticeable impact on the results.

The results obtained with frontier efficiency methods often constitute the start of the conversation
between the regulator and utilities, and not the ultimate criteria for making decisions. However, the
results should not be considered infallible and a consideration should be made for less complex and
transparent methods that can also encourage efficiency and promote a similar dialogue between the
regulator and the utilities.
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Appendix A

Table A1. Estimates of the cost frontier model for the original scenario.

Variables Parameter Coefficient Standard Error T-Statistic p-Value

Constant β0 4.165 0.864 4.823 0.000
Water delivered β1 0.789 0.111 7.098 0.000
Connections β2 0.287 0.108 2.650 0.008
Network length β3 0.145 0.053 2.718 0.007
Service interruptions β4 0.003 0.024 0.117 0.907
Water losses β5 −0.285 0.064 −4.486 0.000
Log-likelihood −31.839
Theta 4.020 0.749 5.366 0.000
Sigmav 0.228 0.029 7.848 0.000

Dependent variable = total expenses. Sigmav is the Standard deviation of v. Bold coefficients are statistically
significant from zero at the 5% level.

http://www.mdpi.com/2073-4441/12/4/1046/s1
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Table A2. Estimates of the cost frontier model for the best scenario.

Variables Parameter Coefficient S.E. T-Statistic p-Value

Constant β0 4.420 0.926 4.775 0.000
Water delivered β1 0.800 0.117 6.832 0.000
Connections β2 0.303 0.112 2.693 0.007
Network length β3 0.167 0.057 2.951 0.003
Service interruptions β4 −0.002 0.026 −0.075 0.940
Water losses β5 −0.305 0.068 −4.468 0.000
Log-likelihood −42.116
Theta 3.473 0.667 5.207 0.000
Sigmav 0.241 0.036 6.738 0.000

Dependent variable = total expenses. Sigmav is the Standard deviation of v. Bold coefficients are statistically
significant from zero at the 5% level.

Table A3. Estimates of the cost frontier model: worst scenario.

Variables Parameter Coefficient S.E. T-Statistic p-Value

Constant β0 4.037 0.848 4.762 0.000
Water delivered β1 0.780 0.109 7.122 0.000
Connections β2 0.286 0.107 2.667 0.008
Network length β3 0.138 0.052 2.631 0.009
Service interruptions β4 0.004 0.023 0.155 0.877
Water losses β5 −0.276 0.062 −4.418 0.000
Log-likelihood −29.887
Theta 4.094 0.751 5.450 0.000
Sigmav 0.224 0.028 8.010 0.000

Dependent variable = total expenses. Sigmav is the Standard deviation of v. Bold coefficients are statistically
significant from zero at the 5% level.
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