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Abstract: The performance of four tree-based classification techniques—classification and regression
trees (CART), multi-adaptive regression splines (MARS), random forests (RF) and gradient boosting
trees (GBT) were compared against the commonly used logistic regression (LR) analysis to assess
aquifer vulnerability in the Ogallala Aquifer of Texas. The results indicate that the tree-based
models performed better than the logistic regression model, as they were able to locally refine nitrate
exceedance probabilities. RF exhibited the best generalizable capabilities. The CART model did better
in predicting non-exceedances. Nitrate exceedances were sensitive to well depths—an indicator
of aquifer redox conditions, which, in turn, was controlled by alkalinity increases brought forth
by the dissolution of calcium carbonate. The clay content of soils and soil organic matter, which
serve as indicators of agriculture activities, were also noted to have significant influences on nitrate
exceedances. Likely nitrogen releases from confined animal feedlot operations in the northeast
portions of the study area also appeared to be locally important. Integrated soil, hydrogeological and
geochemical datasets, in conjunction with tree-based methods, help elucidate processes controlling
nitrate exceedances. Overall, tree-based models offer flexible, transparent approaches for mapping
nitrate exceedances, identifying underlying mechanisms and prioritizing monitoring activities.

Keywords: aquifer vulnerability; machine learning; random forests; CART; MARS; gradient boosting
algorithms; Ogallala Aquifer; nitrate; water quality

1. Introduction

Nitrate (NO3-N) is a widespread environmental contaminant that is commonly detected in
groundwater supplies and can cause severe health effects, both in children and adults [1]. Nitrates
in groundwater can arise from multiple sources, including, but not limited to, the use of fertilizers,
improper waste management practices from animal feed operations, inadequate treatment of household
wastewater prior to its discharge in the environment, as well as from natural sources (decay or natural
organic matter). Many groundwater dependent public water supply systems in the US and particularly
in the rural parts of Texas have seen increases in the violation of nitrate drinking water quality
standards over the last few decades [2]. In addition, over 13 million households in the United States
(approximately 15% of the nation’s population) rely on unregulated private water wells to meet their
drinking water needs [3]. A large majority of this population is rural and susceptible to exposure to
elevated nitrate concentrations through their drinking water sources [4]. Reliance on private water
wells is even higher in under-developed and developing nations and, as such, efforts to characterize
nitrate in groundwater aquifers are actively being pursued by several local, state and national agencies
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worldwide [5,6]. Intensification of agricultural activities for both food and energy will further increase
the risks of nitrate contamination in aquifers across the world [7–9].

Nitrate is mobile and fairly recalcitrant, especially in shallow groundwater systems that typically
tend to be under oxidizing conditions. Nitrate exhibits the ability to spread over large areas and cannot
be treated in-situ using conventional plume scale treatment technologies [10]. Therefore, individual
homeowners are often required to install costly point-of-use treatment systems to mitigate nitrate risks
arising from the ingestion of contaminated groundwater [11,12]. However, as nitrate is colorless and
odorless, many people do not realize the risk of nitrate contamination and are unwittingly exposed
to elevated levels of nitrate over long periods of time [13]. Therefore, nitrate contamination must be
prevented through proper land management practices. Additionally, areas with a high susceptibility to
nitrate pollution must be carefully delineated, with the goal of increasing public awareness regarding
elevated health risks arising from nitrate exposures. Such an effort is also useful to prioritize monitoring
activities and ensure that the limited fiscal and logistic resources are being used in a prudent manner.

Mapping the susceptibility of aquifers to nitrate contamination is an essential step in mitigating
and managing nitrate contamination. Multi-criteria decision making (MCDM) methods, such as
DRASTIC [14], have been widely used to map aquifer vulnerability [15]. Intrinsic vulnerability
methods do not account for chemical specific characteristics; therefore, approaches that account for
existing pollution have also been proposed in the literature. In particular, logistic regression models
have been extensively used, albeit with a mixed degree of success, to calculate the probability of the
exceedance of a pre-defined nitrogen (or some other contaminant) threshold [12,16–27].

The main reasons for the popularity of logistic regression techniques for aquifer vulnerability
assessment include its ability to deal with censored data and the availability of computer programs to
perform the necessary calculations. Furthermore, the resulting equation can be easily embedded into a
geographic information system (GIS) to develop aquifer vulnerability maps. While logistic regression
is easy to implement, the explanatory (independent) variables used to predict the probability of nitrate
exceedance must be carefully selected a priori. In addition, the logit function is assumed to be a linear
function of the explanatory variables and a single global equation is used model the entire dataset. As
such, it may have limited capabilities for modeling the nonlinear dependencies that arise locally, due
to aquifer heterogeneity and geochemical variability at the field scale.

Tree-based classification methods work on the principle of recursively partitioning the dataset,
such that data is clustered as closely as possible with other similar data, while being as far apart as
possible from dissimilar data that are clustered separately. A primary advantage of the tree-based
models lies in the fact that the structure of the model need not be specified a priori [28]. Tree-based
modeling can be used to extract the underlying structure of the model and identify important
variables influencing the output. The tree structure also makes it easy to understand the nonlinear
relationships between input parameters and the output, as well as the interactions between various
input parameters [29]. In addition, tree-based models require very little data preparation and can
handle outliers and missing values. Unlike many other machine learning methods, normalization of
data is not needed for tree-based models. Tree-based models can be constructed with limited data,
but are also capable of mining extremely large datasets. Tree-based algorithms do not use a single
(global) equation, but fit multiple local models for different data partitions. This allows them to model
nonlinearities in the dataset, arising from aquifer heterogeneity and geochemical variability. As such,
they can be useful to not only predict nitrate contamination susceptibility, but also help elucidate
underlying processes and controls, which are useful for the subsequent design of treatment systems, as
well as to develop and refine groundwater quality monitoring programs.

The advantage of tree-based methods in water quality studies has been recognized. The
classification and regression tree (CART) approach [30] has been applied to water quality problems [31].
In particular, Burow et al. [32] used the CART algorithm as an exploratory tool to identify factors
affecting nitrate concentrations in principal aquifers in the US. The multi-adaptive regression splines
(MARS) combines recursive partitioning and spline-based fitting to develop highly nonlinear and
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accurate relationships between input and output parameters [33]. Furthermore, the MARS model,
with its tree-structure, provides valuable insights into the relationships between input and output
variables and identify important input subsets. Given these advantages, there is a growing interest in
using the tree-based MARS in water quality and groundwater studies [34–36]. The utility of tree-based
classifiers can be further enhanced using bagging and boosting techniques, used by ensemble-based
classifiers such as the random forests (RF) [37] and the gradient boosting trees (GBT) algorithms [38,39].
The RF algorithm has been successfully used for modeling nitrate contamination in groundwater
waters [26,40,41]. The boosted trees method has also been used to predict the susceptibility of nitrate
pollution [42,43].

While recent studies indicate that tree-based models hold promise for assessing water quality
and delineating aquifer vulnerability, there is still a need to evaluate the feasibility of these modeling
schemes at other locations and geographies, to gain confidence in their use. As nitrogen concentrations
are affected by a variety of physical, chemical and biological processes, evaluating the ability of
various tree-based models to elucidate underlying processes and mechanisms from integrated soil,
hydrogeological and geochemical datasets has not been explored to date, and is an important research
gap that this study seeks to address. Therefore, this study employs four tree-based modeling
techniques—classification and regression trees (CART), multi-adaptive regression splines (MARS),
gradient boosting trees (GBT) and random forests (RF) to model nitrate exceedances in the Ogallala
Aquifer in the Southern High Plains (SHP) region of Texas (see Figure 1), and benchmarks the results
against the commonly used logistic regression (LR) technique using a comprehensive multivariate soil,
hydrogeological and geochemical dataset.
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in the SHP aquifer [24]. Therefore, this region forms an ideal testbed, to evaluate different approaches to 
predict aquifer vulnerability to nitrate exceedances.  
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The Southern High Plains (SHP) region of Texas is an area of intense agricultural activity
and a top producer of cotton, corn and beef products in the nation [44]. The SHP region has
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intense agricultural activity and well drained soils, and is very conducive to nitrate pollution from
anthropogenic activities [45,46]. In addition, the mineralization and nitrification of old (pre-cultivation
era) soil organic nitrogen, due to enhanced microbial activity brought forth by increased soil wetness
from irrigated agriculture, is also known to affect nitrogen recycling in SHP and increase nitrate
contamination of aquifers [47]. Elevated levels of nitrate (in excess of maximum contaminant level of
10 mg/L as NO3-N) are a widespread problem in the SHP aquifer [24]. Therefore, this region forms an
ideal testbed, to evaluate different approaches to predict aquifer vulnerability to nitrate exceedances.

2. Methods

2.1. Logistic Regression (LR)

Logistic regression is a popular technique for mapping aquifer vulnerability; therefore, it is used
here to benchmark the performance of tree-based modeling schemes. For a dichotomous random
variable, Y, that takes two values (0, 1), the odds (O) of favoring a value of 1 (exceedance) and the logit
(L) can be written as:

O(Y = 1) =
P(Y = 1)

1− P(Y = 1)
(1)

L = loge(O) = loge

(
P(Y = 1)

1− P(Y = 1)

)
(2)

Logistic regression refers to models in which the logit is the state variable (output) and is linearly
related to a set of m predictors (X1, X2, . . . , Xm) as:

L = a0 + a1X1 + a2X2 + . . .+ amXm (3)

An estimate of the probability, P(Y = 1), can be obtained by reversing the logit transformation

P(Y = 1) =
1

1 + e−L (4)

Note that the logistic regression approach assumes the logit is a linear function of a set of
independent variables, which must be specified a priori. The model parameters (intercept and model
coefficients), estimated using the maximum likelihood approach and statistical methods for evaluating
the significance of model coefficients, are well established for this technique [48] and are not repeated
here, in the interest of brevity.

2.2. Feature Selection for Logistic Regression Model Specification

The selection of appropriate features is an import aspect of LR modeling. While step-wise
approaches have been popular, there is a growing recognition that these methods can discard
important variables, select variables that exhibit a high degree of multicollinearity and lead to model
overfitting—i.e., the model performs well on training data, but has poor generalization abilities [49].
Physical considerations, in conjunction with the correlation matrix and a filter based variable importance
measure [50], were used to select a subset of input variables to be included in the LR model. This
independent feature selection also provides a comparison to automatic feature selection and variable
importance measures that are in-built into tree-based methods.

2.3. Single-Tree-Based Methods

2.3.1. Classification and Regression Trees (CART)

The classification and regression trees (CART) method is a recursive partitioning technique,
wherein output data assigned to a particular node are partitioned into two groups, using a cut-off

value of an independent variable. The forward partitioning is carried out, so that data points within
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a group are clustered as closely as possible to each other and as far as possible from the data points
in the other group [51]. The CART model cycles through each independent variable and evaluates
various cut-offs to identify the most appropriate variable for a given node. The cut-off at which the
split is made is chosen such that the difference in deviance between the two splits is maximized. The
tree is grown by successively applying the method at each node that is created in the previous stage,
until the tree cannot grow anymore.

The CART model is referred to as a greedy algorithm, because it optimizes the error locally at each
node, rather than optimizing the error structure associated with the overall tree. Each node within a
tree has a partitioning rule which is defined through minimization of the relative error (RE), which is
given as follows:

RE(d) =
R∑

l=0

(
yL − ym

R

)2
+

L∑
r=0

(
yR − ym

R

)2
(5)

where yL and yR are left and right partitions with L and R observations and yL
m and yR

m are the mean
values for left and right partitions. The decision rule is a point in some input variable that is used to
determine left and right branches [52]. While the model cycles through all initially supplied input
variables, it may only pick a subset of the inputs (i.e., those that provide the optimal separation at
each node of the tree). Therefore, the approach also performs the task of data reduction and helps
identify important variables. Input variables that are used to make primary (higher-level) partitions
are more important, as they are used to partition a larger subset of data. Additionally, a variable used
for multiple partitions influences the output in a more nonlinear fashion than one that is used for a
single or fewer partitions.

The complexity of the tree is defined by the number of nodes and the number of input parameters
used to make the split and is quantified using the complexity parameter, which measures the tradeoff

between the model structure and predictive capabilities of the tree. The initial tree developed by the
CART model is typically too complex to be of practical use. While this tree may be able to correctly
learn the patterns in the training data, it usually lacks generalization capabilities. Therefore, in the
backward pass, the tree is pruned, to reduce its complexity. In the pruning step, the branches are
removed, and data are aggregated at higher levels. A k-fold cross-validation approach is used to
evaluate the predictive errors associated with a particular level of pruning, as compared to a tree with
no splits (i.e., maximal error), and is used to identify a suitable pruned version as the final model [53].
A CART model typically provides a single valued estimate of a continuous output, or probability
values for a discrete output that can be categorized as 0 and 1.

2.3.2. Multi-Adaptive Regression Splines (MARS)

The multi-adaptive regression splines, or MARS, is another recursive partitioning technique that
integrates tree-based classification concepts with regression and splines-based curve-fitting approaches.
It is an adaptive nonlinear regression procedure for fitting relationships between a response variable
and a set of predictors using piecewise basis functions [33]. The process is similar to the CART
approach, in that a cut-off value (hinge) of an independent variable is used to induce a kink in the
relationship, in order to capture the underlying nonlinearity in the input-output relationship. The
cut-offs are used to develop basis functions (BFs), an example of which is given in Equation (6).

BF(x) = Max(0, x− xo) (6)

The BFs can also be viewed as a new predictor matrix in which the columns of the BFs replace
each predictor variable in the original data [54]. More than one knot can be specified to fit complex
nonlinear relationships. Multiplicative hinges involving two or more model inputs can be used to
model nonlinearities arising from interactive effects. In a manner similar to CART, the independent
variables to be included in the BFs and their corresponding cut-off values are estimated simultaneously
by the model. The BFs are identified sequentially and automatically in the forward pass and the model
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is built using linear regression (for continuous output), or logistic regression when the output is a
discrete variable [55]. In the backward step, the model is made parsimonious by removing certain
kinks, but using higher-order splines to capture noted nonlinearities in the input-output relationships.
As the MARS model uses logistic regression for binary classification in a piece-meal fashion, the output
produced by the model corresponds to the probability of exceedance, which can be categorized into a
binary output using a suitable cut-off value.

2.4. Ensemble-Based Methods

In single tree-based methods, the focus is on developing one final model (tree), that provides
sufficiently accurate predictions and also satisfies the principle of parsimony. Tree-based models
may perform extremely well on a subset of data and very poorly on another subset within the same
dataset. Ensemble-based methods try to improve model predictions by developing multiple tree-based
models and aggregating them to provide predictions. The basic premise of aggregation is that different
models, which perform differently on subsets of the data, can be effectively combined to offer a
best set of predictions over the entire range of data. Bagging and boosting are two commonly used
approaches for building ensemble models [56]. Bootstrap aggregation or bagging is based on the idea
of creating an ensemble of trees, by bootstrapping the data and then using a voting scheme to perform
classification [57]. The approach primarily focuses on reducing the variance of error rather than the
bias in the predictions. While boosting also creates an ensemble of models, it seeks to draw samples
intelligently by iteratively giving more weight to incorrect predictions, as it minimizes errors. Bagging
is based on deep trees (strong learners) while boosting tends to work with shallow trees (weak learners)
and could also include stumps (i.e., a tree with a single node). The random forest (RF) is an advanced
bagging algorithm [38] that is now considered as a standard, widely used approach to bagging. There
have been several variants of boosting proposed in the literature [58,59], but the gradient-boosting
trees (GBT) method [39,60] has gained popularity in machine learning literature, particularly given its
flexibility and the ability to solve complex problems [61], and is adopted here as well.

2.5. Random Forests (RF)

The basic idea behind the random forests (RF) algorithm is to build a set of uncorrelated trees
using a CART-like procedure. Deep trees with several nodes tend to overfit the data (i.e., memorize
the dataset rather than generalize the relationship) and, as such, have low bias but high variance. The
RF algorithm applies the bagging concept to CART and draws random samples with replacement
of the training dataset to develop a set of trees. In the traditional bootstrapping approach, only the
observations (training data) are obtained via replacement and all the predictors are retained during
each realization. While this approach can help reduce the variance without significantly increasing the
bias, correlation among trees cannot be guaranteed, especially if a set of predictors has a very high
influence. Therefore, the RF algorithm uses a “feature bagging” approach, in which not only are the
data sampled randomly, but the predictors are also sampled randomly during each realization.

Each tree in the random forest (RF) is built using the partitioning rule given in Equation (5), based
on various subsets of data records and attributes. For a binary classification, the output from each tree
can be classified as either 0 (non-exceedance) or 1 (exceedance). The final classification of the random
forest is based on a majority vote. Mathematically, if K trees within the Random Forest comprising
of N total trees predict 0 and K > N/2 (i.e., majority), then the output of the RF is non-exceedance,
otherwise it is categorized as exceedance (see Equation (7)). It is therefore always useful to specify the
total number of trees as an odd number to avoid ties.

RF = IF
(
K >

N
2

)
then 0 ELSE 1 (7)

The RF algorithm uses the observations left out of resampling (referred to as the out of bag or
OOB samples) to estimate the generalization error. The use of out-of-bag (OOB) samples to estimate
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the predictive error eliminates the need for cross-validation, and as such, improves the computational
efficiency of the algorithm. The RF algorithm does not yield a single tree or a simple formula and from
this standpoint, it can be viewed as a black-box algorithm. However, as several subsets of models
with different predictors are constructed during the training phase, useful insights can be drawn with
regards to the underlying structure in the dataset. In particular, the OOB error is useful to establish the
importance of different variables used as predictors.

2.6. Gradient Boosting Trees (GBT)

Boosting is an adaptive method for combining many simple models to improve predictive
performance [62]. As the name suggests, gradient boosting trees (GBT), or boosting regression trees,
combine the tree-based predictive algorithms with the boosting approach. The GBT algorithm is
capable of fitting highly nonlinear relationships and can effectively deal with outliers and missing data.
A GBT algorithm can select an appropriate set of variables from a large set of predictors, and can also
automatically identify interactions among inputs. Therefore, GBT can be viewed as a complementary
ensemble method to the RF algorithm. Boosting algorithms proceed sequentially and in a stage-wise
manner, to aggregate the final model.

The GBT method [63] starts by building an initial tree-based model of a given tree size, that
seeks to best explain the variance in the data. The tree size is controlled by the user-specified tree
complexity parameter (tc). The tree complexity defines the extent of interactions allowed in the model.
A loss function (e.g., deviance) is used to identify the best-fit model at each stage. Once the first
model is created, the difference between the model predictions and the observations (i.e., residuals
or misclassifications) are calculated. In the second stage, another tree model is fit to predict the
misclassifications obtained from the first stage. The second tree could potentially use a completely
new set of predictors to model the residuals. The residuals remaining after the first two stages are
fit to another tree in the third stage and the process is repeated several times. The boosting process
is said to be stage-wise, because the trees constructed at earlier stages are left unchanged when the
residuals (misclassifications) arising from them are minimized at a later stage. The final GBT model is
a linear combination of hundreds or thousands of trees, and can therefore be thought of as a linear
regression, where each term is a tree [64]. If the GBT algorithm employs a total of M trees, the function
approximation at the mth stage can be mathematically expressed as:

F(X) = Fm−1(X) + lrmh(X, am) ∀ m = 1, . . . , M (8)

where F(X) is the final output of the GBT model at stage m, Fm−1(X) is the model constructed at stage
m − 1 (previous stage) and h(X,am) is the model constructed at stage m, whose parameters are am and h
is a decision tree and am corresponds to attributes used for splitting the nodes and their cut-off values.
The model starts off with an initial guess Fo(X) for m = 1 and each h(X,am) can be seen as a successive
boost based on preceding steps, aimed at improving the overall predictive accuracy. The learning rate
multiplier is obtained as part of the parameter estimation process by minimizing a loss function over
the training dataset [63].

While the GBT algorithm follows the steepest descent towards the minimum error, the process
works best if the movement proceeds slowly along the gradient. This slow movement towards the
minimal error ensures that highly curvilinear relationships are accurately modeled in a piece-wise
linear manner. Therefore, the contribution of each tree is shrunk using a learning rate (lr) that is
assumed to be much less than unity. The prediction of the final value is computed by summing up the
contributions of all trees multiplied by the learning rate. The GBT algorithm is rendered stochastic by
randomly sub-setting the data to fit each new tree [65]. Stochasticity is seen to reduce the variance
and helps improve the predictive capabilities of the final model. The GBT algorithm is optimized
by jointly altering the tree complexity (tc), learning rate (lr) and the number of trees (nt). While the
final model cannot be readily visualized (black box mode), the output from the GBT approach can be
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used to identify important variables and their effects on the output, as well as significant interactions
amongst the predictors.

2.7. Model Evaluation and Comparison

The evaluation of binary classifiers is commonly carried out by constructing contingency tables and
evaluating how the model classifications compare to actual observations [66]. The receiver operating
characteristics (ROC) curve can be used to identify an optimal cut-off probability, to discriminate
between exceedance and non-exceedance when the dataset is unbalanced. In this study, the cut-off

probabilities were selected such that they minimized the distance from the ideal sensitivity and ideal
specificity values of unity. The 2 × 2 contingency tables were then created to compare observed and
model predicted non-exceedances. The Barnard’s exact test of independence, the odds-ratio and other
classifier performance measures, such as sensitivity, specificity, recall rate and precision, were used
to evaluate the models [67]. The average performance of the tree-based classifiers and their ability
to perform better than random guessing was evaluated using the area under the ROC curve (AUC).
AUC values less than 0.5 indicate that the classifier is no better than random guessing, and a score of 1
indicates a perfect discrimination of exceedance and non-exceedance values [54].

2.8. Data Compilation and Predictor Variables Selection

Nitrate concentrations measured at 101 wells, as part of a statewide groundwater monitoring
program in Texas, were adopted in this study, to evaluate nitrate contamination in the Ogallala aquifer
in Texas. As nitrate and other chemical constituents were only sampled synoptically, measurements
made over a period of 1995–2015 were used in this study, to obtain sufficient spatial coverage across
the aquifer. A comparison of values at wells with multiple measurements indicated that nitrate values
had not changed significantly over the average time period (maximum values were typically less
than 1.15 average value). As such, the temporal average nitrate value at each well were taken as
representative values for further analysis. A cut-off of 10 mg/L nitrate-nitrogen, corresponding to the
maximum contaminant level (MCL), or the drinking water standard, was adopted here to create a
binary variable called exceedance. The exceedance variable therefore represents whether the water
from the well is in violation of the drinking water standard. The binary exceedance variable was the
output (state variable) in this study. Exceedance or non-exceedance states were the same, regardless
of whether the average value or maximum observed value was used for the analysis, which again
indicates that temporal averaging reasonably captured the exceedance (non-exceedance) states in the
aquifer. Factors such as topography, soil organic matter, recharge rates and well depth have been used
by other researchers as suitable surrogates to model nitrate contamination in aquifers [5,26,43]. In
addition, recent studies have demonstrated the utility of the concentrations of heavy metals (e.g., iron,
manganese, calcium, and dissolved oxygen) in defining the redox conditions in the aquifer, which
critically affects the formation and removal of nitrogen in the subsurface [68]. As such, chemical
parameters were also considered, alongside physical and hydrogeological parameters.

A comprehensive suite of potential input parameters was compiled from a variety of sources
(see Table 1). Input values that were directly measured at the well (e.g., well depth, depth to water
table and chemical constituents) were used directly. Other data (e.g., soil properties at the well) were
extracted at the well using GIS operations. For modeling purposes, the entire dataset was randomly
split into training (75 wells or 75%) and testing datasets (26 wells or 25%). The wells assigned to these
datasets are depicted in Figure 1. All models were developed and coded using the R programming
environment [69], making use of rpart [70], earth [71], randomforest [72] and dismo [73] packages and
other custom developed scripts.



Water 2020, 12, 1023 9 of 27

Table 1. Input Parameters Considered in this Study to Model Nitrate Exceedances and their Data Sources.

Parameter Description Source Data Location

Recharge Groundwater Recharge (in/yr) 1% of 30-year Annual Precipitation from
PRISM

http://www.prism.oregonstate.edu/normals/ (last access date:
19 February 2020)

Slope (%) Topographical Slope (%) Calculated using the 90 m Digital
Elevation Map http://srtm.csi.cgiar.org/ (last access date: 19 February 2020)

SOM Soil Organic Matter (%) STATSGO2 http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
(last access date: 19 February 2020)

SHG Soil Hydrologic Group STATSGO2 http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
(last access date: 19 February 2020)

Texture Soil Texture STATSGO2 http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
(last access date: 19 February 2020)

Clay Percent Clay (%) STATSGO2 http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
(last access date: 19 February 2020)

Dist_MSW Distance from Muncipal Solid Waste
Facility (mi)

Based on Locations identified by Texas
Commission on Environmental Quality

https://www.tceq.texas.gov/permitting/waste_permits/msw_
permits/msw-data (last access date: 19 February 2020)

Ndep Nitrogen Deposition (kg/ha/y) Based on National Atmospheric
Deposition Program

http://nadp.slh.wisc.edu/NTN/maps.aspx (last access date: 19
February 2020)

DWT Depth to Water Table (ft) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

Well Depth Well Depth (ft) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

Mn Manganese (mg/L) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

Fe Iron (mg/L) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

Ca Calcium (mg/L) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

DO Dissolved Oxygen (mg/L) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

ORP Oxidation Reduction potential (mV) Texas Water Development Board
Groundwater Database

http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
(last access date: 19 February 2020)

Nload Nitrogen Loading (kg/y) Based on land use land cover from
MLRC 2011

https://www.mrlc.gov/data/legends/national-land-cover-
database-2011-nlcd2011-legend (last access date:

19 February 2020)

http://www.prism.oregonstate.edu/normals/
http://srtm.csi.cgiar.org/
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://www.tceq.texas.gov/permitting/waste_permits/msw_permits/msw-data
https://www.tceq.texas.gov/permitting/waste_permits/msw_permits/msw-data
http://nadp.slh.wisc.edu/NTN/maps.aspx
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp
https://www.mrlc.gov/data/legends/national-land-cover-database-2011-nlcd2011-legend
https://www.mrlc.gov/data/legends/national-land-cover-database-2011-nlcd2011-legend
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3. Results and Discussion

3.1. Model Development and Structural Inferences

All models were calibrated using the training dataset (75 wells) and tested using the independent
testing dataset (26 wells). The model coefficients for the logistic regression model are summarized
in Table 2. The correlation coefficients and the relative importance computed using the filter-based
feature selection method are depicted in Figure 2.
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Figure 2. Relative Importance and Correlation Coefficient Matrix used for Selection of Inputs. (a)
Relative Importance Measured using Filter-based Method and (b) Rank Correlation Coefficients
between Variables (BiSerial Correlation was used for Discrete and Continuous Variable Correlations).

Four parameters—calcium concentration in the groundwater (Ca, mg/L), clay content of the
overlying soil (clay, %), nitrogen deposition (Ndep-kg/ha/y) and Well Depth (WD in ft)—were selected
due to their relative importance. While soil organic matter (SOM %) was also noted to be important, it
exhibited a strong correlation with clay content, and as such was not included in the final model, to
avoid multicollinearity effects. The model coefficients of the calibrated logistic regression model are
presented in Table 2.
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Table 2. Coefficients of the Logistic Regression (LR) Model (Standard Errors are in parenthesis).

Parameter Coefficient

(Intercept) −0.189 (1.919)
Clay (%) −0.0948 (0.044)
Ndep (kg/ha/y) 0.454 (0.173)
WellDepth (ft) −0.00955 (0.004)
Ca (mg/L) 0.0248 (0.014)
AIC 74.47

The Hosmer–Lemeshow test indicated no evidence of a poor fit (Chi-squared = 4.82, df = 8, p-value
= 0.776) adding credence to the final selected model. The model coefficients for input parameters were
statistically different from zero (α ≤ 0.05). The variance inflation factors were all less than 2.0 and as
such the LR model did not exhibit any multicollinearity effects [74]. The model coefficients presented
in Table 2 also indicate that the log-odds of an exceedance are inversely proportional to well depth and
clay content. Deeper aquifers are oxygen depleted and higher clay content retards the free movement
of air (oxygen) in the vadose zone, and thus minimizes oxygen availability as well.

Nitrogen deposition is also seen as an important predictor of nitrate exceedances. As nitrogen
compounds have short residence times in the atmosphere [75], the deposition rates essentially serve
as surrogates for local emission sources, such as releases from confined animal feed operations [76].
The SHP region is characterized by an abundance of calcite (caliche) deposits [77]. The dissolution
of calcite in groundwater elevates the levels of calcium and carbonate in water. While calcium
does not undergo significant reactions, the dissolution of bicarbonate increases the alkalinity. From
stoichiometric considerations, the oxidation of 1 mg of ammonium-nitrogen to nitrate requires 7 mg of
alkalinity; therefore, the dissolution of calcite promotes both the enrichment of calcium, as well as
nitrate formation in the aquifer.

The final (pruned) CART model for the classification of nitrate exceedances in the Ogallala Aquifer
is depicted in Figure 3. Higher level splits are performed using calcium, well depth, and clay percentage.
The nitrogen deposition and nitrogen loading (a function of land use) have moderate influences, while
depth to water table, slope and ORP have a lower level of influences. The final pruned CART model
only used eight of the 16 inputs that were initially identified to likely influence the nitrate exceedances.
The CART model variable selection (Figure 3) generally matches with the filter-based importance
measures identified in Figure 2. Unlike LR models, which use a single global equation for prediction,
CART models employ local models at each node, and as such are not affected by multicollinearity
effects. Therefore, at lower level nodes (depth to water table which is strongly correlated to well depth),
oxidation reduction potential (ORP, mV) tends to provide better splits on subsets of the data.
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Figure 3. Classification and Regression Tree (CART) model for Nitrate Exceedances.

The final 10-fold cross-validated MARS model is summarized in Table 3. It uses four chemical
parameters (calcium, ORP, nitrogen loading and nitrogen deposition), as well as two soil parameters
(soil hydrologic group and clay); furthermore, the predictions also vary highly nonlinearly with
well depth (as it is used for multiple cutoffs). Unlike the LR model, which was mostly based on
intrinsic hydrogeological characteristics, the CART and MARS models placed a greater emphasis on
geochemical processes. ORP is a direct indicator of redox processes in the aquifer. As deeper aquifers
tend to exhibit anoxic or anerobic conditions, well depth can be viewed as a surrogate for redox
processes in the aquifer. Therefore, the CART and MARS models emphasize that redox conditions in
the aquifer play a critical role in defining nitrate concentrations. As discussed before, the selection of
calcium to perform higher-order splits is consistent with the geochemical considerations, as it provides
the alkalinity necessary for speciation of ammonium to nitrate ions.

Table 3. Model Coefficients of the MARS Model along with the Cut-Offs.

Parameter Coefficients

(Intercept) 1.005
h(SHG-8) −0.436
h(Clay-14) −0.020

h(Ndep-6.89954) 0.109
h(ORP-121.949) 0.004
h(96.9828-Ca) −0.008
h(Nload-7.5) 0.115

h(WellDepth-350) −0.043
h(WellDepth-190) −0.005
h(WellDepth-331) 0.040
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The random forest (RF) model was developed by optimizing the number of trees and the number
of variables randomly sampled at each split. Cross-validation runs indicated that random sampling
of four parameters yielded the best results. Additionally, the out of the bag (OOB) errors did not
reduce significantly when the forest contained more than 2000 trees. The values obtained here for these
hyper-parameters are consistent with other studies [78]. The RF algorithm is essentially a black-box
model, with a focus on predictions rather than inferencing of the model structure. Nonetheless,
important variables can be ascertained from random resampling of variables and the associated OOB
errors. In addition, the marginal effects of input variables (i.e., the effect of a variable while controlling
for others) on the logit can also be ascertained, and is depicted in Figure 4 for the six most important
variables identified by the RF model.
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In particular, the likelihood of predicting nitrate exceedances diminishes in wells that are deeper
than 250 feet and when the depth to water table is greater than 200 ft. The exceedance of nitrate is
also higher when the calcium concentrations in the well are greater than 100 mg/L. These results once
again indicate the importance of aquifer redox chemistry for predicting nitrate exceedances and are
generally consistent with CART and MARS model inferences.

The likelihood of nitrate exceedance is higher in areas with lower soil organic matter (typically
indicative of agricultural lands) and decreases with increasing clay content (reduced recharge). The
marginal effects of nitrate deposition indicate the likelihood of nitrate exceedance, which increases
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when annual loadings are greater than 8 kg-N/ha/y. The cyclical pattern of the marginal effects of
nitrogen deposition (Ndep) in Figure 4 likely points to the interactions of this variable with other input
parameters (i.e., effects are likely different depending upon the values of other inputs when calculating
the marginals).

The calibration of gradient boosting algorithm (GBT) was carried out by jointly optimizing the
number of trees (nt = 1290), learning rate (lr = 0.001) and tree complexity (tc = 5), using a 10-fold cross
validation procedure [64]. Again, the gradient boosting places emphasis on prediction, rather than the
inference of the underlying model structure. Nonetheless, the number of times a variable is selected for
splitting and the associated improvement in prediction averaged over all trees can be used to identify
significant variables [79]. Figure 5 shows the marginal effects of the six most important variables
identified by the GBT model. The results in Figure 5 are similar to the partial dependencies obtained
using the RF model. Again, the likelihood of observing nitrate exceedances decrease in wells with
depths greater than 225 feet, and when the depth to the water table is greater than approximately 150
feet. Increasing clay content (>20%) and increasing soil organic matter (>1%) decrease the likelihood
of observing nitrate exceedances. The GBT model also suggests that the likelihood of exceedance is
higher when the total nitrogen deposition exceeds 8 kg-N/ha.
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Elith et al. [64] have developed a procedure to assess interactions among variables, using trees
developed as part of the model development process. The interactions calculated by establishing
linear relationships between pairs of predictors while holding others at their average values indicate a
strong relationship between nitrogen deposition (Ndep) and nitrate exceedances. As discussed earlier,
nitrogen deposition is often considered a useful surrogate for local nitrogen sources in the region, such
as the confined animal feed operations (CAFO).

3.2. Spatial Patterns of Controlling Factors

The insights generated from tree and ensemble-based modeling were integrated with GIS, to
understand the spatial patterns of influencing variables, and are summarized in Figure 6.
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Nitrogen deposition in rural areas is a strong function of confined animal feed operations
(CAFOs) [80], which are considered a significant source of ammonia emissions in West Texas [81].
There are a greater number of CAFOs in the northern portion of the study area (see Figure 7), which
explains the greater influence of nitrogen deposition rate in the north.
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The well depth and calcium, which are surrogates for redox reactions in the aquifer, are dominant
in the southern portions of the study area. Furthermore, the depth to water table is significant in
both the southern and northeastern sections. While the percentage of clay is selected as an important
variable, its primary influence is seen mostly in the southwestern sections of the study area; however,
this indicator correlates strongly with several other predictors (e.g., drainage, texture and soil organic
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matter (SOM)) used in the study. The soil organic matter (SOM) influence generally follows the
agricultural land use in the region. These results, therefore, help conclude that CAFO operations and
agriculture are likely the two dominant human activities that affect nitrogen in the Southern High
Plains. Redox conditions in the aquifer play a significant role in controlling nitrate concentrations,
especially in areas where the water table is shallow.

3.3. Predictive Evaluation of the Models

Separate contingency tables were created for each model for both training and testing datasets,
using cut-off values obtained by simultaneously minimizing the distance to ideal sensitivity (recall)
and specificity values of unity for each model (Table S1 in Supplementary Materials and Tables 4
and 5). The null hypothesis that the observations and predictions are independent was rejected for
both training and testing data, using Barnard’s exact test indicating the ability of the models to predict
contamination states. A suite of summary measures was calculated for these contingency tables and are
presented in Table 4 for training and Table 5 for testing datasets, to evaluate the predictive capabilities
of the model. While the CART model is capable of being trained to a high level of accuracy, it is
not able to sufficiently generalize the relationship and predict an independent dataset. Overfitting
(i.e., the ability of a single tree to learn the training dataset well but unable to make generalizations)
is known to be a problem with single tree models such as CART [82], and can be overcome using
ensemble-based methods.

Table 4. Performance Metrics of Tree-Based Models for the Training Dataset.

Measure Equation LR CART MARS RF GBT

True Positive TP 35 42 41 28 36

False Positive FP 6 1 2 7 3

False Negative FN 8 1 2 15 7

True Negative TN 26 31 30 25 29

Prevalence (TP + FN)/(TP+FP+FN+TN) 0.573 0.573 0.573 0.573 0.573

Accuracy (TP+TN)/(TP+FP+FN+TN) 0.813 0.973 0.947 0.707 0.867

True Positive Rate TP/(TP + FN) 0.814 0.977 0.953 0.651 0.837

False Positive Rate FP/(TN + FP) 0.188 0.031 0.063 0.219 0.094

False Negative Rate FN/(TP + FN) 0.186 0.023 0.047 0.349 0.163

True Negative Rate TN/(TN + FP) 0.813 0.969 0.938 0.781 0.906

Positive Predictive Value TP/(TP + FP) 0.854 0.977 0.953 0.800 0.923

False Omission Rate FN/(TN + FN) 0.235 0.031 0.063 0.375 0.194

False Discovery Rate FP/(TP + FP) 0.146 0.023 0.047 0.200 0.077

Negative Predictive Value TN/(TN + FN) 0.765 0.969 0.938 0.625 0.806

Positive Likelihood Ratio True Positive Rate/False Positive
Rate 4.341 31.256 15.256 2.977 8.930

Negative Likelihood Ratio False Negative Rate/
True Negative Rate 0.229 0.024 0.050 0.447 0.180

Diagnostic Odds Ratio Positive Likelihood
Ratio/Negative Likelihood Ratio 18.958 1302.000 307.500 6.667 49.714
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Table 5. Performance Measures of Tree-Based Models for Testing Dataset.

Measure Equation LR CART MARS RF GBT

True Positive TP 11 11 10 10 10

False Positive FP 3 4 3 1 3

False Negative FN 4 4 5 5 5

True Negative TN 8 7 8 10 8

Prevalence (TP + FN)/(TP+FP+FN+TN) 0.577 0.577 0.577 0.577 0.577

Accuracy (TP+TN)/(TP+FP+FN+TN) 0.577 0.692 0.692 0.769 0.692

True Positive Rate TP/(TP + FN) 0.667 0.733 0.667 0.667 0.667

False Positive Rate FP/(TN + FP) 0.545 0.364 0.273 0.091 0.273

False Negative Rate FN/(TP + FN) 0.333 0.267 0.333 0.333 0.333

True Negative Rate TN/(TN + FP) 0.455 0.636 0.727 0.909 0.727

Positive Predictive Value TP/(TP + FP) 0.625 0.733 0.769 0.909 0.769

False Omission Rate FN/(TN + FN) 0.500 0.364 0.385 0.333 0.385

False Discovery Rate FP/(TP + FP) 0.375 0.267 0.231 0.091 0.231

Negative Predictive Value TN/(TN + FN) 0.500 0.636 0.615 0.667 0.615

Positive Likelihood Ratio True Positive Rate/False Positive
Rate 1.222 2.017 2.444 7.333 2.444

Negative Likelihood Ratio False Negative Rate/
True Negative Rate 0.733 0.419 0.458 0.367 0.458

Diagnostic Odds Ratio Positive Likelihood
Ratio/Negative Likelihood Ratio 1.667 4.813 5.333 20.000 5.333

The performance of CART, MARS, and GBT are roughly similar over the suite of performance
metrics evaluated. While the RF model performance is relatively low on the training dataset, it exhibits
considerable generalization capabilities and does extremely well in predicting the independent testing
dataset. The RF model has a high degree of accuracy, precision and recall, and relatively lower predictive
errors for both positive (exceedance) and negative (non-exceedance) outcomes. Therefore, the RF
model is capable of predicting both exceedances and non-exceedances with a high degree of accuracy.
The Euclidian distance between the LR and tree-based models were calculated, to measure their relative
performance to LR. Overall, RF performed significantly better, followed by GBT and MARS.

The receiver operating characteristics (ROC) curves were developed, to understand and compare
the performance of the tree-based models against the LR model over the entire prediction spectrum.
The results presented in Figure 8 for the training dataset indicate that the performances of CART and
MARS models are slightly better than that of the LR over the entire range of specificity, while the
GBT algorithm performs better for the lower values of specificity (i.e., 1-specificity > 0.5). A pair-wise
bootstrap sampling test comparing the ROC curve for the LR model and these three tree-based models
(CART, MARS and GBT) indicated that the differences were, however, statistically insignificant. The
differences between the ROCs of LR and RF models were, however, significant (p < 0.001). The ROC
plots (Figure 9) for the testing data also indicate that the performance of tree-based models is better
over a large range of specificity, indicating their generally superior ability to predict exceedances in
comparison to the LR model for the independent (testing) dataset.
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3.4. Spatial Patterns of Aquifer Susceptibility to Nitrate Exceedances

The five models developed as part of this study were applied to understand how predictions of
nitrate vulnerability vary over the study area and across different techniques. For this purpose, the
study area was gridded into 9196 equally spaced points (3 mile × 3 mile grid cells). The predictor values
at each input was obtained using GIS and used in conjunction with the developed models to delineate
aquifer vulnerability, and is depicted in Figure 10. All models predict high nitrate exceedances in the
southern portions, as well as the northeastern edges of the aquifer. The Fleiss test indicated that there
was a high degree of agreement between the models overall (p-value < 0.001). However, the models
do vary the most in predicting vulnerability in the northwestern sections. The LR model was the most
conservative and indicated that nearly 64.20% of the study area is susceptible to nitrate pollution. The
CART and MARS models are less conservative and indicate that nearly 55% and 53% of the study area
exhibit susceptibility to nitrate exceedances. The ensemble-based models were the least conservative of
all techniques, with RF and GBT predicting that 32.76% and 43.45% of the study area were susceptible
to nitrate exceedances. The output provided by these methods are smoother, with clearer distinctions
between areas with exceedance and non-exceedance potential. The results here indicate that, while
models may have statistically similar predictive behavior, their predictions can exhibit significant
spatial variability.
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While the application of multiple models can be useful to generate scientific insights, results
from these models pose challenges in practical regulatory applications. Many methods for the fusion
of information generated from classifiers have been documented in the literature [83]. Here, the
maximum, minimum and majority vote rules are adopted to develop composite maps for nitrate
exceedance. The fusion based on maximum rule provides the most conservative depiction of aquifer
vulnerability, in that a parcel is classified as vulnerable if at least one model classifies the model as
being susceptible. On the other hand, the minimum rule is least conservative where the parcel of land
is classified as not vulnerable, if at least one model categorizes the parcel as not being vulnerable.
The majority rule classifies the parcel as vulnerable if a majority of the models (i.e., 3 or more) is in
agreement with that assessment.

The results presented in Figure 11 indicate that the area identified as vulnerable in the “Minimum”
map occupies 30% of the study area, and represents those locations that would require the greatest
amount of characterization and sampling, as all five models categorize these parcels as being susceptible
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to nitrate exceedances, and all models categorize these parcels as being susceptible. The “Majority”
map covers an additional 14% of the area to the vulnerable category and represents at least second
priority sites, as three or more models classify them as likely being susceptible. The worst-case scenario
is depicted by the “Maximum” map, which covers a little over 80% of the study area, or over 27,600 sq.
miles. The area covered by the “Maximum” map, but not included in the “Majority” map, represents
third priority areas for monitoring, as at least one of the models classifies it as being susceptible.
It is, however, important to note that future monitoring must also include those areas that are not
categorized as susceptible, albeit relatively less frequently, as the prioritization is based on present
observations. Changes in land use and other hydrogeochemical conditions (e.g., water levels and
ORP), which are relatively inexpensive to measure, can provide vital clues to initiate or ramp up nitrate
monitoring activities.
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4. Summary and Conclusions

Four different tree-based algorithms (i.e., CART, MARS, random forests (RF) and gradient noosting
trees (GBT) were evaluated here to predict nitrate-nitrogen exceedances of drinking water standards
in the Ogallala formation of the Southern High Plains (SHP) Aquifer in Texas. The algorithms of
these tree-based models are useful to identify important variables necessary to model the output of
interest. All four tree-based models highlight the important role of calcium dissolution in controlling
the concentrations of nitrate in groundwater. Redox chemistry plays a critical role in quantifying the
nitrate concentrations in groundwater. Indicators of redox, such as well depth, clay content in the soil
and depth to water table, are also identified as being important. Soil organic matter (an indicator of
agricultural activities) is also an important variable that correlates strongly with clay content of the
soil. Nitrogen deposition rates were locally seen to be important and serve as a useful surrogate for
potential releases from confined animal feed operations in the region. These variables were also noted
to be important using the model-free feature selection method, adding credence to the abilities of the
tree-based approaches to identify important parameters, and help elucidate underlying geochemical
mechanisms controlling the fate and transport of nitrate in groundwater systems.

From a predictive standpoint, all tree-based models performed better than the logistic regression
model, which provided the most conservative results. Tree-based models are able to refine the
estimates locally, which LR models cannot do. Therefore, they are able to represent elevated nitrogen
exposures in a better way than the LR model. Of the tree-based models, the random forest (RF) model
exhibited the best generalization capabilities. While CART, MARS and GBT had similar accuracies,
the MARS and GBT did slightly better in predicting exceedances, while the CART model as better at
predicting non-exceedances. A short video summary of the framework and these major findings can
also be found in the Supplementary Materials section (Video S1: videoabstract-TreeBasedNitrate,mp4)
Based on the results from the study it can be concluded that tree-based models offer a transparent
approach to modeling aquifer vulnerabilities and can be coupled with GIS to depict regional-scale
aquifer vulnerability.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/4/1023/s1,
Table S1: Contingency Tables for Training and Testing Data for Various Models along with Cut-off Probabilities,
Video S1: videoabstract-TreeBasedNitrate,mp4.
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