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Abstract: The aim of this study was to model, as well as monitor and assess the surface water quality
in the Eastern Black Sea (EBS) Basin stream, Turkey. The water-quality indicators monitored monthly
for the seven streams were water temperature (WT), pH, total dissolved solids (TDS), and electrical
conductivity (EC), as well as luminescent dissolved oxygen (LDO) concentration and saturation. Based
on an 18-month data monitoring, the surface water quality variation was spatially and temporally
evaluated with reference to the Turkish Surface Water Quality Regulation. First, the teaching–learning
based optimization (TLBO) algorithm and conventional regression analysis (CRA) were applied
to three different regression forms, i.e., exponential, power, and linear functions, to predict LDO
concentrations. Then, the multivariate adaptive regression splines (MARS) method was employed
and three performance measures, namely, mean absolute error (MAE), root means square error
(RMSE), and Nash Sutcliffe coefficient of efficiency (NSCE) were used to evaluate the performances of
the MARS, TLBO, and CRA methods. The monitoring results revealed that all streams showed the
same trend in that lower WT values in the winter months resulted in higher LDO concentrations,
while higher WT values in summer led to lower LDO concentrations. Similarly, autumn, which
presented the higher TDS concentrations brought about higher EC values, while spring, which
presented the lower TDS concentrations gave rise to lower EC values. It was concluded that the water
quality of the streams in the EBS basin was high-quality water in terms of the parameters monitored
in situ, of which the LDO concentration varied from 9.13 to 10.12 mg/L in summer and from 12.31 to
13.26 mg/L in winter. When the prediction accuracies of the three models were compared, it was seen
that the MARS method provided more successful results than the other methods. The results of the
TLBO and the CRA methods were very close to each other. The RMSE, MAE, and NSCE values were
0.2599 mg/L, 0.2125 mg/L, and 0.9645, respectively, for the best MARS model, while these values were
0.4167 mg/L, 0.3068 mg/L, and 0.9086, respectively, for the best TLBO and CRA models. In general,
the LDO concentration could be successfully predicted using the MARS method with various input
combinations of WT, EC, and pH variables.

Keywords: dissolved oxygen; Eastern Black Sea Basin; multivariate adaptive regression splines;
stream water quality; teaching–learning based optimization

1. Introduction

Water quality management plays the most important role in the control of surface water pollution
and the planning of river basins. The possible pollution of clean water resources by industrial and
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municipal wastes has always been a concern for users of these water resources. Dissolved oxygen (DO)
concentration, which is one of the main indicators in determining the quality of surface waters, has
received great attention in the literature in recent years [1]. The major sources of DO are (i) reaeration
from the atmosphere, (ii) enhanced aeration at weirs and other structures, (iii) photosynthetic oxygen
production, and (iv) the introduction of DO from other sources, such as tributaries [2,3].

The DO concentration used in the determination of the quality of surface waters is significantly
affected by the physical, chemical, and biological factors of the river and combinations of these
factors [3–6], and has both a seasonal and a daily cycle [7]. DO concentration in surface waters is
a water quality parameter that is significantly affected by temperature. The solubility of oxygen in
water decreases as the water temperature (WT) increases. Based on this relationship, it is possible to
say that cold water holds more DO than hot water. DO concentration is high in winter and spring
months when the WT is low, while DO concentration in water is low in summer and autumn months
when the WT increases. When making pH measurements, it is important to take into account the
temperature parameter, which has an important effect on hydrogen-ion activities. DO concentration
is also dependent on the electrical conductivity (EC). Low WT as well as low conductivity and high
atmospheric pressure are the factors that increase DO concentration in water [8]. Therefore, DO, WT,
EC, and pH, which are monitored by many researchers [9–12] are important water-quality indicators.

Measurement of DO concentration or saturation in the rivers is very important for the determination
of the quality of rivers and water resources management. Although it is difficult to constantly monitor
the change in DO concentration, much effort is being made to establish models that determine this
change based on other water-quality indicators. This is the main motivation for studies to predict DO
concentration using other water-quality indicators [2,13,14]. Various methods have been used in the
simulation and prediction of DO in surface waters. Some of them are artificial neural networks [15,16],
Mike 11 [17], adaptive neuro-fuzzy inference system [18,19], etc. Among them, multivariate statistical
techniques have been widely used to characterize water quality [20–24].

The surface water quality has been monitored by the 22nd Regional Directorate of State Hydraulic
Works in the Eastern Black Sea (EBS) Basin, Turkey. However, the monitoring studies are spatially and
temporally limited since it is expensive to set up water quality monitoring stations at desired locations.
Spatially, the streams Yomra and Manahoz from the basin, for example, have not been monitored.
Temporally, the monitoring frequency is quarterly for the streams Foldere, Kalenima, Karadere, and
Solaklı from the basin. Moreover, the surface water quality data have not been published. On the
other hand, the researchers from Turkish universities have been closely interested in the surface water
quality in the basin. Gultekin et al. [10] monitored and assessed the water quality for a lot of streams in
the basin but for a limited duration, spring of 2009. Bayram [11] monitored and assessed the water
quality for Değirmendere Stream only from the spring of 2010 to the winter of 2011. Koralay et al. [12]
monitored and assessed the water quality for the Solaklı Stream, only from January to December 2014.

The two main objectives of this study are (i) to monitor and assess the water quality of the
aforementioned streams, as well as the Değirmendere Stream, in terms of WT, pH, luminescent
dissolved oxygen (LDO) concentration and saturation, total dissolved solids (TDS), and EC, and (ii) to
predict the stream LDO concentration by developing appropriate equations by way of the multivariate
adaptive regression splines (MARS), teaching–learning based optimization (TLBO), and conventional
regression analysis (CRA) methods. The stream WT, EC, and pH were selected as input variables.
Various combinations of these variables were used for modeling LDO concentration. Predictions from
all methods were also compared with each other. To the authors’ knowledge, there has not been any
published study that compared the MARS, TLBO, and CRA methods in modeling LDO concentrations.

The paper is structured into four sections. The information about the study area, modeling
variables, the techniques used for modeling and the model development applications are introduced
in the next section. Then, the water quality monitoring and LDO modeling results are presented in the
third section. The summary and some conclusions are then made in the final section of the paper.



Water 2020, 12, 1041 3 of 23

2. Materials and Methods

2.1. Study Area

There are 25 hydrological basins in Turkey. With a mean annual surface water potential of
16.46 × 109 m3 in 2016 [25], the EBS basin is of prime importance, in comparison with a mean annual
groundwater potential of 0.49 × 109 m3 in 2016. The EBS basin comprises the provinces Ordu, Giresun,
Trabzon, and Rize, respectively, along the Southeastern Black Sea coast. The Trabzon Province with a
total population of 779,379, according to the 2016 census [26] is the biggest city in the basin. There are a
lot of streams draining the major agricultural, urban, and industrial areas of the Trabzon Province,
where sanitary sewage systems serve 623,503 people, according to the municipal wastewater statistics
survey in 2016 [27]. About 73.966 × 106 m3 per year of wastewater are generated, 3.111 × 106 m3 of
which discharge through the streams to the Black Sea [27]. As a result of this discharge, the stream
water quality might be affected negatively. For this reason, the streams that are vital for the province,
where the groundwater potential is insignificant, were selected for the water quality monitoring.
Considering the modeling studies at a later stage, it was also decided to monitor seven streams, three of
which were to the west and three of which were to the east, with reference to the Yomra Stream located
in the middle part of the province. In this way, it was possible to represent the study area completely.
The streams monitored from west to east were the Foldere, Kalenima, Değirmendere, Yomra, Karadere,
Manahoz, and Solaklı, respectively. One monitoring station, where the stream discharges into the
Black Sea, was selected for each stream along the coast of Trabzon Province in the basin (Figure 1).
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Figure 1. The stream water-quality monitoring stations selected in the Eastern Black Sea Basin, Turkey.

2.2. The Stream Gauging

There are a lot of stream gauging stations in the basin, however, many of which are not operational
for various reasons. Therefore, it can be asserted that the coastal part of the Trabzon Province is
poorly gauged. Nevertheless, there were seven stream gauging stations operated by the 22nd Regional
Directorate of General Directorate of State Hydraulic Works in the study area. However, the flow
rate data recorded from four stations—the Şerifli station on the Foldere Stream, the Öğütlü station on
the Değirmendere Stream, the Taşdelen station on the Yomra Stream, and the Ağnas station on the
Karadere Stream, respectively, during the study period (March 2015–August 2016). The characteristics
of these stations are given in Table 1 [28].
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Table 1. Location features of the stream gauging stations operated in the study area.

Stream Gauging
Station Coordinates Drainage

Area (km2)
Operating

Altitude (m)
Gauging

(2015–2016)

Foldere Şerifli 39◦17’06” E – 41◦00’59” N 181.30 60 Yes
Kalenima Doğanköy 39◦28’10” E – 40◦54’10” N 129.40 410 No
Değirmendere Öğütlü 41◦11’00” E – 40◦51’50” N 728.40 160 Yes
Yomra Taşdelen 39◦51’23” E – 40◦51’14” N 68.85 385 Yes
Karadere Ağnas 40◦00’25” E – 40◦50’58” N 635.70 78 Yes
Manahoz Ortaköy 40◦07’00” E – 40◦51’00” N 174.00 150 No
Solaklı Ulucami 40◦15’20” E – 40◦45’00” N 576.80 275 No

2.3. Stream Water Quality Monitoring

We employed two Hach HQ40d portable multi-parameter meters to monitor the stream DO
concentration (mg/L) and saturation (%), pH and TDS (mg/L), and EC (µs/cm), simultaneously, since
the Hach HQ40d portable multi-parameter meter had only two input channels for simultaneous
measurement. The first one was equipped with the conductivity probe (CDC401) and a pH electrode
(PHC101), and the second one was equipped with the Luminescent/Optical DO probe (LDO101).
The stream WT could be measured by the LDO probe, as well as the pH electrode and the conductivity
probe. The stream WT, pH, LDO concentration and saturation, TDS, and EC were automatically
measured and recorded in situ for 15 min, at 30 s intervals. The final result was presented as the
arithmetic mean of the 30 readings. All measurements were conducted monthly at seven monitoring
stations during the study period (March 2015–August 2016).

2.4. Modeling Variables

In water quality modeling studies, determining the independent variables was the most important
part of the study. Therefore, the independent variables must be chosen appropriately. By considering
the literature about DO modeling, a wide variety of water quality variables were used (Table 2). These
variables were flow rate (Q), WT, pH, EC, specific conductivity (SC), water depth (WD), total solids
(TS), total alkalinity (TA), water hardness (WH), air temperature (AT), nitrite ion (NO2

−), nitrate ion
(NO3

−), ammonium ion (NH4
+), phosphate ion (PO4

3−), total phosphorus (TP), chemical oxygen
demand (COD), sulfate ion (SO4

2−), sodium ion (Na+), potassium ion (K+), calcium ion (Ca2+), chloride
ion (Cl−), and biochemical oxygen demand (BOD). Taking into account the literature review [29–48],
the WT, the EC, and the pH (which are most effective in modeling studies) were selected as the
independent variables.

2.5. Multivariate Adaptive Regression Splines (MARS) Method

The MARS method is a non-parametric, flexible, and rapid regression method, first presented
by Freidman [49]. It does not presuppose the functional relationships between input and output
variables used in modeling [50,51]. Instead, it attempts to determine the relationship between variables
by dividing the data into subsets of data. With this process, the training data set was divided into
linear segments called splines. The endpoints of these splines are called knots. Partial curves formed
between the two knots are called basic functions [52]. This strategy made the MARS method more
advantageous and flexible than the other statistical methods in multivariate modeling studies [53].
More details about the MARS and its implementation can be found in [54–56].
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Table 2. The input variables (highlighted cells having asterisk sign) used for dissolved oxygen (DO) modeling in previous studies.

Author(s) Year Reference
Number

Input Variables

Q WT pH EC SC WD TS TA WH AT NO2− NO3− NH4
+ PO43− TP COD SO42− Na+ K+ Ca2+ Cl− BOD

Diamantopoulou et al. 2007 [29] * * * * * * * * *
Chen and Li 2008 [30] * * *
Singh et al. 2009 [31] * * * * * * * * * * *
Ay and Kisi 2011 [32] * * * *
Wen et al. 2013 [33] * * * * * * * *
Antanasijevic et al. 2013 [34] * * * *
Kisi et al. 2013 [35] * * * *
Heddam 2014 [36] * * * *
Evrendilek and Karakaya 2014 [37] * * * *
Heddam 2014 [38] * * * *
Heddam 2014 [39] * * * *
Nemati et al. 2015 [40] * * * * * * * *
Bayram and Kankal 2015 [41] * *
Kanda et al. 2016 [42] * * * *
Olyaie et al. 2017 [43] * * * *
Heddam and Kisi 2018 [44] * * * *
Elkiran et al. 2018 [45] * * *
Yaseen et al. 2018 [46] * * * *
Csabragi et al. 2019 [47] * * * *
Kisi et al. 2020 [48] * * *
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2.6. Teaching–Learning Based Optimization (TLBO) Algorithm

The TLBO algorithm is a meta-heuristic optimization algorithm developed by [57]. This algorithm
is based on the phenomenon of teaching and learning. The TLBO algorithm has some advantages
over other population algorithms. One of the most important advantages of the TLBO is that it does
not require any parameters setting for the working of the algorithm, making the implementation
of TLBO simpler [58]. More detailed information about the TLBO algorithm can be found in the
literature [58–60].

2.7. Model Development Applications

The estimation and forecasting of the major parameters of surface waters are typically performed
using various types of artificial intelligence–based techniques that rely on machine learning. This
requires training, validation (the latter can be omitted if data are scarce) and test sets [61]. The process
of separating data into training, validation, and test data sets can be done in a variety of ways. Csabragi
et al. [61] evaluated the process of separating the data into training, validation, and test data sets under
three headings. These are as follows—(i) random creation of the respective sets, (ii) assigning the
majority of sampling points to the training set and a smaller proportion of sampling points to the test
set, and (iii) assigning multiple initial years to the training set and a couple of final years to the test set.
In this study, the data were divided into the training and test data sets, taking into account situation
(ii). There were a total of 126 measurements, 90 of which were used for training (five streams) and the
remaining measurements were reserved for testing (two streams). In this way, the method that gave
the best results for the training dataset was tested for whether it gave good results for any stream in
the EBS basin. Table 3 shows the division of streams as training and test groups.

Table 3. The division of the Eastern Black Sea (EBS) Basin streams used in the luminescent dissolved
oxygen (LDO) modeling.

Stream Training Group Testing Group

Foldere •

Kalenima •

Değirmendere N
Yomra •

Karadere •

Manahoz N
Solaklı •

Note: Black circles for training group and black triangles for testing group.

The general approach to choose a good training data set from the available data is to include all
extreme data in the training data set [62]. The minimum (Min), mean, maximum (Max), and standard
deviation (SD) values for the water-quality indicators, which were employed for the training and
testing data sets, are given in Table 4.

Table 4. Basic statistics for the water-quality indicators employed in the training and testing data sets.

Water-Quality
Indicators

Training Data Set Testing Data Set

Min Mean Max SD Min Mean Max SD

LDO, mg/L 8.25 10.89 15.08 1.38 8.98 11.08 13.97 1.20
WT, ◦C 0.93 14.16 27.35 6.37 3.30 13.43 23.70 5.53
pH 7.62 8.37 9.68 0.37 7.41 8.26 8.98 0.37
EC, µS/cm 58.11 165.34 792.53 108.42 55.71 125.97 280.60 57.43

In the present study, different input combinations were established to determine the effect of the
input variables on the LDO concentration. The input combinations created in the study were WT
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(Model 1); WT and EC (Model 2); WT and pH (Model 3); and WT, EC, and pH (Model 4), respectively.
Following the input combination and modeling process, the MARS method was applied to identify the
equations that produced the results closest to the measured LDO concentration, by using the Salford
Predictive Modeler 8.0 software. Then, three different regression functions, i.e., exponential, power,
and linear, were used for the TLBO and CRA methods, which were chosen to optimize the unknown
coefficients (wi) of the independent variables (xi) [52]. The equations of exponential, power, and linear
functions are given below;

yExponential = w0 + exp(w1 + w2x1 + w3x2 + . . .+ wn+1xn) (1)

yPower = w0xw1
1 xw2

2 xw3
3 xw4

4 . . . x
bn
n (2)

yLinear = w0 + w1x1 + w2x2 + w3x3 + . . .+ wnxn (3)

The optimization of the extreme values that can be found in the data set can be difficult. To facilitate
optimization, minimize the impact of different dimensions, and achieve more effective results, all three
input variables and the LDO were normalized using Equation (4) [63–65]. Different normalization
formulas are also used in water quality modeling studies but there are no fixed rules as to which
standardization approach should be used in particular circumstances [19,66]. In this study, “a” and “b”
were taken as 0.8 and 0.1, respectively.

Normalized value =
[Raw value−Min value

Max value−Min value

]
× (a) + b (4)

In the prediction of the LDO concentration, the aim was to determine the best model for obtaining
the monitored values. In this context, three performance measures, i.e., root mean square error (RMSE),
mean absolute error (MAE), and Nash Sutcliffe coefficient of efficiency (NSCE), were selected to assess
the fitting accuracy and predictability of the MARS, TLBO, and CRA methods. The models with the
highest NSCE values, as well as the lowest RMSE and MAE values had more accurate estimates than
the other models [67,68]. The RMSE, MAE, and NSCE were calculated as follows:

RMSE =

√√√
1
N

N∑
i=1

(ti − tdi)
2 (5)

MAE =
1
N

N∑
i=1

∣∣∣(ti − tdi)
∣∣∣ (6)

NSCE = 1−

N∑
i=1

(ti − tdi)
2

N∑
i=1

(ti − t)
2

(7)

where ti is the monitored value, t is the mean of monitored values, tdi is the predicted value, and N is
the total number of monitored values [52]. The TLBO algorithm parameters were used for the same
values for all functions employed in the study. The number of iterations was 1000, the population size
was 50, and the unknown coefficients in the regression equations were used in the range (−5, 5).

3. Results and Discussion

3.1. Stream Water-Quality Assessment

The legal documents related to water quality or water pollution in Turkey are published and
amended from time to time, such as Turkish Water Pollution Control Regulation (TWPCR) [69], which
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comprises quality classifications and are intended for the purposes of aquatic environments. It was
published in the official gazette dated 31 December 2004 and numbered 25687. The Article 7, i.e.,
the intra-continental water resources classification, in the TWPCR [69] was employed by Turkish
researchers, who engaged in surface water quality [24,70,71], for a long time. However, Turkish
Superficial Water Quality Management Regulation (TSWQMR) was published in the official gazette
dated 30 November 2012 and numbered 28483. Several articles, including Article 7, were repealed
from the TWPCR [69] based on the Article 21 in the TSWQMR [72]. Moreover, a regulation about
the first amendment for the TSWQMR [72] was published in the official gazette dated 15 April 2015,
number 29327, and the name of the above-mentioned regulation was amended as Turkish Surface
Water Quality Regulation [73]. The second amendment for the TSWQMR [72] was also published
in the official gazette dated 10 August 2016, number 29797 [74]. Table 5 shows the upper threshold
values [69,72,73,75] in terms of the monitored water-quality indicators.

Table 5. The comparison of Article 7 from TWPCR [69] with Article 21 from TSWQMR [72], Article 7
from TSWQR [73], and Article 7 from TSWQR [75], respectively, for the intra-continental surface water
resources classification.

Water-Quality
Indicators

Water Quality Classes, TWPCR [69] Water Quality Classes, TSWQMR [72]

I II III IV I II III IV

WT, ◦C 25 25 30 >30 ≤25 ≤25 ≤30 >30
pH 6.5–8.5 6.5–8.5 6.0–9.0 <6.0 to >9.0 6.5–8.5 6.5–8.5 6.0–9.0 <6.0 to >9.0
DO, mg/L 8 6 3 <3 >8 6–8 3–6 <3
DO, % 90 70 40 <40 90 70–90 40–70 <40
TDS, mg/L 500 1500 5000 >5000 – – – –
EC, µS/cm – – – – <400 400–1000 1001–3000 >3000

Water-Quality Water Quality Classes, TSWQR [73] Water Quality Classes, TSWQR [75]

Indicators I II III IV I II III IV

WT, ◦C ≤ 25 ≤25 ≤30 >30 – – – –
pH 6.5–8.5 6.5–8.5 6.0–9.0 <6.0 to >9.0 6–9 6–9 6–9 6–9
DO, mg/L >8 6 3 <3 >8 6 3 <3
DO, % >90 70 40 <40 – – – –
TDS, mg/L – – – – – – – –
EC, µS/cm <400 1000 3000 >3000 <400 1000 3000 >3000

I: High-quality water, II: Slightly polluted water, III: Polluted water, and IV: Highly polluted water.

Taking into account a one-year period from March 2015 to February 2016 and a one-year period
from September 2015 to August 2016, Table 6 gives the basic statistics of the water-quality indicators
monitored for the surface waters from the EBS basin streams, namely the Foldere (S1), Kalenima (S2),
Değirmendere (S3), Yomra (S4), Karadere (S5), Manahoz (S6), and Solaklı (S7), respectively. The Pearson
correlation coefficients shown in a half matrix (Table 7) were the results of statistical analyses for the
expected relationships between the same water-quality indicators monitored for each stream.
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Table 6. Basic statistics of the water-quality indicators monitored in the Eastern Black Sea Basin streams, Turkey (S1: Foldere, S2: Kalenima, S3: Değirmendere, S4:
Yomra, S5: Karadere, S6: Manahoz, and S7: Solaklı).

Stations

Water-Quality Indicators (One-year period from March 2015 to February 2016) [81]

WT, ◦C pH LDO, mg/L LDO Saturation, % TDS, mg/L EC, µS/cm

Min Mean Max SD Min Mean Max SD Min Mean Max SD Min Mean Max SD Min Mean Max SD Min Mean Max SD

S1 2.12 13.74 27.33 7.22 8.14 8.37 9.19 0.30 8.62 11.08 14.48 1.60 99.82 104.21 113.70 4.22 67.74 104.39 164.55 37.16 105.28 178.16 352.47 92.57
S2 0.93 14.58 27.03 7.68 8.31 8.56 9.12 0.26 9.03 10.89 14.45 1.49 97.63 104.79 130.76 9.52 108.65 157.21 211.67 38.81 168.03 265.25 424.53 98.00
S3 3.79 12.89 21.20 5.46 8.33 8.48 8.63 0.10 9.08 11.16 13.54 1.18 98.68 103.91 120.68 5.71 60.55 107.47 159.35 33.21 94.92 172.40 280.60 58.94
S4 3.14 14.72 26.05 7.09 8.09 8.54 9.50 0.40 8.25 10.43 13.53 1.60 97.46 100.18 102.79 1.84 50.11 78.56 134.68 25.06 87.21 136.03 268.93 61.75
S5 3.09 13.66 24.09 6.91 8.08 8.39 8.86 0.27 8.91 11.19 15.08 1.65 98.26 105.25 122.74 6.62 44.97 113.02 420.07 101.86 68.78 194.80 792.53 201.36
S6 3.30 13.45 23.70 6.64 7.74 8.21 8.98 0.40 8.98 11.16 13.97 1.38 98.74 104.79 117.93 5.57 36.03 54.67 82.58 14.72 55.71 91.48 157.87 34.82
S7 3.39 12.70 22.21 5.86 7.74 8.30 8.71 0.27 9.42 11.14 14.00 1.33 96.14 102.91 110.03 3.89 41.01 71.22 97.70 17.86 67.85 115.31 184.05 37.43

Stations

Water-Quality Indicators (One-year period from September 2015 to August 2016)

WT, ◦C pH LDO, mg/L LDO Saturation, % TDS, mg/L EC, µS/cm

Min Mean Max SD Min Mean Mean SD Min Mean Max SD Min Mean Max SD Min Mean Max SD Min Mean Max SD

S1 2.12 13.74 27.35 7.22 7.65 8.29 8.29 0.47 9.64 11.32 14.48 1.41 101.39 106.90 130.44 8.09 39.59 97.44 164.55 37.44 65.42 165.18 317.00 85.74
S2 0.93 14.67 26.81 7.72 7.94 8.49 8.49 0.32 8.84 11.01 14.45 1.47 99.97 105.95 130.76 8.56 50.70 149.90 211.67 46.08 83.43 253.67 424.53 104.53
S3 3.79 13.27 21.20 5.79 7.96 8.39 8.39 0.26 9.07 11.16 13.54 1.33 100.43 104.54 120.68 5.40 60.55 107.47 159.35 31.10 96.35 174.44 280.60 57.84
S4 3.14 14.48 26.05 7.06 7.69 8.56 8.56 0.59 8.25 10.65 13.53 1.58 99.39 101.71 102.89 1.79 56.63 75.16 134.68 23.38 87.21 128.90 268.93 56.61
S5 3.09 13.37 24.09 6.77 7.76 8.34 8.34 0.36 9.70 11.45 15.08 1.63 100.41 106.92 122.74 6.01 57.87 110.25 420.07 100.03 69.60 187.82 792.53 195.86
S6 3.30 13.14 22.53 6.39 7.41 7.98 7.98 0.39 8.98 11.27 13.97 1.44 100.91 104.93 115.03 4.23 39.83 55.40 82.58 14.98 56.76 91.94 157.87 34.14
S7 3.39 12.55 20.20 5.95 7.62 8.19 8.19 0.30 9.56 11.33 14.00 1.43 100.99 104.23 110.03 2.85 38.54 69.06 97.70 16.25 58.11 111.50 184.05 34.97
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Table 7. Interstational correlation matrices for water-quality indicators monitored in the Eastern Black
Sea Basin streams, Turkey (highlighted cells show the correlation being significant at the 0.01 level).

Stations
Water Temperature, ◦C pH

S2 S3 S4 S5 S6 S7 S2 S3 S4 S5 S6 S7

S1 0.989 b

0.000
0.944 b

0.000
0.949 b

0.000
0.922 b

0.000
0.948 b

0.000
0.913 b

0.000
0.824 b

0.000
0.219
0.383

0.300
0.227

0.309
0.211

0.725 b

0.001
0.472 a

0.048

S2 0.954 b

0.000
0.970 b

0.000
0.935 b

0.000
0.951 b

0.000
0.920 b

0.000
− 0.003

0.990
0.584 a

0.011
0.202
0.421

0.542 a

0.020
0.346
0.159

S3 0.961 b

0.000
0.979 b

0.000
0.980 b

0.000
0.970 b

0.000
− 0.121

0.633
0.550 a

0.018
0.498 a

0.035
0.556 a

0.014

S4 0.971 b

0.000
0.973 b

0.000
0.935 b

0.000
0.117
0.643

0.130
0.608

0.165
0.513

S5 0.992 b

0.000
0.986 b

0.000
0.432
0.074

0.758 b

0.000

S6 0.981 b

0.000
0.500 a

0.035

Stations
Luminescent dissolved oxygen, mg/L Luminescent dissolved oxygen, %

S2 S3 S4 S5 S6 S7 S2 S3 S4 S5 S6 S7

S1 0.935 b

0.000
0.883 b

0.000
0.933 b

0.000
0.933 b

0.000
0.911 b

0.000
0.896 b

0.000
0.588 a

0.010
0.206
0.411

0.289
0.245

0.433
0.073

0.695 b

0.001
0.689 b

0.002

S2 0.894 b

0.000
0.914 b

0.000
0.885 b

0.000
0.863 b

0.000
0.837 b

0.000
0.716 b

0.001
0.312
0.208

0.441
0.067

0.612 b

0.007
0.736 b

0.000

S3 0.882 b

0.000
0.922 b

0.000
0.906 b

0.000
0.937 b

0.000
0.307
0.215

0.338
0.170

0.205
0.414

0.527 a

0.025

S4 0.891 b

0.000
0.908 b

0.000
0.873 b

0.000
0.286
0.250

0.178
0.480

0.428
0.077

S5 0.839 b

0.000
0.967 b

0.000
0.340
0.167

0.650 b

0.004

S6 0.968 b

0.000
0.812 b

0.000

Stations
Total dissolved solids, mg/L Electrical conductivity, µS/cm

S2 S3 S4 S5 S6 S7 S2 S3 S4 S5 S6 S7

S1 0.882 b

0.000
0.670 b

0.002
0.875 b

0.000
0.595 b

0.009
0.624 b

0.006
0.610 b

0.007
0.964 b

0.000
0.791 b

0.000
0.941 b

0.000
0.658 b

0.003
0.791 b

0.000
0.765 b

0.000

S2 0.755 b

0.000
0.745 b

0.000
0.405
0.095

0.435
0.071

0.579 a

0.012
0.788 b

0.000
0.887 b

0.000
0.578 a

0.012
0.672 b

0.002
0.689 b

0.002

S3 0.601 b

0.008
0.536 a

0.022
0.623 b

0.006
0.910 b

0.000
0.749 b

0.000
0.707 b

0.001
0.731 b

0.001
0.907 b

0.000

S4 0.798 b

0.000
0.767 b

0.000
0.602 b

0.008
0.816 b

0.000
0.855 b

0.000
0.762 b

0.000

S5 0.741 b

0.000
0.662 b

0.003
0.777 b

0.000
0.782 b

0.000

S6 0.740 b

0.000
0.856 b

0.000

Note: Cells show the Pearson correlation coefficient and the corresponding P values. a correlation is significant at
the 0.05 level (two-tailed); b correlation is significant at the 0.01 level (two-tailed).

3.1.1. Flow Rate

The flow rates from the stream gauging stations are presented in the form of time series in Figure 2.
Considering the daily mean values for the days when the stream water monitoring was conducted, the
flow rates for each stream fluctuated as follows:

0.275 to 17.900 m3/s for the Şerifli (Foldere Stream), 2.170 to 42.300 m3/s for the Öğütlü
(Değirmendere Stream), 0.242 to 10.600 m3/s for the Taşdelen (Yomra Stream), 1.840 to 40.800 m3/s for
the Ağnas (Karadere Stream).

Taking into account drainage area for each stream gauging station, the flow rate per unit area
was calculated as 29.6 L/s/km2 for the Foldere, 23.2 L/s/km2 for the Değirmendere, 35.4 L/s/km2 for the
Yomra, and 23.4 L/s/km2 for the Karadere.



Water 2020, 12, 1041 11 of 23

Water 2020, 12, x FOR PEER REVIEW 4 of 23 

 

3.1.1. Flow Rate 

The flow rates from the stream gauging stations are presented in the form of time series in Figure 
2. Considering the daily mean values for the days when the stream water monitoring was conducted, 
the flow rates for each stream fluctuated as follows: 

0.275 to 17.900 m3/s for the Şerifli (Foldere Stream), 2.170 to 42.300 m3/s for the Öğütlü 
(Değirmendere Stream), 0.242 to 10.600 m3/s for the Taşdelen (Yomra Stream), 1.840 to 40.800 m3/s for 
the Ağnas (Karadere Stream). 

 

Figure 2. Temporal variation of the stream flow rate during the study period. 

Taking into account drainage area for each stream gauging station, the flow rate per unit area 
was calculated as 29.6 L/s/km2 for the Foldere, 23.2 L/s/km2 for the Değirmendere, 35.4 L/s/km2 for 
the Yomra, and 23.4 L/s/km2 for the Karadere. 

3.1.2. Water Temperature 

As would be expected, the maximum and minimum values of the stream WT were measured on 
1 August 2015, and 3 January 2016, respectively, for each stream, and the vast majority of the stream 
WT measurements fell within the range of 5.00 to 25.00 °C, throughout the monitoring. On a stream 
basis, the Solaklı had a relatively lower WT of 12.55 °C, while the Kalenima had a relatively higher 
WT of 14.67 °C, considering the annual mean values for the last 12 months from September 2015 to 
August 2016 (Table 6). 

On comparing the average air temperature data records between 1981 and 2010 in the weather 
station (39°45’40” E and 40°59’55” N) of the Turkish State Meteorological Service in the Trabzon 
Province, the seasonal trend can be given in increasing order, as follows [27]: 

7.87 °C in winter < 12.03 °C in spring < 16.40 °C in autumn < 21.43 °C in summer 
On a seasonal basis, the same order was being expected as a matter of course for each stream 

because the temperature of surface waters is naturally determined according to the climate. As would 
be expected, all streams showed the same trend in that winter presented the coldest stream WT 
ranging from 6.33 to 7.53 °C, while summer presented the warmest WT values, ranging from 17.98 to 
20.49 °C. Interstational correlation coefficients from 0.913 to 0.992 (Table 7) revealed the 
aforementioned trend. 

Based on semimonthly stream WT data records from January 2014 to December 2014, Satilmis 
[76] reported the seasonal trend for the Değirmendere Stream, in increasing order, as follows: 

9.60 °C in winter < 14.24 °C in spring < 16.03 °C in autumn < 24.21 °C in summer 
In this study, the seasonal trend, which was the same as that reported by Satilmis [76], for the 

Değirmendere Stream, were as follows: 
7.53 °C in winter < 9.50 °C in spring < 17.64 °C in autumn < 18.41 °C in summer 
No classification for the stream WT was available in the TSWQR [75] but a classification was 

available in the TSWQR [73]. Based on the annual mean values from 12.70 to 14.72 °C for the first 12 

0

10

20

30

40

50

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Fl
ow

 ra
te

, m
3 /s

The period from March 2015 to August 2016

Foldere Stream Değirmendere Stream Yomra Stream Karadere Stream

Figure 2. Temporal variation of the stream flow rate during the study period.

3.1.2. Water Temperature

As would be expected, the maximum and minimum values of the stream WT were measured on
1 August 2015, and 3 January 2016, respectively, for each stream, and the vast majority of the stream
WT measurements fell within the range of 5.00 to 25.00 ◦C, throughout the monitoring. On a stream
basis, the Solaklı had a relatively lower WT of 12.55 ◦C, while the Kalenima had a relatively higher WT
of 14.67 ◦C, considering the annual mean values for the last 12 months from September 2015 to August
2016 (Table 6).

On comparing the average air temperature data records between 1981 and 2010 in the weather
station (39◦45’40” E and 40◦59’55” N) of the Turkish State Meteorological Service in the Trabzon
Province, the seasonal trend can be given in increasing order, as follows [27]:

7.87 ◦C in winter < 12.03 ◦C in spring < 16.40 ◦C in autumn < 21.43 ◦C in summer
On a seasonal basis, the same order was being expected as a matter of course for each stream

because the temperature of surface waters is naturally determined according to the climate. As would
be expected, all streams showed the same trend in that winter presented the coldest stream WT ranging
from 6.33 to 7.53 ◦C, while summer presented the warmest WT values, ranging from 17.98 to 20.49 ◦C.
Interstational correlation coefficients from 0.913 to 0.992 (Table 7) revealed the aforementioned trend.

Based on semimonthly stream WT data records from January 2014 to December 2014, Satilmis [76]
reported the seasonal trend for the Değirmendere Stream, in increasing order, as follows:

9.60 ◦C in winter < 14.24 ◦C in spring < 16.03 ◦C in autumn < 24.21 ◦C in summer
In this study, the seasonal trend, which was the same as that reported by Satilmis [76], for the

Değirmendere Stream, were as follows:
7.53 ◦C in winter < 9.50 ◦C in spring < 17.64 ◦C in autumn < 18.41 ◦C in summer
No classification for the stream WT was available in the TSWQR [75] but a classification was

available in the TSWQR [73]. Based on the annual mean values from 12.70 to 14.72 ◦C for the first
12 months, and from 12.55 to 14.67 ◦C for the last 12 months, the waters of the EBS basin streams were
classified as high quality [73]. Only for the Değirmendere Stream, where the annual mean values were
calculated as 12.89 ◦C for the first 12 months and 13.27 ◦C for the last 12 months, Satilmis [76] reported
a little higher values of WT, with an annual mean value of 16.02 ◦C and classified the Değirmendere
Stream as high quality [73], too.

3.1.3. pH

The vast majority of the stream water pH measurements fell within the range of 7.50 to 9.00, and
the values greater than 9.00 were rarely monitored. On a stream basis, Yomra had a relatively higher
water pH of 8.53, while Manahoz had a relatively lower water pH of 8.11.
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On a seasonal basis, there was no distinct trend in terms of water pH, contrary to the similar trends
observed in the WTs, LDO concentrations, and conductivities of the EBS basin streams. Interstational
correlation coefficients, which were rarely significant at the 0.01 level (Table 7), revealed this reality.

With reference to the pH range of 6.0–9.0 [75], the waters of the EBS basin streams were classified
as high quality. Only for the Değirmendere Stream, where the annual mean values were calculated as
8.48 for the first 12 months and 8.39 for the last 12 months, Satilmis [76] reported similar values of pH,
with an annual mean value of 8.35, and also classified the Değirmendere Stream as high quality, too.

3.1.4. Luminescent Dissolved Oxygen Concentration

The vast majority of the stream water LDO measurements fell within the range of 9.00 to 13.00 mg/L,
throughout the study, and the values greater than 13.00 mg/L were only monitored on 3 January 2017,
when the stream water measurements were in the range of 0.93 to 3.79 ◦C. On a stream basis, Karadere
had a relatively higher LDO concentration of 11.19 mg/L, while Yomra had a relatively lower LDO
concentration of 10.43 mg/L, based on the annual mean values for the first 12 months.

On a seasonal basis, all streams showed the same trend, in that, the winter presented the coldest
stream temperatures brought about by higher LDO concentrations that varied from 12.31 to 13.26 mg/L,
while the summer presented the warmest WT values, which gave rise to lower LDO concentrations
that varied from 9.13 to 10.12 mg/L. Interstational correlation coefficients up to R = 0.968 (Table 7)
revealed the aforementioned trend.

Based on semimonthly LDO data records from January 2014 to December 2014, Satilmis [76]
reported the seasonal trend for the Değirmendere Stream, in increasing order, as follows:

8.68 mg/L in summer < 10.17 mg/L in autumn < 10.46 mg/L in spring < 11.19 mg/L in winter.
In this study, the seasonal trend (which was the same as that reported by Satilmis [76]) for the

Değirmendere Stream were as follows:
9.63 mg/L in summer < 10.55 mg/L in autumn < 12.03 mg/L in spring < 12.44 mg/L in winter.
Based on the average LDO concentrations from 10.43 to 11.14 mg/L, the waters of the EBS basin

streams were classified as high quality [75]. Only for the Değirmendere Stream, where the annual mean
values were calculated to be 11.16 mg/L for the first 12 months and 11.16 mg/L for the last 12 months,
Satilmis [76] reported a little lower concentration of LDO, with an annual mean value of 10.18 mg/L,
and also classified the Değirmendere Stream as high quality.

3.1.5. Luminescent Dissolved Oxygen Saturation

The stream water LDO saturation values were generally greater than 100%. On a stream basis,
Karadere had a relatively higher LDO saturation of 105.25%, while Yomra had a relatively lower LDO
saturation of 100.18%, based on the annual mean values for the first 12 months.

As such in the stream water LDO concentration, there was no definite seasonal trend in the stream
water LDO saturation, since higher values were monitored during summer for the Foldere, Yomra,
and Manahoz streams, but during autumn values were monitored for the Kalenima, Değirmendere,
Karadere, and Solaklı streams. Nevertheless, it was clear that the springtime LDO saturation values
were relatively lower.

No classification for the stream water LDO saturation was available in the TSWQR [75] but a
classification was available in the TSWQR [73]. Based on the annual mean values from 100.18% to
105.25% for the first 12 months and 101.71% to 106.92% for the last 12 months, the waters of the EBS
basin streams could be classified as high quality [73]. Only for the Değirmendere Stream, where the
annual mean values were calculated to be 103.91% for the first 12 months and 104.54% for the last
12 months, Satilmis [76] reported a little lower saturation of LDO, with an annual mean value of
101.42%, and also classified the Değirmendere Stream as high quality.
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3.1.6. Total Dissolved Solids

The vast majority of the stream water TDS measurements were lower than 200 mg/L. On a stream
basis, the Kalenima Stream had a higher TDS value of 157.21 mg/L, while the Manahoz Stream had a
lower EC value of 54.67 mg/L, based on the annual mean values for the first 12 months. On a seasonal
basis, all streams, except for the Kalenima and the Değirmendere, showed the same trend, in that,
autumn presented higher TDS concentrations, while spring presented lower TDS concentrations.
It was thought that lower TDS concentrations were due to higher flow rates. In other words, higher
TDS concentrations were due to lower flow rates. The Pearson correlation analysis revealed that the
stream TDS concentration was negatively but strongly correlated with the stream flow rate in the
Değirmendere and the Yomra (R = −0.858 and −0.640, respectively). The stream TDS concentration was
also negatively but moderately correlated with the stream flow rate in the Foldere and the Karadere
(R = −0.606 and −0.430, respectively).

As stated by Bayram [11], no classification for TDS is available in the TSWQR [75]. No health-based
guideline value is proposed for TDS nationally [77] and internationally [78,79], except for the US
EPA [80], in which the allowable concentration is 500 mg/L.

3.1.7. Electrical Conductivity

The vast majority of the stream water EC measurements were lower than 400 µS/cm, which was
only exceeded three times in the Kalenima Stream during the period August–October 2016 and one
time during August 2016 in the Karadere Stream. As such, in the stream TDS concentration, the
Kalenima Stream had a higher EC value of 265.25 µS/cm, while the Manahoz Stream had a lower EC
value of 91.48 µS/cm, based on the annual mean values for the first 12 months. As in the stream TDS
concentration, it was also thought that the lower EC values were due to higher flow rates. In other
words, higher EC values were due to lower flow rates. The Pearson correlation analysis revealed
that the stream EC value was negatively but strongly correlated with the stream flow rate in the
Değirmendere and the Foldere (R = −0.831 and −0.625, respectively). The stream EC value was
also negatively but moderately correlated with the stream flow rate in the Yomra and the Karadere
(R = −0.527 and −0.412, respectively).

On a seasonal basis, all streams showed the same trend, in that, autumns that presented higher
TDS concentrations brought about higher EC values from 122.26 to 375.12 µS/cm, while springs
that presented lower TDS concentrations gave rise to lower EC values from 60.66 to 200.39 µS/cm.
Interstational correlation coefficients up to 0.964 (Table 7) revealed the aforementioned trend.

With reference to the upper threshold value of 400 µS/cm for EC [75], the waters of the EBS basin
streams were classified as high quality. Moreover, the permissible EC value was 2500 µS/cm at 20 ◦C,
according to TS 266 [77]. The whole measurement results were well below the threshold value. Only for
the Değirmendere Stream, where the annual mean values were calculated as 172.40 µS/cm for the first 12
months and 174.44 µS/cm for the last 12 months, Satilmis [76] reported similar conductivity values, with
an annual mean SC value of 212.26 µS/cm, corresponding to an EC value of 176.53 µS/cm, calculated by
using the stream WT and SC data, and also classified the Değirmendere Stream as high quality.

3.2. Stream Water-Quality Modeling

3.2.1. MARS Modeling Results

In this part of the study, a model developed with training data using the stream WT, EC, and pH as
the inputs, and the stream LDO concentration as the output. The data from the streams Değirmendere
and Manahoz were used to test the developed model. When modeling with the MARS method,
it should be noted that the model was influenced by various parameters such as the number of basic
functions, the maximum degree of self-interaction, and penalty per knot, etc. These parameters were
determined by trial and error. The predicted coefficients and basic functions for the best model were
recorded and presented in Table 8 for all models.
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Table 8. Basic functions and equations for the multivariate adaptive regression splines (MARS) models.

MARS Model 1 MARS Model 2 MARS Model 3 MARS Model 4

Basic Equations Basic Equations Basic Equations Basic Equations

Functions Functions Functions Functions

BF02 max (0.501816 −WT) BF02 max (0.501816 −WT) BF01 max (WT − 0.501816) BF01 max (WT − 0.501816)
BF03 max (WT − 0.890111) BF04 max (0.315742 −WT) BF02 max (0.501816 −WT) BF02 max (0.501816 −WT)
BF04 max (0.890111 −WT) BF06 max (0.595661 −WT) BF03 max (pH − 0.724264) × BF01 BF03 max (pH − 0.724264) × BF01
BF06 max (0.326452 −WT) BF08 max (0.463269 −WT) BF05 max (pH − 0.613074) × BF01 BF04 max (0.724264 − pH) × BF01
BF08 max (0.595661 −WT) BF10 max (0.441271 −WT) BF07 max (pH − 0.500589) × BF02 BF05 max (pH − 0.613074) × BF01
BF09 max (WT − 0.16559) BF12 max (0.762159 −WT) BF09 max (pH − 0.70212) × BF01 BF07 max (pH − 0.500589) × BF02
BF10 max (0.16559 −WT) BF13 max (WT − 0.828759) BF11 max (pH − 0.538634) × BF01 BF08 max (0.500589 − pH) × BF02
BF11 max (WT − 0.828759) BF14 max (0.828759 −WT) BF12 max (0.538634 − PH) × BF01 BF09 max (pH − 0.70212) × BF01
BF14 max (0.79445 −WT) BF16 max (0.791625 −WT) BF13 max (pH − 0.590224) × BF01 BF11 max (pH − 0.538634) × BF01
BF16 max (0.860646 −WT) BF18 max (0.677397 −WT) BF15 max (pH − 0.600353) × BF01 BF13 max (pH − 0.590224) × BF01
BF18 max (0.801312 −WT) BF19 max (WT − 0.284057) BF17 max (WT − 0.321796) BF15 max (pH − 0.600353) × BF01
BF20 max (0.791625 −WT) BF20 max (0.284057 −WT) BF18 max (0.321796 −WT) BF17 max (WT − 0.321796)
BF22 max (0.466095 −WT) BF21 max (WT − 0.374672) BF19 max (pH − 0.581743) × BF18 BF18 max (0.321796 −WT)
BF24 max (0.340767 −WT) BF24 max (0.650151 −WT) BF20 max (0.581743 − pH) × BF18 BF19 max (pH − 0.581743) × BF18
BF26 max (0.671342 −WT) BF26 max (0.622906 −WT) BF25 max (pH − 0.175147) × BF17 BF20 max (0.581743 − pH) × BF18
BF28 max (0.444299 −WT) BF28 max (0.694753 −WT) BF21 max (pH − 0.437102) × BF01
BF30 max (0.431181 −WT) BF30 max (0.716347 −WT) BF33 max (pH − 0.551355) × BF01
BF34 max (0.650151 −WT) BF31 max (WT − 0.417053)
BF36 max (0.630575 −WT) BF32 max (0.417053 −WT)
BF38 max (0.615439 −WT) BF34 max (0.340767 −WT)
BF40 max (0.683451 −WT) BF36 max (0.55449 −WT)

BF38 max (EC − 0.252423)
BF39 max (0.252423 − EC)

LDO Model 1 = 0.254679 + 0.0886742 × BF02 + 2.15867 × BF03 + 0.0444198 × BF04 + 0.165892 × BF06 + 0.0705814 × BF08 − 0.0450666 × BF09 − 0.0228572 × BF10 − 0.257149 × BF11 + 0.0483375
× BF14 + 0.0454513 × BF16 + 0.0475508 × BF18 + 0.0485729 × BF20 + 0.0990403 × BF22 + 0.148585 × BF24 + 0.0579245 × BF26 + 0.103979 × BF28 + 0.108156 × BF30 + 0.0612519
× BF34 + 0.0641136 × BF36 + 0.0669608 × BF38 + 0.0565882 × BF40

LDO Model 2 = 0.284243 + 0.0871611 × BF02 + 0.161665 × BF04 + 0.0680995 × BF06 + 0.0992744 × BF08 + 0.104501 × BF10 + 0.0476524 × BF12 − 0.162201 × BF13 + 0.0423067 × BF14 +
0.0453071 × BF16 + 0.0542304 × BF18 − 0.0407528 × BF19 + 0.177219 × BF20 − 0.0414545 × BF21 + 0.0584495 × BF24 + 0.0628739 × BF26 + 0.0526291 × BF28 + 0.0508015 × BF30
− 0.0426374 × BF31 + 0.111746 × BF32 + 0.141249 × BF34 + 0.0754296 × BF36 + 0.0194781 × BF38 + 0.065239 × BF39

LDO Model 3 = 0.433206 + 0.534022 × BF02 − 5.03225 × BF03 + 1.63042 × BF05 + 2.18339 × BF07 + 2.44452 × BF20 − 0.46187 × BF25 − 3.45894 × BF09 − 0.166635 × BF11 − 1.8866 × BF12 +
1.39271 × BF13 + 1.48764 × BF15 − 0.263369 × BF17 + 0.474985 × BF18 + 24.5231 × BF19

LDO Model 4 = 0.31183 − 1.13213 × BF01 + 1.2448 × BF02 + 4.33683 × BF03+ 0.730011 × BF04 + 22.2679 × BF05 + 0.783317 × BF07 + 0.3346 × BF08 − 19.1624 × BF09 − 33.0927 × BF11 + 41.9666
× BF13 − 47.8018 × BF15 + 0.253183 × BF17 + 29.2467 × BF19 + 0.706642 × BF20 + 6.09 × BF21 + 19.8123 × BF23
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The MARS models predicting the LDO concentration involved a total of 21 basic functions for
the first one, 23 basic functions for the second one, 15 basic functions for the third one, and 17 basic
functions for the last one. The MARS equation for the LDO concentration, which was a function of WT,
EC, and pH, could be generated considering Table 8.

3.2.2. TLBO Algorithm and CRA Modeling Results

In this part of the study, the aim was to predict the LDO concentration by employing the TLBO
and CRA methods, for all input combinations. Exponential, power, and linear functions were used as a
regression function for each method. The best-fit coefficients of the regression functions obtained by
the TLBO and CRA methods are given in Table 9, in which the coefficients obtained by each method
were very close to each other.

Table 9. Coefficients obtained from the teaching–learning based optimization (TLBO) and conventional
regression analysis (CRA) methods.

Models Methods Functions
Coefficients

w0 w1 w2 w3 w4

Model 1

TLBO yEF=W0+exp(W1+W2∗WT)
0.0848 0.0683 −2.6255

CRA 0.0848 0.0683 −2.6255
TLBO yPF=W0∗WTW1

0.2357 −0.6627
CRA 0.2357 −0.6627
TLBO yLF=W0+W1∗WT

0.7912 −0.7633
CRA 0.7912 −0.7633

Model 2

TLBO yEF=W0+exp(W1+W2∗WT+W3∗EC)
0.0941 0.0844 −2.6933 −0.0895

CRA 0.0938 0.0841 −2.6912 −0.0883
TLBO yPF=W0∗WTW1 ∗ECW2

0.1681 −0.6621 −0.1991
CRA 0.1681 −0.6621 −0.1991
TLBO yLF=W0+W1∗WT+W2∗EC

0.7808 −0.8414 0.2261
CRA 0.7808 −0.8414 0.2261

Model 3

TLBO yEF=W0+exp(W1+W2∗WT+W3∗pH)
0.0781 0.0362 −2.5699 0.0697

CRA 0.0780 0.0360 −2.5700 −0.0700
TLBO yPF=W0∗WTW1 ∗pHW2

0.2210 −0.6639 −0.0711
CRA 0.2210 −0.6640 −0.0710
TLBO yPF=W0∗WTW1 ∗pHW2

0.7323 −0.8097 0.1869
CRA 0.7320 −0.8100 0.1870

Model 4

TLBO yEF=W0+exp(W1+W2∗WT+W3∗EC+W4∗pH)
0.0886 0.0512 −2.6432 −0.0997 0.0747

CRA 0.0886 0.0512 0.6432 −0.0997 0.0747
TLBO yPF=W0∗WTW1 ∗ECW2 ∗pHW3

0.1695 −0.6606 −0.2135 0.0351
CRA 0.1695 −0.6605 0.2135 0.0351
TLBO yLF=W0+W1∗WT+W2∗EC+W3∗pH

0.7365 −0.8600 0.1737 0.1481
CRA 0.7365 −0.8600 0.1737 0.1481

3.2.3. Comparison of the MARS, TLBO, and CRA Modeling Results

The ability of the MARS method to predict LDO concentration was evaluated by comparing the
results of the MARS model with those of the TLBO and CRA methods. The comparisons were made
using the RMSE, MAE, and NSCE criteria given in Table 10.

As seen in Table 10, the best results for both the training and testing data sets were obtained from
the MARS method, for all models. In other words, the MARS method yielded the least RMSE and
highest NSCE values for all models, and the least MAE values for the Models 3 and 4. The best results
for each data set were also obtained from Model 4. The results showed that the accuracy of predictions
increases with the addition of independent variables.
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Table 10. The comparison of the performance measures of the models and methods for the training
and testing phases.

Models Methods Functions
Training Testing

RMSE MAE NSCE RMSE MAE NSCE

MARS 0.4109 0.3056 0.9111 0.3718 0.2844 0.9033
TLBO Exponential 0.4177 0.3038 0.9082 0.3770 0.2834 0.9005
TLBO Power 0.5736 0.4460 0.8269 0.4634 0.3840 0.8497

Model 1 TLBO Linear 0.5703 0.4042 0.8289 0.4418 0.3391 0.8634
CRA Exponential 0.4177 0.3038 0.9082 0.3770 0.2834 0.9005
CRA Power 0.5736 0.4460 0.8269 0.4636 0.3843 0.8496
CRA Linear 0.5703 0.4041 0.8289 0.4418 0.3391 0.8634

MARS 0.4123 0.3069 0.9106 0.3686 0.2813 0.9049
TLBO Exponential 0.4175 0.3051 0.9083 0.3747 0.2805 0.9017
TLBO Power 0.5188 0.4110 0.8584 0.4362 0.3563 0.8668

Model 2 TLBO Linear 0.5387 0.3772 0.8473 0.4534 0.3316 0.8561
CRA Exponential 0.4175 0.3050 0.9083 0.3748 0.2805 0.9017
CRA Power 0.5188 0.4110 0.8584 0.4362 0.3563 0.8669
CRA Linear 0.5387 0.3771 0.8473 0.4535 0.3316 0.8560

MARS 0.3134 0.2475 0.9483 0.3382 0.2637 0.9199
TLBO Exponential 0.4170 0.3059 0.9085 0.3783 0.2884 0.8998
TLBO Power 0.5684 0.4375 0.8300 0.4533 0.3774 0.8562

Model 3 TLBO Linear 0.5360 0.3862 0.8488 0.4397 0.3432 0.8647
CRA Exponential 0.4170 0.3060 0.9085 0.3787 0.2888 0.8996
CRA Power 0.5684 0.4375 0.8300 0.4533 0.3773 0.8562
CRA Linear 0.5361 0.3863 0.8488 0.4405 0.3434 0.8642

MARS 0.2599 0.2125 0.9645 0.2709 0.2126 0.9487
TLBO Exponential 0.4167 0.3068 0.9086 0.3753 0.2845 0.9014
TLBO Power 0.5176 0.4135 0.8590 0.4322 0.3540 0.8693

Model 4 TLBO Linear 0.5180 0.3799 0.8588 0.4561 0.3609 0.8544
CRA Exponential 0.4167 0.3068 0.9086 0.3753 0.2845 0.9014
CRA Power 0.5176 0.4135 0.8590 0.4322 0.3540 0.8693
CRA Linear 0.5180 0.3799 0.8588 0.4561 0.3609 0.8544

For the TLBO and CRA methods, the exponential function provided the best results despite the
fact that the lowest error values were obtained from the MARS method for all models. Moreover, when
the TLBO and CRA methods were compared, it was seen that the results for each method were very
close to each other. Contrary to the initial expectations, it was seen that the employment of the stream
EC, together with the stream WT as an input variable was of no use, considering that the performance
measure values were close to each other for Models 1 and 2.

From the performance measures, the RMSE and MAE values for the MARS method ranged from
0.2599 to 0.4123 mg/L and 0.2125 to 0.3069 mg/L, respectively, for training and 0.2709 to 0.3718 mg/L and
0.2126 to 0.2844 mg/L, respectively, during testing, as seen in Table 10. The NSCE values ranged from
0.9106 to 0.9645 for training and 0.9033 to 0.9487 for testing. These values meant that the performance
of the MARS method was satisfactory. The MARS model with three inputs had the best accuracy in the
training and testing periods. In the training data set, the RMSE values for Model 4 were approximately
37% lower than the Models 1 and 2, and approximately 24% lower than Model 3, for the MARS
method. Generally, the addition of the EC and pH variables as input variables increased the accuracy
of predictions for each method. In particular, the contribution of pH to model performance was greater
than that of EC. For the training set, the most suitable results for each model are presented in the form
of time-series in Figure 3, in which the stream LDO concentrations modeled by the MARS method are
shown as compared to the monitored concentrations.



Water 2020, 12, 1041 17 of 23

Water 2020, 12, x FOR PEER REVIEW 3 of 23 

 

and 0.2126 to 0.2844 mg/L, respectively, during testing, as seen in Table 10. The NSCE values ranged 
from 0.9106 to 0.9645 for training and 0.9033 to 0.9487 for testing. These values meant that the 
performance of the MARS method was satisfactory. The MARS model with three inputs had the best 
accuracy in the training and testing periods. In the training data set, the RMSE values for Model 4 
were approximately 37% lower than the Models 1 and 2, and approximately 24% lower than Model 
3, for the MARS method. Generally, the addition of the EC and pH variables as input variables 
increased the accuracy of predictions for each method. In particular, the contribution of pH to model 
performance was greater than that of EC. For the training set, the most suitable results for each model 
are presented in the form of time-series in Figure 3, in which the stream LDO concentrations modeled 
by the MARS method are shown as compared to the monitored concentrations. 

 

 

 

 
Figure 3. The comparison of the monitored LDO concentrations with the modeled LDO 
concentrations, employing the MARS method for the training set. 

For the testing set, the most suitable results for each model are presented in the form of time 
series and scatter plots in Figure 4, in which the stream LDO concentrations modeled by the MARS 
method are shown, as compared to the monitored concentrations. 

8
9

10
11
12
13
14
15

M
ar

M
ay Ju

l
Se

p
N

ov Ja
n

M
ar

M
ay Ju

l
M

ar
M

ay Ju
l

Se
p

N
ov Ja
n

M
ar

M
ay Ju

l
M

ar
M

ay Ju
l

Se
p

N
ov Ja
n

M
ar

M
ay Ju

l
M

ar
M

ay Ju
l

Se
p

N
ov Ja
n

M
ar

M
ay Ju

l
M

ar
M

ay Ju
l

Se
p

N
ov Ja
n

M
ar

M
ay Ju

l

LD
O

,m
g/

L
Training set (Model 1)Monitored Modeled

8
9

10
11
12
13
14
15

M
ar Ju
l

N
ov M
ar Ju
l

M
ay Se
p

Ja
n

M
ay

M
ar Ju
l

N
ov M
ar Ju
l

M
ay Se
p

Ja
n

M
ay

M
ar Ju
l

N
ov M
ar Ju
l

LD
O

,m
g/

L

Training set (Model 2)Monitored Modeled

8
9

10
11
12
13
14
15

M
ar Ju
l

N
ov M
ar Ju
l

M
ay Se
p

Ja
n

M
ay

M
ar Ju
l

N
ov M
ar Ju
l

M
ay Se
p

Ja
n

M
ay

M
ar Ju
l

N
ov M
ar Ju
l

LD
O

,m
g/

L

Training set (Model 3)Monitored Modeled

8
9

10
11
12
13
14
15

M
ar Ju
l

N
ov M
ar Ju
l

M
ay Se
p

Ja
n

M
ay

M
ar Ju
l

N
ov M
ar Ju
l

M
ay Se
p

Ja
n

M
ay

M
ar Ju
l

N
ov M
ar Ju
l

LD
O

,m
g/

L

The period from March 2015 to August 2016

Training set (Model 4)Monitored Modeled

Figure 3. The comparison of the monitored LDO concentrations with the modeled LDO concentrations,
employing the MARS method for the training set.

For the testing set, the most suitable results for each model are presented in the form of time series
and scatter plots in Figure 4, in which the stream LDO concentrations modeled by the MARS method
are shown, as compared to the monitored concentrations.

Figures 3 and 4 show that the stream LDO concentrations modeled by the MARS method for both
the training and testing data sets were almost the same as the monitored concentrations. Especially
Model 4 gave very satisfactory results at maximum values and minimum values. Additionally, the
goodness-of-fit of MARS was evaluated employing R2. As shown in Figure 4, there was a high
correlation between the monitored and predicted values. The R2 value in shown in Figure 4 is an
indication of a good fit between the monitored and predicted values. This is an important point that
demonstrates the success of the MARS method.
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Figure 4. The comparison of the monitored LDO concentrations with the modeled LDO concentrations
by employing the MARS method for the testing set.

4. Conclusions

This study consists of two parts. The first, is the monitoring and assessment of the stream water
quality in the Eastern Black Sea (EBS) Basin, Turkey, in terms of six water-quality indicators, i.e.,
water temperature (WT), pH, total dissolved solids (TDS), and electrical conductivity (EC), as well
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as luminescent dissolved oxygen (LDO) concentration and saturation. The second one is the spatial
forecasting of the stream LDO concentration employing different methods, i.e., multivariate adaptive
regression splines (MARS), teaching–learning based optimization (TLBO) algorithm, and conventional
regression analysis (CRA), and for different regression functions, i.e., exponential, power, and linear,
with different input combination, i.e., WT (Model 1); WT and EC (Model 2); WT and pH (Model 3);
WT, EC, and pH (Model 4). In consequence of the monitoring and modeling studies, the following
conclusions come into prominence:

• On a seasonal basis, all streams showed the same trend in that the higher LDO concentrations were
observed in the winter months with the coldest WT values, while the lower LDO concentrations
appeared in the summer months with the warmest WT values. Interstational correlation coefficients
up to R = 0.968 for the stream LDO concentrations and R = 0.992 for the stream WT values
supported this trend.

• Autumns, which presented higher TDS concentrations brought about higher EC values, while
springs, which presented the lower TDS concentrations gave rise to lower EC values. It was
concluded that the higher TDS concentrations were due to the lower flow rates, by taking the
negative but strong or moderate correlations into consideration.

• Based on 18-month observations, the waters of the EBS basin streams were classified as high quality,
in terms of the monitored water-quality indicators, with reference to the national regulations,
being in force in TSWQR [75] and repealed in TSWQR [73].

• The MARS method produced much better results than the TLBO and CRA methods, for both
training and testing the data sets for all models, especially for Model 4, which included all
input variables.

• The LDO concentrations predicted by the MARS method were almost near the LDO concentrations
measured by a portable field meter. It was concluded that the DO concentration could be
successfully predicted by the MARS method in any stream, where WT, pH, and EC, or SC were
measured but the DO concentration was not monitored, in case of similar watershed characteristics
with the studied streams.

• In the TLBO and CRA methods, lower RMSE and MAE, as well as higher NSCE values were
obtained by an exponential function for all models. The LDO concentrations predicted by the
TLBO method were almost near the LDO concentrations predicted by the CRA method, that is,
the TLBO method could not perform any improvement compared to the CRA method.

• It was concluded that the involvement of the pH variable, which is a parameter commonly
used for modeling the DO concentration, the independent variables significantly increased the
prediction performance.

• Although the history of the MARS method dates back to the pioneering work of Friedman [49],
there is a limited availability of its application in the modeling of DO concentration [44,46].
Therefore, the use of this method is encouraged and recommended for studies related to water
resources and environment since the proposed MARS method yielded successful results for
this study.

• It is expected that the present study will make a significant contribution to the national literature
as part of the stream water-quality monitoring and to the international literature as part of the
stream water-quality modeling.

• This study will be continued for one and a half year follow up with a monthly frequency, due
to limited economic opportunities. For temporal forecasting, a long-term study covering more
frequent monitoring is strongly recommended.
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