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Abstract: A polygonal-mesh based numerical method is developed to simulate sediment transport in
mobile-bed streams with free surfaces. The flow and sediment transport governing equations are
depth-averaged and solved in the two-dimensional (2D) horizontal space. The flow and sediment
transport are further coupled to the stream bed changes so that erosion and deposition processes
are simulated together with the mobile bed changes. Multiple subsurface bed layers are allowed
so that bed stratigraphy may be taken into consideration. The proposed numerical discretization
is valid for the most flexible polygonal mesh type which includes all existing meshes in use such
as the quadrilateral-triangle hybrid mesh. The finite-volume method is adopted such that the mass
conservations of both water and sediment are satisfied locally and globally. The sediment transport
and stream bed processes are formulated in a general way so that the proposed numerical method
may be applied to a wide range of streams and suitable for practical stream applications. The technical
details of the numerical method are presented; model verification and validation studies are reported
using selected cases having physical model or field measured data. The developed model is intended
for general-purpose use available to the public.

Keywords: sediment transport model; mobile-bed model; scour and erosion; 2D depth-averaged
model; polygonal mesh

1. Introduction

Sediment transport in streams and sedimentation in reservoirs and the associated morphological
changes are fundamentally important for the success of many environmental projects. Relevant areas
include stream restoration for environmental and ecological benefits, reservoir sedimentation and
its sustainability, flood risk management, dam removal, estuary and coastal management, and local
scours around, e.g., bridge piers, among many others [1].

One-dimensional (1D) hydraulic flow models have been widely used in practical hydraulic
projects for half a century; 1D mobile-bed models have also been developed since and applied in
practical projects in the past two decades. Some of the 1D flow and mobile-bed models in wide use
include HEC-RAS [2,3], MIKE11 [4], CCHE1D [5], and SRH-1D [6]. 1D mobile-bed models will remain
useful for a foreseeable future, particularly for applications with a large spatial extent and/or over
a long time period. Their limitations, however, are well known. In recent years, many engineering
applications are turning to multi-dimensional models. Among the category, the two-dimensional
(2D) depth-averaged models are gaining widespread acceptance due to recent numerical algorithm
developments and computer hardware advancements [7,8].

2D depth-averaged flow models have been developed since the works of Chow and Ben-Zvi [9]
and Kuipers and Vreugdenhil [10]. 2D mobile-bed models were developed since. Earlier works include
Celik and Rodi [11], Spasojevic and Holly [12], Minh Duc [13], Olsen [14], and Wu et al. [15], among
others. These early models adopted simple meshes and often assumed local equilibrium in sediment
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load transport. More general 2D mobile-bed models have been developed since. For example, Wu [16]
developed an unsteady model allowing non-uniform and non-equilibrium sediment transport for
both suspended load and bedload. The model was tested against several experimental and field
cases; good agreements were reported. The model, however, was limited to the structured curvilinear
mesh. Hung et al. [17] proposed an implicit two-step operator-splitting method to solve the governing
equations. The mesh type was, however, limited to the structured, orthogonal curvilinear coordinate
system. Huang et al. [18] developed an adaptive mesh refinement model for dam-break flows over
mobile-bed streams. The model was validated against experimental cases with good agreements.
The model was limited to the rectangular mesh though adaptation was allowed. At present, there are
only a limited number of 2D mobile-bed models which are available to the public for general uses.
Such models include CCHE2D [19], TELEMAC [20], UnTRIM [21,22], and Delft3D [23]. CCHE2D was
based on the finite element discretization method using the purely quadrilateral or purely triangular
meshes; TELEMAC and UnTRIM adopted the purely triangular meshes; and Delft3D was based on the
structured mesh. A more flexible mesh version of Delft3D was reported by Kernkamp et al. [24] and
used for the suspended sediment modeling in the San Francisco delta and estuary [25]. Orthogonal
quadrilaterals, however, were highly recommended according to the developers [26]. In 2D mobile-bed
modeling, recent attentions have been on the fundamental formulation issue as discussed by Iverson
and Ouyang [27], Cao et al. [28], and Liu et al. [29]. A generally applicable sediment transport
formulation is yet to be agreed upon and developed.

Many existing models did not address the unsteady nature of the sediment transport: the
quasi-steady assumption has often been made such that the use of the Exner equation were justified [30].
However, a truly unsteady model is not only more general, it is also needed for many processes such
as the sediment load travel after a sudden release of sediments due to dam removal or dam failure.
Most existing sediment models classified a sediment load into suspended or bed load; but in reality,
the transport mode is dependent on local flow conditions and may switch between the two on a
natural stream. Further, the switch is not sudden and there usually exist mixed modes in-between the
two. Existing sediment models often assumed that the sediment transport rate equaled the sediment
transport capacity—the so-called equilibrium assumption. This assumption is appropriate mainly for
large spatial and time scales such as 1D modeling; it may fail for event-based sediment transport as
well as cases of significant erosion [16]. Some simplifications have been discussed by Cao et al. [28]
who pointed out the need for true unsteady and non-equilibrium modeling if a model is intended for
general uses. A most significant restriction of the existing models is the adoption of the mesh type
which is too restrictive, as reviewed above.

In this study, a 2D depth-averaged mobile-bed model is developed with the aim of the model to be
comprehensive and general-purpose. It is being available freely to the public. A major contribution of
the present model is the adoption of a general mesh type—the polygon-based mesh—for the sediment
transport and mobile-bed modeling. Other new contributions are related to the treatment of the major
physical processes: as-general-as-possible approaches are adopted. They include: single sediment
transport equation (total load) for all modes (suspended, mixed or bed load); truly unsteady and
tightly-coupled formulation of all governing equations, multi-size sediment partition (an arbitrary
number of sediment size classes may be used), and non-equilibrium sediment transport. Details of
these physical processes are explained below in the governing equations section. The proposed model
is applicable to a wide range of environmental stream and reservoir sediment transport modeling
issues. To our knowledge, no 2D depth-averaged mobile-bed models have been published that adopts
the polygonal meshes.

2. Governing Equations

A 2D depth-averaged mobile-bed model, in general, consists of four interrelated process modules:
hydraulic flow, sediment transport, mobile-bed dynamics, and bank erosion. Only the first three
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modules are described as no bank erosion process is considered in this study. The bank erosion
modeling was described by Lai [31] if readers are interested.

2.1. Flow Equations

The flow solver is based on the verified model of Lai [32]. Details may be found from that
reference; only the governing equations are presented herein. The 2D depth-averaged flow equations
are as follows:

∂h
∂t

+
∂(hU)

∂x
+
∂(hV)

∂y
= 0 (1)

∂hU
∂t

+
∂hUU
∂x

+
∂hVU
∂y

= −gh
∂z
∂x

+
∂(hTxx)

∂x
+
∂
(
hTxy

)
∂y

−
τbx
ρ

(2)

∂hV
∂t

+
∂hUV
∂x

+
∂hVV
∂y

= −gh
∂z
∂y

+
∂
(
hTxy

)
∂x

+
∂
(
hTyy

)
∂y

−
τby

ρ
(3)

In the above, x and y are horizontal Cartesian coordinates, t is time, h is water depth, U and V are
depth-averaged velocity components in x and y directions, respectively, g is gravitational acceleration,
Txx, Txy and Tyy are depth-averaged stresses due to turbulence and dispersion, z = zb + h is water
surface elevation, zb is bed elevation, ρ is water density, and τbx and τby are bed shear stresses. The bed
stresses are computed by the Manning’s equation:

(
τbx, τby

)
= ρU2

∗

(U, V)
√

U2 + V2
= ρC f

√
U2 + V2(U, V) (4)

where C f = gn2/h1/3, n is Manning’s coefficient, and U∗ is bed frictional velocity. Effective stresses are
computed by:

Txx = 2(ν+ νt)
∂U
∂x

(5a)

Tyy = 2(ν+ νt)
∂V
∂y

(5b)

Txy = (ν+ νt)

(
∂U
∂y

+
∂V
∂x

)
(5c)

where ν is kinematic viscosity of water, and νt is eddy viscosity of turbulence.
The turbulence eddy viscosity needs a turbulence model. Two models are adopted [33]: the

depth-averaged parabolic model and the two-equation k-εmodel. With the parabolic model, the eddy
viscosity is calculated by νt = CtU∗h and the frictional velocity U∗ is defined in Equation (4). The model
constant Ct may range from 0.3 to 1.0; but the default value of Ct= 0.7 is used in this study. The k-model
computes the eddy viscosity by νt = Cµk2/ε and the two additional partial difference equations for
k and ε are solved. The two turbulence equations are not presented herein as the validation cases
simulated in this study use the parabolic model only and readers may refer to Lai [32] for further details.

2.2. Sediment Transport Equations

The water column and stream bed are divided into three vertical zones: water column, active
layer, and subsurface. Sediments in the water column are transported by flowing water and according
to the mass conservation principle. The active layer is a special zone consisting of a thin sediment layer
between the water column and the underneath subsurface. Within the active layer, sediment exchange
takes place between sediments in the water column and those in the subsurface. The subsurface
includes the bed materials underneath the active layer; it may be divided further into multiple
subsurface layers so that the vertical variation of sediment composition (stratigraphy) may be taken
into account. Physical processes within each zone are different and modeled separately.



Water 2020, 12, 1032 4 of 21

Sediments in the three zones may be divided into a user-specified number of size classes, say
Nsed. In the water column, each size class k is governed by the following single equation no matter the
transport mode (suspended, mixed or bed load):

∂hCk
∂t

+
∂ cos(αk)βkVthCk

∂x
+
∂sin(αk)βkVthCk

∂y
=

∂
∂x

(
h fkDx

∂Ck
∂x

)
+

∂
∂y

(
h fkDy

∂Ck
∂y

)
+ Sek (6)

In the above, subscript k denotes that the variable is for sediment size class k, Ck is the
depth-averaged sediment concentration by volume, βk = Vsed,k/Vt is the sediment-to-flow velocity
ratio, Vt =

√
U2 + V2 is the depth-averaged flow velocity, αk is the angle of the sediment transport

direction relative to x-axis, fk is the transport mode parameter representing the suspended load fraction,
Dx and Dy are the sediment mixing coefficients in the x- and y-directions, respectively, and Sek is the
sediment exchange rate between sediments in the water column and those in the active layer or on the
bed. The above equation was derived from the mass conservation law by Greimann et al. [30] and took
the non-equilibrium nature of a sediment load into account.

The sediment transport angle (αk) may deviate from flow velocity direction due to secondary
flows and gravity forces on a transverse bed slope. Several approaches may be used to take these
effects into account [34]. In this study, the approach of Struiksma and Crosato [35] is adopted. That is,
the angle is computed by:

tan(αk) =

sin(δk) −
(1− fk)Cg1

0.85
√
θk

∂Zb
∂y

cos(δk) −
(1− fk)Cg1

0.85
√
θk

∂Zb
∂x

(7)

In the above, θk = τb/[ρg(s− 1)dk] is the Shields parameter (τb is the bed shear stress, s = ρs
ρ − 1,

ρs is the sediment density, dk is the sediment diameter for size class k), Cg1 is the particle shape factor,
and δk is the angle of the bed shear stress. The study of Talmon et al. [36] suggested that Cg1 ranged
from 0.5 to 1.0. The bed shear stress angle includes the flow direction and secondary flow effect and is
computed by:

δk = tan−1
(V

U

)
− (1− fk)tan−1

[
2Cspi

κ2

(
1−

n
√

g

κh1/6

)
h

Rc

]
(8)

In the above, κ is the von Karman constant (0.41), Rc is the local radius of curvature of flow
streamlines, and Cspi is a model coefficient (1.0).

The sediment transport mode parameter fk is introduced to represent the percentage of sediments
transported as the suspended load. A similar parameter was introduced by Holly and Rahuel [37] as
the “allocation coefficient.” An empirical equation developed by Greimann et al. [30] is used as:

fk = Min
(
1.0, 2.5e−Zk

)
(9)

In the above, Zk = ωsed,k / (κU∗) is the suspension parameter and ωsed,k is the particle fall velocity.
If bed load is dominant, fk = 0 is used; fk = 1 is used for suspended load.

The ratio of sediment-to-flow velocity, βk, was assumed to be 1.0 by most previous studies, which is
adequate for many applications. For some applications, such as the unsteady movement of a specified
sediment load from a reservoir outlet or a plug, the ratio is not 1.0, and an empirical relation should be
developed. In this study, the modified equation of Greimann et al. [30] is used as:

βk = Max
(
βk,sus, βk,bed

)
(10a)

βk,bed =
U∗
Vt

1.1Φ0.17
k [1− exp(−5Φk)]

√
θr

; Φk =
θk
θr
< 20 (10b)

βk,sus = 1 +
U∗

2κVt
[1− exp(2.7Zk)]; Zk < 1.0 (10c)



Water 2020, 12, 1032 5 of 21

where θr is the reference Shields parameter (0.045).
The sediment rate term is related to the sediment transport capacity as follows:

Se,k =
1

Lt,k

(
q∗t,k −VthCk

)
(11a)

Lt,k = (1− fk)Lb,k + fkζVth/ωs,k (11b)

In the above, q∗t,k is the sediment transport capacity (volume sediment rate per unit width), Lb,k is
the bed load adaptation length, and ς is the suspended load parameter.

The sediment transport capacity may be computed with an extensive number of existing sediment
capacity or equilibrium equations. Many have been implemented in the present model; but only two
are used in the present model verification studies: Engelund and Hansen [38] equation for sandy
streams and Parker [39] equation for gravel and mixed sand-gravel streams. The Engelund-Hansen
equation is expressed as:

q∗t,k√
sgd3

k

= 0.05pak
V2

t

gdk
√

s(s− 1)

[
τb

(s− 1)ρgdk

]1.5

(12)

where pak is the volume fraction of sediment size class k in the active layer. The Parker equation was
originally developed for gravel streams but was later found to be applicable also to sand and gravel
mixture [40]. The equation is expressed as:

q∗t,k g(s− 1)

(τb/ρ)1.5
= pkG(Φk) (13a)

Φk =
θk
θc

(
dk
d50

)α
(13b)

In the above, pk is the volumetric fraction of the kth sediment size class in the bed, θc is critical
Shield’s parameter, d50 is the medium diameter of the sediment mixture on the bed, and α is the
exposure factor. The function in (13a) was fit to the field data and is expressed as:

G(Φ) =


11.933 (1− 0.853/Φ)4.5, Φ > 1.59
0.00218 exp

[
14.2(Φ − 1) − 9.28(Φ − 1)2

]
, 1.0 ≤ Φ ≤ 1.59

0.00218Φ14.2, Φ < 1.0
(14)

Parker capacity equation allows two parameters to be defined: θc and α. θc represents a critical
reference stress above which sediment is mobilized; α is the exposure factor to account for the hiding
effect. Hiding is effective for a sediment mixture in which the critical shear stress is reduced for
larger particles and increased for smaller particles. Ideally, these two parameters should be fit to
available data for a specific stream under simulation. Without site specific data, several references may
provide guidance such as Komar [41], Buffington and Montgomery [42], Andrews [40], and Wilcox
and Crowe [43]. In general, θc varies from 0.03 to 0.08 and α from 0.11 to 0.67. In this study, θc = 0.045
and α = 0.65 are used.

The non-equilibrium bedload adaptation length characterizes the distance for bedload sediments
to adjust from a non-equilibrium to equilibrium state; it is related to the scales of the sediment transport,
bedform, and stream geometry. It is also a function of the sediment size such that an increase in size
leads to a decrease in the adaptation length. A number of methods have been proposed. For example,
Thuc [44] applied the sand ripple length, Rahuel et al. [45] used the numerical mesh size, and Wu [16]
recommended the dominant length of bedforms such as sand dunes and alternate bars. A review
has been conducted by Gaeuman et al. [46]. In the present study, a constant length scale (multiple



Water 2020, 12, 1032 6 of 21

times of the stream width) is used for gravel streams while the saltation length formula of Philips and
Sutherland [47] is used for sandy streams. The Philips-Sutherland equation is expressed as:

Lb,k = Csl(θk − θc)dk (15)

where θk > θc = 0.045 is assumed, and Csi is a model constant with a value of 4000.
Determination of the suspended sediment parameter (ζ) relies on empirical data. Studies [48,49]

suggested that a constant ζ ranging from 0.25 to 1.0 might be used and its value depended on whether
the bed experienced net deposition or erosion. The recommended value was ζ = 1.0 for net erosion
and ζ = 0.25 for net deposition.

Finally, the mixing coefficients, Dx and Dy, include contributions from both turbulence as well as
dispersion. For many cases, zero mixing coefficients may be used. Otherwise, the coefficients are set to
equal to the turbulent viscosity with the Schmidt number specified by a user.

2.3. Mobile-Bed Equations

The elevation of a mobile-bed surface changes due to net erosion and deposition. Elevation
changes are contributed by all sediment size classes and computed by the net sediment exchanges
between those in the water column and those in the active layer. The change in Zb due to sediment size
class k obeys the following equation:

ηak

(
∂Zb
∂t

)
k
= −

.
Vk = −

q∗t,k −VthCk

Lt,k
(16)

where ηak = 1 − σak is the porosity parameter of the active layer, σak is the porosity for the k-th size
class in the active layer, and

.
Vk is the net volume erosion rate per unit area for size class k.

Other mobile-bed processes considered include the sediment exchanges and gradation changes
in the subsurface layers. The active layer is the top bed layer participating in the sediment exchange
between the water column and the subsurface while the subsurface layers provide sediments to or
receive sediments from the active layer. In this study, the volume fraction and porosity of the active
and subsurface layers are the dependent variables. Their governing equation are derived from the
mass conservation law. The volume fraction changes in the active layer is given as:

∂mapak

∂t
= −

.
Vk + p1k

∑
i

.
Vi if net erosion

∑
i

.
Vi ≥ 0

 (17a)

∂mapak

∂t
= −

.
Vk + pak

∑
i

.
Vi if net deposition

∑
i

.
Vi < 0

 (17b)

In the above, ma is the total sediment volume in the active layer, pak is the volume fraction of k-th
class in the active layer, p1k is the volume fraction of k-th class in the first subsurface layer (beneath
the active layer). The total volume per unit area in the active layer (ma) is kept constant throughout
the simulation. This is in contrast to previous studies in which the mass was kept constant e.g., [16].
The active layer volume is a user input via the active layer thickness (δa). In general, the active thickness
δa takes the value of Nad90 with Na ranging from 1.0 for large boulders to 20.0 for fine sands.

The porosity of the active layer is governed by the volume conservation equation—a kinematic
constraint—and expressed as:

∂δak
∂t

= −

.
Vk

η̃k
+ p1k

∑
i

.
Vi

η2k
if

∑
i

.
Vi ≥ 0 (18a)
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∂δak
∂t

= −

.
Vk

η̃k
+ pak

∑
i

.
Vi

ηak
if

∑
i

.
Vi < 0 (18b)

In the above, η̃k is computed by:
η̃k = ηak if

.
Vi ≥ 0 (19a)

η̃k = ηsk if
.

Vi < 0 (19b)

and ηsk is the porosity parameter for the suspended sediments in the water column.
The volume fraction (pLk), the porosity parameter (ηLk), and the thickness (tL) of subsurface layer

L (1 to the total number of subsurface layers) are continuously updated during a simulation. In this
study, the first subsurface layer immediately underneath the active layer exchanges sediments with
the active layer so that the total volume of the active layer is maintained. As a result, the thickness
of the immediate subsurface layer may increase or decrease. The remaining subsurface layers are
unaltered until the upper subsurface layer is depleted completely. When it occurs, the lower subsurface
layer plays the role of the upper layer unless all specified subsurface layers are eroded. For the
first subsurface layer, termed layer 1, the volume fraction (p1k), the porosity parameter (η1k), and its
thickness need to be re-computed. For net erosion, p1k and η1k do not change but the thickness change
is governed by:

dt1k
dt

= −

∑
i

.
Vi


∑

i

p1i

η1i

 (20)

where subscript i runs through all sediment size classes. For net deposition, the thickness change is
governed by:

dt1k
dt

= −

∑
i

.
Vi


∑

i

pai

ηai

 (21)

And p1k and η1k are updated by fully mixing the new depositions from the active layer with the
sediments in layer 1.

3. Numerical Methods

The sediment module and flow solver are linked through the tightly coupled approach. The same
time step is used for both the flow and sediment processes. Within a time step, multiple iterations are
executed. At a new iteration, the flow equations are solved first assuming stream bed is at the previous
iteration; the sediment transport and mobile-bed dynamic equations are solved next using the flow
field computed at the new iteration.

All governing equations are discretized using the finite-volume method, following the works of
Lai et al. [50] and Lai [32]. The solution domain is covered with an unstructured mesh with each
mesh cell assuming a polygonal shape. All dependent variables are stored at the geometric center of a
polygon. The governing equations are integrated over a polygon using the Gaussian theorem to obtain
the discretized equation set. The numerical method of the flow solver has been described by Lai [32] and
is omitted herein. Only the numerical method of the sediment transport Equation (6) is discussed below.

The sediment transport Equation (6) may be generally expressed as follows:

∂hΦ
∂t

+∇·
(
h
→

VΦ
)
= ∇·(Γ∇Φ) + S∗Φ (22)

Here Φ denotes a sediment dependent variable, Γ is the diffusivity, and S∗Φ is the source/sink term.
Integration over an arbitrarily shaped polygon P shown in Figure 1. leads to:(

hn+1
P Φn+1

P − hn
PΦn

P

)
A

∆t
+

∑
all−sides

(
hCVC|

→
s |
)n+1

Φn+1
C =

∑
all−sides

(
Γn+1

C ∇Φn+1
·
→
n |
→
s |
)
+ SΦ (23)
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In the above, ∆t is time step, A is polygon area, VC =
→

VC·
→
n is the velocity component normal

to the polygon side (e.g., P1P2 in Figure 1) and evaluated at the side center C,
→
n is polygon side unit

normal vector,
→
s is the polygon side distance vector (e.g., from P1 to P2 in Figure 1), and SΦ = S∗ΦA.
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Figure 1. Schematic illustrating a polygon P along with one of its neighboring polygons N.

Subscript C indicates a value evaluated at the center of a polygon side and superscript, n or n
+ 1, denotes the time level. In the remaining discussion, superscript n + 1 will be dropped for ease
of notation. Note that the first-order Euler implicit time discretization is adopted. The main task of
the discretization is to obtain appropriate expressions for the convective and diffusive fluxes at each
polygon side.

Discretization of the diffusion term, the first on the right-hand side of Equation (23), needs further
attention. The final expression for ∇Φ·

→
n can be written as:

∇Φ·
→
n |
→
s | = Dn(ΦN −ΦP) + Dc

(
ΦP2 −Φp1

)
(24a)

Dn =
|
→
s |(

→
r 1 +

→
r 2

)
·
→
n

; Dc = −

(
→
r 1 +

→
r 2

)
·
→
s /|
→
s |(

→
r 1 +

→
r 2

)
·
→
n

(24b)

In the above,
→
r 1 is the distance vector from P to C and

→
r 2 is from C to N. The normal and cross

diffusion coefficients, Dn and Dc, at each polygon side involve only geometric variables; they are
calculated only once in the beginning of the computation.

Calculation of a variable, say Y, at the center C of a polygon side is discussed next. This is an
interpolation operation used frequently for variables. A second-order accurate expression is derived
below. As shown in Figure 1, a point I is defined as the intercept point between line PN and line P1P2.

A second-order interpolation for point I may be derived to be:

YI =
δ1YN + δ2YP

δ1 + δ2
(25)

With δ1 =
→
r 1·
→
n and δ2 =

→
r 2·
→
n . YI may be used to approximate the value at the side center C.

This treatment, however, does not guarantee second-order accuracy unless
→
r 1 and

→
r 2 are parallel.

A truly second-order expression is derived to be:

YC = YI −Cside(YP2 −YP1) (26a)

Cside =

(
δ1
→
r 2 − δ2

→
r 1

)
·
→
s

(δ1 + δ2)|
→
s |

2 (26b)



Water 2020, 12, 1032 9 of 21

Φc in the convective term of Equation (23) adopts the second-order scheme with a damping
term. It is derived by blending the first-order upwind scheme with the second-order central difference
scheme and may be expressed as:

ΦC = ΦCN
C + d

(
ΦUP

C −ΦCN
C

)
(27a)

ΦUP
C =

1
2
(ΦP + ΦN) +

1
2

sign(VC)(ΦP −ΦN) (27b)

In the above, ΦCN
C is the second-order interpolation scheme, and d defines the amount of damping

used. In most applications, d = 0.2 ~ 0.3 may be used.
With expressions for the diffusion and convection terms done, the final discretized governing

equation at the cell P may be organized as the following linear equation:

APΦP =
∑
nb

AnbΦnb + Sdi f f + Sconv + SΦ (28)

where “nb” refers to all neighboring polygons surrounding polygon P. The coefficients in this
equation are:

Anb = ΓCDn + Max
(
0,−hCVC|

→
s |
)

(29a)

AP =
hn

PA

∆t
+

∑
nb

Anb (29b)

Sdi f f =
hn

PA

∆t
+

∑
all−sides

ΓCDc(ΦP2 −ΦP1) (29c)

Sdi f f =
hn

PA

∆t
+

∑
all−sides

ΓCDc(ΦP2 −ΦP1) (29d)

Sconv =
∑

all−sides

(
hCVc|

→
s |
){
(1− d)

[
δ1

δ1 + δ2
−

1− sign(Vc)

2

]
(ΦN −ΦP)

}
−

∑
all−sides

(
hCVc|

→
s |
)
[(1− d)Cside(ΦP2 −ΦP1)]

Other sediment equations such as the bed elevation equation and the bed dynamics equations
may be discretized similarly. In terms of time integration, the fraction step method of Yanenko [51] is
used. The procedure is as follows:

(hC)int
− (hC)n

∆t
+
∂ cos(α)Vt(hC)int

∂x
+
∂sin(α)Vt(hC)int

∂y
= 0 (30a)

(hC)n+1
− (hC)int

∆t
=

q∗t −Vt(hC)n+1

Lb
(30b)

The advection Equation (30a) is solved implicitly to obtain an intermediate solution (hC)int with
known values at time level n; the initial value problem of (30b) is solved analytically to obtain the new
solution (hC)n+1 at time level (n + 1). The solutions of the bed elevation equation and bed dynamics
equations are relatively straightforward and details are not presented.

4. Model Verification and Validation

Five cases are selected to verify and validate the new sediment transport mobile-bed model
and results are described below. The flow module has been verified and validated before [32]; only
sediment cases are presented.
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4.1. Aggradation in a Straight Channel

Aggradation in alluvial streams may occur due to a variety of reasons. A common scenario is the
oversupply of incoming sediments above the stream transport capacity. This may happen in the field
after, e.g., heavy precipitation in a large tributary area. The case of the flume experiment of Soni [52] is
selected to verify the aggradation simulation capability with the new model.

The case consists of a flat plate bed with a length of 30 m, width of 0.2 m, and slope of 0.00427.
The bed is covered with sands with a medium diameter (d50) of 0.32 mm, sand depth of 0.15 m,
and specific gravity of 2.65. The case has a constant flow unit discharge of 0.0355 m2/s, average velocity
of 0.493 m/s, and average water depth of 0.072 m. Equilibrium of flow and sediment transport is
established first by simulating long enough in time so that the upstream equilibrium sediment rate is
balanced by the transport capability. Excessive sediment is then added suddenly from the upstream.
The Manning’s roughness coefficient is 0.02294 in order to establish the flow equilibrium given the bed
slope and flow velocity. Aggradation process is initiated immediately after a sudden increase of the
sediment supply rate above the capacity. The excess sediment supply is 0.9qseq with qseq the sediment
transport capacity. Bedload transport mode was observed in the flume experiment and is used for
the simulation.

A 30-by-5 mesh is used, covering the 30 m by 0.2 m flume bed. The flow is 1D in nature so the
number of cells in the lateral direction is not important. The time step used is 1.0 s. Further refinement
of the mesh or reduction in time step does not change the results more than a few percentages.
The simulation is first carried out for 100 min using the upstream sediment supply being qseq; this way
the equilibrium flow and sediment transport is established (no net sediment exchanges between water
column and bed). Aggradation simulation then starts with 1.9 times the sediment capacity.

A comparison of the simulated and measured bed elevation changes in time is shown in Figure 2a.
Overall agreement is fair, but the model under-predicts the aggradation at a late time (e.g., at 90 min).
This may be due to the high uncertainty of the measured data. Soni [52] reported that up to 15% of
errors existed in the rate of sediment addition at the upstream. Another run is made by using a higher
sediment supply rate to check the model sensitivity to the supply rate. The rate is increased by 15%
and the results are recomputed as shown in Figure 2b. A much better agreement is obtained. In the
present modeling the Engelund-Hansen capacity equation is adopted.
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Figure 2. Comparison of bed elevation changes in time between model prediction and flume data
for the aggradation case of Soni [52]). (a) upstream, sediment rate is 1.9 the capacity; (b) upstream
sediment supply is 15% more than (a).
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4.2. Erosion in a Straight Channel

Channel erosion and bed armoring occur in many situations such as downstream of a dam.
They represent an important class of alluvial processes. Herein the flume experiment of Ashida and
Michiue [53] is selected to verify the erosion modeling capability of the new model.

The flume used in the experiment was rectangular; it had the width of 0.8 m, length of 20 m, and
bed slope of 0.01. The flume bed was filled with non-uniform sediments—a mixture of sands and fine
gravels ranging from 0.2 to 10.0 mm in size. The sediment mixture had a medium diameter of 1.5 mm
and a standard deviation of 3.47 (Figure 3 shows the initial bed gradation). The simulated case has a
constant clear water flow of 0.0314 m3/s, an average velocity of 0.654 m/s, and water depth of 6.0 mm
at the downstream boundary.
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Figure 3. Comparison of predicted and measured bed gradation at a location 10-m from the downstream
model boundary; measured data are from Ashida-Michiue [53].

A 42-by-6 mesh is used for the simulation, covering the 20 m by 0.8 m model domain (channel
bed). Note that the lateral mesh number is not important due to the 1D nature of the flow. The time
step is 1.0 second. Further refinement of the mesh in the flow direction or reduction of the time step
does not change the solutions more than a few percentages. Twelve sediment size classes are used
to represent the sediment mixture. The range of size classes and the corresponding initial fractional
gradations on the bed are in Table 1; the initial bed gradation is also plotted in Figure 3. The Manning’s
roughness coefficient is 0.025; it is based on the flow calibration to achieve flow equilibrium with
the given slope and velocity. For a mixed sand-gravel bed, the Parker sediment capacity equation is
used with the default constants (i.e., θC = 0.04 and α = 0.65). At time zero, clear water flows into the
channel; afterwards, the degradation process is initiated. Only bedload transport was observed in the
experiment and is thus simulated.

Table 1. Sediment size classes and the initial fractional content (gradation) on bed.

Diameter
Range
(mm)

0.2–
0.3

0.3–
0.4

0.4–
0.6

0.6–
0.8

0.8–
1.0

1.0–
1.5

1.5–
2.0

2.0–
3.0

3.0–
4.0

4.0–
6.0

6.0–
8.0

8.0–
10.

Content
(%) 7.45 12.4 15.9 4.4 3.6 6.79 4.0 9.18 10.2 18.1 6.0 2.0

The experimental data showed that erosion started immediately once flow enters the flume and
scour depth increased quickly for the first 100 min. Afterwards, erosion slowed down and an armoring
layer was formed. The model-predicted, armored bed gradation is shown in Figure 3 at a location of
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10 m from the downstream boundary. A comparison with the measured gradation at the same location
shows that the agreement is relatively good, indicating the ability of the new model to predict the
armoring process.

The erosion process is also compared between the model and the flume data in Figure 4 at three
locations. The prediction of the time-varying scour process is less satisfactory, but the final maximum
scour is predicted well. In view of a better prediction reported by Wu [16], we had tried to find out the
cause. According to the discussion in [16], along with a personal communication with Dr. Wu, the cause
was attributed to the bedform change while the scour was developing: the bedform was changing from
a flat bed to a fully developed bed in the flume experiment. In the modeling of Wu [16], the bedform
change was taken into account by adopting a time-dependent variation of the bed grain shear stress.
The present modeling, however, used a constant. In order to see the impact of the time-varying
bedform, the same functional form of the grain shear stress used by [16] is implemented; the model is
run again without changing other model inputs. The new predicted scour results are shown in Figure 4
as dashed lines, designated as “Predicted: Wu Grain Stress.” It is seen that the variable grain stress
procedure indeed improves the agreement between the model prediction and measured data, and the
new results are close to Wu [16]. Since the grain stress changing procedure used is not general; it is
not implemented as a feature in the new model. We prefer to take the results without the treatment
(in solid lines) as the model prediction. The study, however, points to potential uncertainty in model
predictions when bedform changes. Future studies are needed on how to incorporate a more general
procedure so that bedform changes may be taken into accounts.

1 
 

 

Figure 4. Comparison of predicted and measured scour depth variation in time at three
locations: 13 m (red), 10 m (blue), and 7 m (black) from the downstream model boundary;
“Measured” = Ashida-Michiue [53]; “Wu Grain Stress” = the results obtained with the modified
grain shear stress calculation.

4.3. Erosion and Depostion in Bends

Two bend flows, reported by Struiksma et al. [54], are used to validate the ability of the new model
to simulate erosion and deposition in stram bends. One is case T2 with a 140◦ bend filled with uniform
sediments; the other is case T4 with a 108.1◦ bend filled with non-uniform sediments. The geometry of
the two bends is shown in Figure 5. Both were tested at the Delft Hydraulics Laboratory: T2 used the
DHL curved flume and T4 used the Waal Bend flume.
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Case T2 had a length of 29.32 m and a radius of curvature of 12 m (Figure 5); relevant geometry
and test conditions are listed in Table 2. The flume bed was initially flat laterally and filled with
uniform sediments of 0.45 mm in diameter. The equilibrium bed topography was achieved after long
enough water flow over the flume bed.

Table 2. Flume geometry and experiment conditions for case T2 of Struiksma et al. [54].

Flume
Width (m)

Discharge
(m3/s)

Water
Depth (m)

Velocity
(m/s)

Bed
Slope

Froude
Number

d50
(mm)

Manning’s
Coefficient

1.5 0.062 0.10 0.41 0.203% 0.41 0.45 0.023

A total of 960 mesh cells are used to cover the mode domain. Further mesh refinement has not
changed the results more than 2%. An unsteady simulation is carried out with a time step of 10 seconds.
At the upstream (x = 0), a flow discharge of 0.062 m3/s is imposed, and the sediment supply rate is
estimated with the sediment capacity equation. At the exit, the water surface elevation of 0.1 m is
maintained. The Engelund-Hansen sediment capacity equation is used and the beadload transport
mode is adopted based on the laboratory observation. The equilibrium bedform is reached after a
sufficient time (about 10 hours) and the computed bed elevation is shown in Figure 6. In addition,
a comparison of the computed and measured water depths along two profiles, 0.375 m from the inner
and the outer banks, is shown in Figure 7.

The comparisons show that the new model predicts the pool and bar formation adequately
although the initial bed is flat laterally. A bar is formed at the inner bank while a pool occurs at the
outer bank. The agreement between the computation and measurements is satisfactory.

Next, case T4 is simulated: it consisted of a bend with a circular arc of 108.1o turn and 41.5 m in
length. Both the entrance and exit of the bend have a section of the straight channel attached. The radius
of the arc from the centerline was 22 m. Initial bed had a slope of 0.128% longitudinally but flat laterally.
The bed was covered with non-uniform mixtures having d50 = 0.6 mm. Some characteristic parameters
of the case are listed in Table 3.
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Figure 7. Comparison of the computed and measured water depths along lines 0.375 m from inner and
outer banks for case T2 of Struiksma et al. [54].

Table 3. Flume geometry and experiment conditions for case T4 of Struiksma et al. [54].

Flume
Width (m)

Discharge
(m3/s)

Water
Depth (m)

Velocity
(m/s)

Bed
Slope

Froude
Number

d50
(mm)

Manning’s
Coefficient

2.3 0.121 0.12 0.44 0.128% 0.41 0.60 0.02

The 2D mesh consists of 1824 cells which is found sufficient as further refinement has not changed
the results more than a few percentages. The sediment mixture is divided into four size classes: 15.9%
of fine sand (0.125 to 0.26 mm), 34.1% medium sand (0.26 to 0.6 mm), 34.1% coarse sand (0.6 to 1.38
mm), and 15.9% vary coarse sand (1.38 to 2.0 mm). A truly unsteady simulation is carried out with a
time step of 10 seconds. The bed is initially filled with the sediment mixture. At the upstream (x = 0),
a flow discharge of 0.121 m3/s is imposed and the sediment supply is calculated with the sediment
capacity equation. At the exit, the water surface elevation is maintained at 0.12 m.

The equilibrium bedform is obtained after about 10 hours and plotted in Figure 8. A comparison
of the computed and measured equilibrium water depth and medium sediment diameter (d50) is
shown in Figure 9 along two profiles: 0.11B from the inner and outer banks (B = 2.3 m is the channel
width). A comparison with the measured data shows that the new model is capable of predicting the
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pool and bar formation as well as the sediment sorting process. Overall agreement between the model
and measured data is good.

 15 of 19 

 

 537 

Figure 8. Computed equilibrium bed elevation for case T4 of Struiksma et al. [54]. 538 

  

Figure 9. Comparison of computed and measured water depth (left) and  (right) along the lines 539 

0.11B from the inner and outer banks for case T4 of Struiksma et al. [54]. 540 

4.4. Alternating Bar Formation Downstream of an Inserted Dike 541 

Alternate bar formation study was carried out at the Delft Hydraulics Laboratory by Struiksma 542 
and Crosato [35]. When a dike was inserted into a straight channel, forced alternate bars were formed 543 
downstream. The flume experiment started with a straight channel 0.6 m in width and 0.3% in slope 544 
under a well-defined constant flow. At the upstream, a plate (dike) was inserted to restrict the inflow 545 
section. The channel bed was initially flat and covered with almost uniform fine sediments with a 546 
median diameter (d50) of 0.216 mm. When the bed reached equilibrium, bed topography was 547 
measured which is available for numerical model verification. The experimental conditions are 548 
shown in Table 4. 549 

Table 4. Key flume geometry and experiment conditions with the Struiksma and Crosato [35] case. 550 

Flume  

Width (m) 

Discharge 

(m3/s) 

Water  

Depth (m) 

Velocity 

(m/s) 

Bed 

Slope 

Froude 

Number 

Manning’s 

Coefficient 

0.60 0.00685 0.044 0.26 0.3% 0.39 0.0263 

The numerical model domain and the mesh are shown in Figure 10. The mesh consists of 236-551 
by-24 cells; it is sufficient as a further refinement has not changed the results by more than a few 552 
percentages. An unsteady simulation is carried out, with a time step of 5 seconds, until equilibrium 553 

50d

Figure 8. Computed equilibrium bed elevation for case T4 of Struiksma et al. [54].

 15 of 19 

 

 537 

Figure 8. Computed equilibrium bed elevation for case T4 of Struiksma et al. [54]. 538 

  

Figure 9. Comparison of computed and measured water depth (left) and  (right) along the lines 539 

0.11B from the inner and outer banks for case T4 of Struiksma et al. [54]. 540 

4.4. Alternating Bar Formation Downstream of an Inserted Dike 541 

Alternate bar formation study was carried out at the Delft Hydraulics Laboratory by Struiksma 542 
and Crosato [35]. When a dike was inserted into a straight channel, forced alternate bars were formed 543 
downstream. The flume experiment started with a straight channel 0.6 m in width and 0.3% in slope 544 
under a well-defined constant flow. At the upstream, a plate (dike) was inserted to restrict the inflow 545 
section. The channel bed was initially flat and covered with almost uniform fine sediments with a 546 
median diameter (d50) of 0.216 mm. When the bed reached equilibrium, bed topography was 547 
measured which is available for numerical model verification. The experimental conditions are 548 
shown in Table 4. 549 

Table 4. Key flume geometry and experiment conditions with the Struiksma and Crosato [35] case. 550 

Flume  

Width (m) 

Discharge 

(m3/s) 

Water  

Depth (m) 

Velocity 

(m/s) 

Bed 

Slope 

Froude 

Number 

Manning’s 

Coefficient 

0.60 0.00685 0.044 0.26 0.3% 0.39 0.0263 

The numerical model domain and the mesh are shown in Figure 10. The mesh consists of 236-551 
by-24 cells; it is sufficient as a further refinement has not changed the results by more than a few 552 
percentages. An unsteady simulation is carried out, with a time step of 5 seconds, until equilibrium 553 
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4.4. Alternating Bar Formation Downstream of an Inserted Dike

Alternate bar formation study was carried out at the Delft Hydraulics Laboratory by Struiksma
and Crosato [35]. When a dike was inserted into a straight channel, forced alternate bars were formed
downstream. The flume experiment started with a straight channel 0.6 m in width and 0.3% in slope
under a well-defined constant flow. At the upstream, a plate (dike) was inserted to restrict the inflow
section. The channel bed was initially flat and covered with almost uniform fine sediments with a
median diameter (d50) of 0.216 mm. When the bed reached equilibrium, bed topography was measured
which is available for numerical model verification. The experimental conditions are shown in Table 4.

Table 4. Key flume geometry and experiment conditions with the Struiksma and Crosato [35] case.

Flume
Width (m)

Discharge
(m3/s)

Water
Depth (m)

Velocity
(m/s)

Bed
Slope

Froude
Number

Manning’s
Coefficient

0.60 0.00685 0.044 0.26 0.3% 0.39 0.0263

The numerical model domain and the mesh are shown in Figure 10. The mesh consists of 236-by-24
cells; it is sufficient as a further refinement has not changed the results by more than a few percentages.
An unsteady simulation is carried out, with a time step of 5 seconds, until equilibrium bed topography
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is reached. At the upstream (x = −15.0 m), a constant discharge of 0.00685 m3/s is imposed and the
sediment supply rate is based on the sediment transport capacity as equilibrium solution is sought.
At the downstream (x = 25 m), a water depth of 0.044 m is specified. The Parker capacity equation
is used.
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The predicted equilibrium bed topography, in the form of net erosion and deposition, is displayed
in Figure 11; a comparison of the equilibrium bed profile between the model and measured data is
in Figure 12 along a line 0.1 m from the bottom boundary. It is seen that a series of alternating bars
are developed downstream of the dike. The bar and pool depths (amplitude) are, on average, about
25% of the average water depth, and the amplitude is mildly damped downstream. The average bar
wavelength is approximately eleven times the channel width, much larger than the typical downstream
migrating free bars. Results in Figure 12 show that the comparison between the prediction and
measured data is good. The amplitude of the alternate bars is predicted satisfactorily while the
wavelength is slightly over-predicted. The results demonstrate that the fully non-linear numerical
models such as the present model is capable of predicting the alternate bar development as a response
to disturbances introduced into a stream.
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4.5. Erosion and Deposition on a Section of the Middle Rio Grande

Finally, the new model is applied to a section of the Middle Rio Grande (MRG) for validation and
application—the Bosque del Apache National Wildlife Refuge (BDANWR) area. BDANWR is about
11 miles upstream of the Tiffany Junction. In May 2008, BDANWR experienced a plug formation—a
sudden and large sediment deposition which blocked the flows in the main river. This section has
been subject to extensive field studies since to understand the erosion and deposition processes after a
pilot channel was dug to reconnect the main river [55,56]. Measured bed elevation changes on many
cross-sections (Figure 13a) were available in both 2008 and 2009 so modeling results may be compared
and validated. 18 of 19 
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Figure 13. (a) Cross sections (XS) of the field measurement. (b) The 2D mesh for the numerical modeling
(flow is from top to bottom, or North to South).

The simulated MRG section has the upstream at the North Boundary of BDANWR near SO-1513.5
(river mile 84) and the downstream boundary near SO-1564.4 (river mile 78.7)—see Figure 13a for the
locations. The solution domain covers about 5.3 miles longitudinally. The 2D mesh consists of mixed
quadrilaterals and triangles with a total of 10,865 cells (Figure 13b).

Other model inputs are as follows. The Manning’s roughness coefficient is based on the 1D
modeling studies by Borough [57] and Collin [58] without changes. Bed sediment gradation prior to
the plug formation is based on the data collected by Bauer [59] in June and July 2006. The data showed
that about 99.5% of the sediments ranged from 0.0625 to 16 mm in diameter with d50 = 0.33 mm. In the
numerical modeling, seven size classes are used to represent all sediments (0.0625–16 mm) in the
system. An unsteady simulation is carried out for the time period from the beginning of November
2008 to the end of July 2009. The flow discharge at the upstream is based on the daily mean flow
measured at the USGS San Acacia station (#08354900), while the sediment input is based on the rating
curve developed by Collins [58]. The Engelund-Hansen equation is used for the sediment capacity.
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The erosion and deposition of the study reach in the period of 1 November 2008 to 31 July 2009 are
simulated with the new model. The predicted channel bed elevation changes are compared with the
cross-section data measured in July 2009. Comparisons at four cross sections are displayed in Figure 14.
Overall, the reach is mostly erosional during the simulation period, which is expected as the plug
formed in May 20018 was being eroded after the pilot channel was dug in October 2008. The agreement
between the predicted and measured erosion is relatively good except for a small section between
SO-1539 and SO-1544. At SO-1544, e.g., incising is predicted, not widening. This is due to that the new
model does not simulate bank erosion so channel widening is not predicted.
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5. Conclusions

A new depth-averaged 2D sediment transport mobile-bed model is developed, verified and
validated. New contributions of the proposed model include: (a) polygon-based mesh; (b) a single
sediment transport equation simulating suspended load, bedload and mixed load simultaneously;
(c) truly unsteady, tightly-coupled modeling among flow, sediment transport and bed dynamics
modules; and (d) a generally applicable formulation for multi-size, non-equilibrium sediment transport.
The model is named SRH-2D and has been freely released to the public.

There are other features of the new model. For example, multiple subsurface bed layers are allowed
so that bed stratigraphy may be taken into consideration in erosion simulation. The finite-volume
method is adopted such that mass conservations of both water and sediment are satisfied locally and
globally. Implicit time integration is used so that the solution process is robust and stable.

In this paper, four flume cases are selected to verify the new model, and the erosion and deposition
of a section of the Middle Rio Grande is used as a validation and demonstration case. Model results
have been compared with the available measured data. It is found that the agreement has been good
for all cases.
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