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Abstract: A water distribution network (WDN) is an indispensable element of civil infrastructure
that provides fresh water for domestic use, industrial development, and fire-fighting. However, in a
large and complex network, operation and management (O&M) can be challenging. As a technical
initiative to improve O&M efficiency, the paradigm of “divide and conquer” can divide an original
WDN into multiple subnetworks. Each subnetwork is controlled by boundary pipes installed with
gate valves or flow meters that control the water volume entering and leaving what are known as
district metered areas (DMAs). Many approaches to creating DMAs are formulated as two-phase
procedures, clustering and sectorizing, and are called water network partitioning (WNP) in general.
To assess the benefits and drawbacks of DMAs in a WDN, we provide a comprehensive review of
various state-of-the-art approaches, which can be broadly classified as: (1) Clustering algorithms,
which focus on defining the optimal configuration of DMAs; and (2) sectorization procedures, which
physically decompose the network by selecting pipes for installing flow meters or gate valves. We
also provide an overview of emerging problems that need to be studied.

Keywords: clustering; district metered area; network sectorization; water distribution network; water
network partitioning

1. Introduction

A water distribution network (WDN) supplies drinking water by maintaining pressures and flow
rates. As most of a WDN’s components are buried and comprise thousands to tens of thousands of
elements, operation and management (O&M) can be complex [1]. Increasing urbanization means
WDNs are constantly being upgraded and expanded. In large cities with aging networks, O&M is
becoming more challenging than ever before.

A critical O&M objective for utilities working on WDNs is improving the efficiency and efficacy
of the supply for a specified water demand at the lowest cost. In particular, efficacy requires reducing
water leakage and nonrevenue water, controlling uniform pressure, and ensuring sufficient pressure.
Leakage control is the most effective way to reduce water prices. The quantity of leakage is related to
system pressure, and reducing pressure reduces leakage. Utilities can apply a “divide and conquer”
paradigm to this challenge by dividing the original complex network into independently controlled
subnetworks called district metered areas (DMAs).

Most researchers agree that partitioning a network into DMAs offers many benefits [2–6]. These
actions may include but are not limited to: (i) Substantially reduce nonrevenue water by active leakage
control; (ii) simplify pressure management by setting off pressure reducing valves (PRVs); (iii) rapidly
identify burst pipes; (iv) district isolation in order to protect the rest of network from accidental or
malicious contamination events; and (v) potential creation of independent DMAs which exclusively
supplied from its own water sources for better control of water quality (e.g., there is no mixing of
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water from different sources). Moreover, for intermittent WDNs, where water is only supplied during
a certain time of a day, DMAs are transition processes that allow evolving intermittent WDNs to
continuous systems by enabling equitable water supply in each DMA [7]. Ciaponi et al. [8] recently
revealed the benefits of WNP not only for WDNs monitoring from contamination events but also for
the effectiveness of optimal sensor placement.

Despite these advantages, they come with trade-offs, such as the reduced redundancy in network
connectivity and the demotion of system pressure, which results in lower network preparedness for
emergencies such as fire-fighting, water suspension due to burst pipes. An additional concern is water
quality deterioration (i.e., water age growth) due to the reduction of available flow paths [9,10].

Because of the benefits brought about by DMAs, many utilities consider them an effective way
to achieve O&M objectives [2]. However, dividing an original network into suitable DMAs can
be challenging because of the intrinsic complexity of the WDN. In the past, before mathematical
methods were applied to DMA configuration, utilities designed DMAs according to administrative
boundaries (districts), main roads, the number of inhabitants, the economic level of leakage, or reservoir
(tank) locations [4,5], which did not account for global perspectives. However, with the advent of
mathematical models, hydraulic solvers can simplify the process and provide various approaches to
optimizing the creation of DMAs while considering operational constraints and objectives.

Today, water network partitioning (WNP) is used to divide networks into DMAs. WNP is a
heuristic process controlled by two phases: clustering and sectorization. The clustering phase is
the preformation of DMAs based on network connectivity and topology. It is implemented through
various algorithms such as graph theory, community structure, modularity-based algorithms, and
spectral algorithms [2,3] to form feasible DMAs and minimize the number of connections to each other.
Sectorization is an optimization process to locate flow meters and gate valves to maintain as high as
possible network performances while minimizing the economic costs [6].

In recent years, WNP has been explored in various studies. In the 18th Water Distribution System
Analysis Conference held in Colombia in July 2016, the “Battle of Water Networks” competition
focused on creating DMAs. The main objective was to optimize the design and operation of a system’s
main components by determining new DMAs for an existing WDN in Colombia, the E-Town network,
by taking into account costs, pressure uniformity, and water quality [3]. It was an opportunity for
researchers and practitioners around the world to solve a challenging problem in a full-scale WDN.
In addition, several methods have been proposed over the last decade for dividing a network into
DMAs. Various benchmark networks have also been developed to test the state-of-the-art methods.

A literature review identified more than 100 published studies that focused applying various
methodologies to WNP. After reviewing the main discussions and approaches in each paper, we
selected 95 papers to study in-depth and 27 related articles; they are all cited here. We found that
the methodologies proposed to date still have certain limitations in real-life applications. This paper
provides a comprehensive review of WDN management using DMAs to help water utilities improve
efficiency in O&M as well as support decision- and strategy-making processes. With this goal in
mind, we first reviewed the rules of DMA and analyzed the merits and demerits of the O&M of
DMAs. Second, we classified the methodologies proposed in recent studies of WNP processes into two
major categories, clustering algorithms and sectorization processes, and analyzed the advantages and
disadvantages of each method. Then, we highlighted the main indicators developed to quantify the
segmentation performances. Finally, we discussed some limitations of the approaches.

This paper is organized as follows. Section 2 presents the principle of DMA and its function in the
O&M of WDNs. Section 3 mainly reviews the clustering phase for the methods developed so far, and
Section 4 describes the sectorization procedure and discusses the currently applied algorithms. Various
indicators of DMA performance are described in Section 5. Finally, Section 6 draws conclusions and
discusses possible improvements in WNP approaches.
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2. Principles of District Metered Areas

The concept of DMA management was introduced by the United Kingdom water industry in
the early 1980s [2,5,11] (Figure 1). At that time, DMA was an area of a distribution system that was
specifically defined by the closure of valves and measurement of the quantities of water entering and
leaving the area. The first goal of DMA is early detection and management of water leakage in a
WDN [11]. Specifically, the measurement of night flow is analyzed to determine the level of leakage
within each DMA and locate the most beneficial places for leakage probes [4,10].
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Water leakage is a major concern for water utilities [12]. Leakage rate varies widely depending on
the country, region, and age of the system. It is reported to be as low as 3 to 7% in a well-maintained
system in the Netherlands, ranging from 10 to 30% in the United States and the United Kingdom,
however as high as 70% in some undeveloped countries [13]. Water loss in WDNs can be classified
as real loss and apparent loss in nature [14]. The real loss occurs from burst pipes or background
leaks due to continual seepage of water from network properties, such as pipe and valve fittings, or to
corrosion-induced perforation of pipes. The apparent loss includes the unauthorized consumption,
a product of meter-reading errors, water theft, and accounting errors. To estimate the leakage in a
DMA, the operator must monitor net minimum night flows in the system (when most consumers are
inactive) and compare it with legitimate night flows to assess the rate of real losses.

One of the major factors influencing leakage is the pressure in the water network [12]. To reduce
water losses, many utilities have changed from a passive approach (i.e., detection and repair) to
proactive approaches (i.e., heuristic processes and pressure-leakage relationships as developed by
Allan Lambert [15]) that indicate that the leakage rate of flow may increase or decrease with changing
pressure levels. The DMA concept was introduced to help proactively manage the number of invisible
water losses and detect the locations of failures based on the hydraulic characteristics of the WDN.

Researchers agree that dividing a network into DMAs is useful [4,16]. Most research assumes
that the benefits of DMAs are greater than the drawbacks [6,17–21]. WDN management through
DMAs has proven highly successful for leakage reduction, reportedly controlling up to 85% of national
water leakage in the UK [11,22]. Gomes et al. [23] showed that dividing a network into DMAs
allows for stable pressure management, which increases asset lifespans. Reduced pressure lowers
the frequency of potential pipe breaks, which consequently reduces real water losses. Gomes et al.
also proposed a method based on the minimum night-flow relationship with pressure to evaluate the
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benefits of pressure management using DMAs by predicting water losses before and after pressure
drops, estimating the reduction in energy consumption through billed water as well as the estimated
direct benefit of the pressure reduction process with DMAs [23]. Huang et al. [24] reported that DMAs
allow for rapid detection of burst pipes by studying the uniformity of daily water demand. They
applied a supervised learning algorithm to improve the positive effect of burst-event detection in
real-time operations. Savic and Ferrari [20,25] and Lifshitz and Ostfeld [26] have also illustrated the
effectiveness of implementing DMAs in WDNs with respect to reducing the frequency of pipe breaks.
To quantify the benefits of reducing burst frequency, Lambert et al. [15] proved that the percentage of
burst-frequency reduction relies on the proportion of pressure reduction obtained after setting up the
DMAs. Their study also revealed that controlling pressure not only reduces burst frequencies, but also
reduces leakage flow rates, extending the life of residual devices and reducing costs for both the water
utility and the customer.

Ferrari and Savic [25] showed that, depending on the specific alternative DMA layout used, burst
frequency can be reduced by approximately 53% to 60%. They also found that leakage reduction
ranged between approximately 26% and 59% after DMA set-up. Furthermore, as the closure of valves
completely isolates DMAs, it is possible to reduce the risk of chemical attacks or accidental events
throughout a network [6]. Isolating DMAs is also useful in component maintenance, replacement,
and repairs because closing boundary valves disconnects districts from other areas. Lifshitz and
Ostfeld [26] demonstrated that combining DMAs with PRVs creates a “knowledge and action” approach
to detecting and managing water leaks. PRVs reduce excess pressure and consequently reduce potential
water leaks without prior information on the positions of the leaks. Meanwhile, DMAs enable the
identification of possible locations of leaks and their potential amounts. A combination of the DMAs
and PRVs will complement each other to provide a better solution for leak management.

The main drawbacks of DMAs are deterioration of water quality compared with that of the
original network and the loss of system resilience against abnormal events. Water age is regarded as
a surrogate for simulations for evaluating the reduction of water quality [27]. Grayman et al. [10],
Diao et al. [19], and Di Nardo et al. [28] found that there was no significant change in the overall
water age metric before and after dividing a large-scale, looped WDN into DMAs. This is consistent
with previous studies by UKWIP [29] and WRc [30], which investigated the impact of WNP on water
quality management. Armand et al. [31] utilized surrogate hydraulic variables to evaluate the impact
of WNP on water quality and the likelihood of discoloration incidents. They reported that DMAs
can compromise overall water quality by increasing the average water age for a set of nodes with
dead-end-like hydraulic behavior. This also increased the likelihood of sedimentation in pipes due
to low flow velocity. However, water quality is reportedly not a critical criterion when designing
DMAs and water age is not a binding constraint [3,28]. Javier et al. [32] and Salomons et al. [33], who
conducted water balance analyses in a WDN, pointed out that the water volume stored in the network
was nearly half of the daily water consumption. It was therefore reasonable to assume that water
would be replaced twice a day in the network, which is a good indicator of water quality. By running a
hydraulic model to compare the network before and after DMA installation, no significant variations
of water age were seen throughout the whole network.

One of the other weaknesses when dividing networks into DMAs is the reduction in a system’s
redundancy [19,28] due to reduced availability of flow paths to connect supply sources and demand
nodes. The insertion of multiple gate valves and flow meters to isolate a DMA leads to increased head
loss due to increased friction [34]. This change can reduce system redundancy in terms of available
pressure throughout the network. Typically, several emergent cases, such as fire-flow supply and water
suspension due to a burst pipe would be issued in system operations. Table 1 summarizes the main
advantages and disadvantages of installing DMAs in WDNs.
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Table 1. Main advantages and disadvantages of district metered areas (DMAs).

Advantages Disadvantages

Improved burst detection and leakage identification Reduced resilience to failures

Advantaged subarea management and reduced NRW Reduced operational flexibility

Improved subarea pressure control Potential negative impact on water quality

Improved protection against contamination Security issues in peripheral areas and emergency cases

Reduced maintenance and repair costs High initial investment cost

Characterized demand curve, especially at night Reduced hydraulic redundancy

Several criteria should be considered when designing DMAs [11], such as

1. Maximum percentage of leakage allowed by the water utility;
2. Topography and number of properties per DMA;
3. Characteristics and topological taxonomy of WDNs;
4. Variations in nodal elevation, water demand, and pressure;
5. The number of flow meters and gate valves; and
6. Water quality considerations.

Depending on the existing network situation and leakage rates, each utility will have its own
criteria to set up economically efficient levels of leakage for each DMA. Once the level of leakage has
been determined, the utility can select the type of policy best suited for controlling leakage in the future,
the size and number of DMAs, and the staff required for the required policy. Dividing a network into
small DMAs will identify bursts quickly, maintain total leakage at a lower level, and reduce the time
required to identify device failures. However, this also leads to increased investment and operational
costs in terms of new flow meters and valves [11]. The international water association (IWA), as
corroborated by previous studies, reports that DMA size is expressed by the number of properties
(user flow meters) and varies between 500 and 5000 properties in urban areas [24]. Individual DMA
size can vary depending on local factors and system characteristics. While a DMA with fewer than
500 properties requires much more initial investment and incurs a higher maintenance cost, a large
DMA will face difficulty in discriminating small bursts and will suffer increased leakage location
times [4,5,11].

From a topological connectivity point of view, a set of complex network metrics was proposed
by Giudicianni et al. [35] to analyze the relationship between the metrics values and the topological
structures of WDNs. To optimize the number of DMAs in the network, the eigengap heuristic was
used to maximize the jump in spectrum of the Laplacian matrix. The study revealed that correlation
between the number of DMAs and network size approximatively follows a power law. Hence, the
optimal number of DMAs does not grow significantly with the network size. Such a relationship hints
that, from a connectivity point of view, the increase of WDN size has more effects on the size of the
DMA rather than the number of DMAs.

The number of water sources supplying each DMA also needs to be considered in the design
process, as each source must be fitted with a flow meter. Depending on the network type (branched
or looped), a DMA may be supplied by single or multiple sources and delivered consecutively or
in parallel to adjacent DMAs. As suggested by Di Nardo et al. [2], a technical and economic rule
is to minimize the number of installed flow meters and have a single flow meter for each DMA to
simplify the calculation of the synchronous water balance. To isolate a DMA from adjacent DMAs, gate
valves are installed in boundary pipes. However, installing gate valves may create more dead-ends
and reduce the pathways of water to the nodes, which may lead to deteriorating water quality [11].
Therefore, optimizing the number and location of flow meters and valves while decomposing the
original network into DMAs is necessary to minimize costs and optimize operational benefits.
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Determining and optimizing the number of DMAs is essential. However, defining the configuration
of DMAs is a demanding task because many different aspects of WDN performance must be
considered [20]. This is usually approached as a multi-objective optimization problem. Traditionally,
DMA design has been based on empirical data combined with trial-and-error methods. Recently,
the concept and approach for WNP have been explored in the literature. Several smarter and more
efficient approaches have been proposed to create optimal DMA layouts. Although the algorithms
applied in each study are different, the WNP process commonly consists of two phases, clustering and
sectorization [36,37].

3. Clustering to Create Feasible DMAs

Figure 2 summarizes the general procedures for WNP. The clustering phase is the initial process
that designs the shape and dimensions of DMAs based on the network topology. The goal is to
determine the optimal number of DMAs to balance the number of nodes in each cluster and to minimize
the number of boundary pipes (i.e., pipe cuts where gate valves or flow meters will be installed). The
algorithms applied include graph theory such as depth-first search (DFS) and breadth-first search
(BFS) [6,9,38,39], community structure [19,34,37,40], modularity-based procedures [41–44], multilevel
partitioning [17,37,45,46], spectral approaches [47–49], and multi-agent approaches [50–52]. This
paper focuses on explaining six major algorithms and how they are handled in clustering WDNs to
automatically create DMA configurations.
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3.1. Graph Theory

Most of the existing clustering algorithms developed for WNP relate to graph theory. To gain a
deeper understanding of clustering algorithms, it is necessary to generalize some of the topological
characteristics and properties of a WDN. Readers unfamiliar with graph theory should refer to previous
studies [53,54].

WDN is a social infrastructure that allows water to flow along the pipes and communicate between
nodes in the network. The topology structure of WDNs is mapped onto an undirected or directed
graph and characterized by a pair of sets G = (V, E), where V is the vertex set representing junctions,
reservoirs, and tanks and n = |V| is the total number of vertices. E is the set of edges in response to
pipes, valves, pumps and m = |E| is the total number of edges. An undirected graph with edges is an
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unordered pair {v1, v2}, while a directed graph with edges is an ordered pair and the vertices v1, v2 are
called the endpoints of the edge.

A given network graph, and a WDN in particular, can be converted by an adjacent matrix A, which
is an n× n matrix, where Ai j is the (i, j) element equal to 1 if vi is adjacent with v j, otherwise, Ai j = 0.
A weighted graph can be represented mathematically by an adjacency matrix that has a certain weight
Wi j assigned for each pair of vertices (i, j). The weights are usually non-negative, real numbers, and
they must satisfy Wi j = W ji ≥ 0, if i and j are connected. Otherwise, Wi j = W ji = 0. The nodal degree,
ki, is the number of edges attached to a vertex i. The degree of node i is defined as ki =

∑n
j=1 Ai j for the

adjacency matrix A, and ki =
∑n

j=1 Wi j for the weighted adjacency matrix W. From a topological point
of view and complex network theory, Giudicianni et al. [35] treated the WDN as a graph by using
several complex network metrics to characterize the topology of typical WDNs. It was a preliminary
process for better understanding the network itself, and provided the classical approach for partitioning
or/and designing the WDNs.

One of the graph theory algorithms applied to network clustering is DFS, which, as proposed
by Tarjan [55], allows for the exploration of the connectivity of a graph by traversing a node in the
network. The DFS algorithm is a recursive approach based on backtracking. It starts by picking a
root node in the network and then searches for nodes as far as possible along each path (in-depth
dimension) until there are no more adjacent nodes in the current path to traverse after backtracking to
the next path. In contrast, the BFS algorithm proposed by Pohl [56] starts at a root node and traverses
the graph broad-wise by first moving horizontally and exploring all the nodes of the current path and
then moving to the next path. Figure 3 shows how a DFS and a BFS work.
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Tzatchkov et al. [38] applied the DFS and BFS to a WNP project in Mexico. DFS was used to
segment a whole network into independent sectors by identifying nodes belonging to each sector (i.e.,
each sector is supplied exclusively from its own water sources, and it is not connected to other sectors
in the network), and BFS was used to exam the set of disconnected nodes from any water sources, thus
obtaining the size and configuration of independent sectors in the WDN. More specifically, Perelman
and Ostfeld [39] and Lifshitz and Ostfeld [1] proposed a procedure for topology clustering based on
the DFS algorithm to identify strongly connected clusters that had at least one path in both directions
between them, while the opposing BFS algorithm was used to classify weakly connected clusters that
had only one directed path between a set of nodes (i.e., from node u to node v, but not from node v to
node u). The results were utilized for various purposes, such as contaminant prediction from a source
and spread of infection in a WDN [1]. Di Nardo et al. [6] proposed a method for optimizing water
network sectorization based on graph theory. DFS was used to find the independent sector combined
with a hierarchical approach developed by Di Battista et al. [57] to draw hierarchical levels of a tree
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graph corresponding to each source, creating isolated DMAs, each of which was supplied by its own
source and was disconnected from the rest of a network through gate valves.

Campbell et al. [58,59] proposed a more advanced orderly combination of a series of graphs to
generate a flexible method for defining feasible DMA layouts. They proposed dividing a network
into two components, a trunk network and a distribution network. To determine the scope of the
trunk network, the shortest path and the BFS concept were implemented. Once the trunk network
was determined, it was detached from the network, while the community detection algorithm was
adopted for the rest of network (distribution network) to define the best structural communities in the
distribution network, which is the configuration of sectors. The innovation of this study was that the
trunk pipes acted as entrances to each DMA and were not considered candidates for sectorization,
ensuring the reliability of the WDN. In a similar methodology proposed by Alvisi and Franchini [60],
BFS defined the location of possible nodes to form an assigned number of DMAs and then the shortest
path distance from each source to the nodes was simultaneously estimated to determine the set of
boundary pipes for each DMA. In the case of a WDN with numerous water sources, Scarpa et al. [9]
successfully applied a BFS algorithm to identify elementary DMAs in which each one was supplied
only by its own source.

Gomes et al. [61] proposed a systematic way to divide a WDN into suitable DMAs based on the
Floyd–Warshall algorithm [62] and user-defined criteria (e.g., pipe length and number of users in each
DMA). This method facilitated the creation of appropriate DMAs by finding the shortest distance from
source to nodes depending on the network flow direction at peak flow conditions. Compared with
BFS, this algorithm provided superior results, as it considered the shortest path of sources to every
other node in the network and identified the best path. The algorithm was repeated until the target
number of DMAs and user-defined constraints were met. Further adjustment could be carried out by
combining adjacent DMAs to minimize the number of boundary pipes as long as the user-defined
criteria are fulfilled.

3.2. Community Structure Algorithm

The community structure detection algorithm is a bottom-up hierarchical approach based on
graph theory and proposed by Newman and Girvan [63] and Clauset et al. [64]. It uses greedy
optimization of a quantity known as modularity (Q), which is defined in Equation (1). They used
the quality measure of network density to define the clusters, assuming that the density of a network
division was effective if there were many edges within communities (intraclusters) and only a few
between them (interclusters). Modularity index is a network property used as an indicator to quantify
the quality of graph division in the community. The clustering method is based on maximizing the
modularity index. Higher values of that metric are related to a community structure of the network,
which is significant if Q ≥ 0.3 [63,64]:

Q =
1

2m

∑
i j

[
Ai j −

kik j

2m

]
δ
(
Ci, C j

)
(1)

where δ
(
Ci, C j

)
is the Kronecker delta coefficient, and δ

(
Ci, C j

)
= 1 if vertices i and j are the same

community; otherwise δ
(
Ci, C j

)
= 0.

If we assume that the fraction of pipes that have both start and end nodes belonging to the same
community is eii, and ai is the portion of pipes with at least one end node in the community i, then the
modularity can be formulated as:

Q =
∑

c
eii − a2

i . (2)

The change in the two communities i and j to increase modularity can be computed by [63]:

∆Q = 2
(
ei j − aia j

)
. (3)
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The community structure algorithm is implemented following the steps listed in Figure 4.
Water 2020, 12, x FOR PEER REVIEW 9 of 29 

 

 
Figure 4. Main steps for community structure algorithm clustering. 

Diao et al. [19] first applied a community structure algorithm to detect clusters in a WDN. Their 
study used a community structure to automatically create boundaries for DMAs. WDN was mapped 
onto an undirected graph and community detection was implemented to maximize the modularity 
matrix and find the hierarchical community structure that represented the DMAs of the WDN. In the 
study, the authors determined the size constraint to be 300–5000 properties [10] for each community 
by applying a heuristic approach, known as oriented dendrogram cutting. 

Instead of identifying network communities by maximizing the modularity index, Campbell et 
al. [34] proposed a procedure based on the idea that feedlines (i.e., a trunk network) should not be 
included in sectorization schemes. This was identified by means of determining the “betweenness” 
of edges, the flow, and the diameter analysis. The betweenness algorithm is a branch of graph theory 
that defines the edge (i.e., pipe) that connects to many pairs of vertices (i.e., nodes) [63]. A random-
walk betweenness [19] can detect community segmentation with the highest modularity and a 
dendrogram can set the size constraint for each community. 

Similarly, Ciaponi et al. [40] offered a different approach that combined convincing practical 
criteria when designing DMA as proposed by Morrison et al. [4]. Accordingly, automated 
identification of DMAs was performed by identifying the prevalent transport service (main 
transmission pipes) in WDNs and then each DMA, which was determined by the remaining 
distribution service pipes, was directly connected with the main transmission pipes. The procedure 
decomposed subsystems exceeding the threshold DMA size constraint owing to a modularity-based 
optimization algorithm. The two approaches brought the boundaries of identification of DMAs closer 
to reality and supported feasible alternative solutions to make more convincing decisions. 

3.3. Modularity-Based Algorithm 

The community structure algorithm uses a modularity index as a metric for the optimal design 
of DMAs. However, the modularity index may not be representative for the WDN because it is 
strongly affected by hydraulic properties (e.g., elevation, node demand, pipe diameter). Adopting 
the classic formulation of a modularity index without considering the physical and hydraulic 
constraints would therefore be artificial and misleading. Inspired by this approach, Giustolisi and 
Ridolfi [41] proposed a modularity-based method for WDN segmentation that accounts for hydraulic 
network properties to define WDN-oriented modularity. First, to formulate the modularity index for 
WDNs, the proposed method focused on conceptual segmenting of the network close to the ending 
nodes by using a topological incidence matrix and the number of pipes separating communities. This 
was done to minimize the number of required pipe cuts. Despite being tailored for a WDN, WDN-
oriented modularity had an inherent limitation left over from the classic community detection 
algorithm. Fortunato and Barthelemy [65] stated that the modularity index proposed by Giustolisi 
and Ridolfi may fail to detect small communities if the community’s total edge number is smaller 
than √2𝑚 , where 𝑚  is the total number of edges in the network. To overcome such failures, 
Giustolisi and Ridolfi [66] proposed that an infrastructure modularity index can improve the negative 
effect of the inconsistency of modularity optimization. A new index is released through maximization 
of the classic modularity index in the framework of the two-objective optimization, modifying the 
framework to overcome the resolution limit. Laucelli et al. [67] took a further step by developing a 
flexible procedure for DMA planning based on Giustolisi and Ridolfi’s achievement with a 

Figure 4. Main steps for community structure algorithm clustering.

Diao et al. [19] first applied a community structure algorithm to detect clusters in a WDN. Their
study used a community structure to automatically create boundaries for DMAs. WDN was mapped
onto an undirected graph and community detection was implemented to maximize the modularity
matrix and find the hierarchical community structure that represented the DMAs of the WDN. In the
study, the authors determined the size constraint to be 300–5000 properties [10] for each community by
applying a heuristic approach, known as oriented dendrogram cutting.

Instead of identifying network communities by maximizing the modularity index, Campbell et al. [34]
proposed a procedure based on the idea that feedlines (i.e., a trunk network) should not be included
in sectorization schemes. This was identified by means of determining the “betweenness” of edges,
the flow, and the diameter analysis. The betweenness algorithm is a branch of graph theory that
defines the edge (i.e., pipe) that connects to many pairs of vertices (i.e., nodes) [63]. A random-walk
betweenness [19] can detect community segmentation with the highest modularity and a dendrogram
can set the size constraint for each community.

Similarly, Ciaponi et al. [40] offered a different approach that combined convincing practical
criteria when designing DMA as proposed by Morrison et al. [4]. Accordingly, automated identification
of DMAs was performed by identifying the prevalent transport service (main transmission pipes)
in WDNs and then each DMA, which was determined by the remaining distribution service pipes,
was directly connected with the main transmission pipes. The procedure decomposed subsystems
exceeding the threshold DMA size constraint owing to a modularity-based optimization algorithm.
The two approaches brought the boundaries of identification of DMAs closer to reality and supported
feasible alternative solutions to make more convincing decisions.

3.3. Modularity-Based Algorithm

The community structure algorithm uses a modularity index as a metric for the optimal design
of DMAs. However, the modularity index may not be representative for the WDN because it is
strongly affected by hydraulic properties (e.g., elevation, node demand, pipe diameter). Adopting the
classic formulation of a modularity index without considering the physical and hydraulic constraints
would therefore be artificial and misleading. Inspired by this approach, Giustolisi and Ridolfi [41]
proposed a modularity-based method for WDN segmentation that accounts for hydraulic network
properties to define WDN-oriented modularity. First, to formulate the modularity index for WDNs,
the proposed method focused on conceptual segmenting of the network close to the ending nodes
by using a topological incidence matrix and the number of pipes separating communities. This was
done to minimize the number of required pipe cuts. Despite being tailored for a WDN, WDN-oriented
modularity had an inherent limitation left over from the classic community detection algorithm.
Fortunato and Barthelemy [65] stated that the modularity index proposed by Giustolisi and Ridolfi
may fail to detect small communities if the community’s total edge number is smaller than

√
2m,

where m is the total number of edges in the network. To overcome such failures, Giustolisi and
Ridolfi [66] proposed that an infrastructure modularity index can improve the negative effect of the
inconsistency of modularity optimization. A new index is released through maximization of the
classic modularity index in the framework of the two-objective optimization, modifying the framework
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to overcome the resolution limit. Laucelli et al. [67] took a further step by developing a flexible
procedure for DMA planning based on Giustolisi and Ridolfi’s achievement with a conceptual cut
for segmentation. A two-step strategy was adopted for optimal sectorization design by maximizing
the WDN-oriented modularity index versus minimizing the number of conceptual cuts, where the
location of pipe cutting minimizes the number of devices to be installed. To determine the location of
flow meters and gate valves, DMA design was optimized based on each conceptual cut and returned
an optimal solution for each one, accounting for hydraulic behavior change in the network with
respect to maximizing the reduction of background leakage in each DMA. Using the WDN-oriented
modularity index, Simone et al. [68] developed a sampling-oriented modularity index to perform
optimal spatial distribution and assess the optimal number of pressure meters needed in a network
(i.e., sampling design) using a multi-objective optimization method to minimize pressure-meter cost
versus sampling-oriented modularity.

As mentioned in Section 2, DMAs are designed to detect and actively manage leaks. To
that end, pressure management is a fundamental and important factor affecting leak management.
Zhang et al. [42] developed a hybrid procedure by combining node pressure with modularity-based
community detection to segment a network into similar DMAs from a pressure aspect. However, to
improve the resolution limits of classical modularity, they used a random-walk theory similar to that
of Campbell et al. [34]. The random-walk theory allows for precise identification of communities with
greater or smaller differences in size and the automatic creation of a multiscale community [42]. To
illustrate the superiority of this method over previous methods, the results proposed by Diao et al. [19]
were compared. They demonstrated that different partition schemes result at a variety of random-walk
time periods because the variances of node pressure are integrated into the community. In Diao et al. [19],
variance was made immutable using a top-down search. Additionally, in the aspect of boundary pipes
proposed by the two respective methods, Zhang et al. [42] showed that the traditional modularity-based
community detection introduced by Diao et al. had more boundary pipes.

Most recently, Perelman et al. [37] combined three branches of graph theory to evaluate the
performance of each method. Global clustering, community structure, and graph partition were
applied to two WDNs in Singapore. Global clustering is a bottom-up algorithm for grouping points
concerning a measure of similarity defined for each pair of points. Community algorithms detect the
community structure in the network focused on the concept of edge betweenness. Graph partitioning
divides the graph into a predefined number of groups such that the number of edges crossing between
the groups is minimal [69]. The authors showed that the methods were compatible and applicable to
large networks, but the performance of each method was completely different and depended on the
number of clusters and the parameters selected for evaluation. They proposed multi-criteria metrics
based on visual and quantitative performance measures. Accordingly, a better approach would be to
minimize four metrics, such as (a) worst cut size, (b) total cut size, (c) cluster size, and (d) running time,
and maximize the metric in regard to (e) recurrence of inter-cluster edges [37]. The results demonstrate
that graph-partitioning generally outperforms clustering and the community structure methods in
terms of (a), (b), and (d), which implies that the number of flow meters needed to monitor the flow will
be minimized. On the contrary, the global clustering method indicated a good expectation in terms of
(e), while in terms of (c), the three methods showed similar results. Therefore, community structure
and the graph partitioning methods were more flexible and outperformed global clustering under
particular budget constraints.

Similarly, Di Nardo et al. [70] conducted a comprehensive analysis of two popular clustering
algorithms, such as the graph partitioning based on multilevel recursive bisection (MLRB) and the
spectral clustering based on the normalized cut algorithm. Applications to a real-life WDN in South
Italy revealed that the graph partitioning outperformed the spectral clustering in balancing the number
of nodes in each DMA. On the contrary, the spectral algorithm showed better performance than the
graph partitioning to minimize the number of edges cuts, thus it was more efficient in both hydraulic
and economic aspects. A similar study conducted by Liu et al. [71] explored the performance of three
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partitioning methods, including fast greedy [64], random walk [63], and multilevel recursive bisection
(MLRB) [72] using a spectrum of topology-based indicators.

As mentioned earlier, WDNs exhibit dynamic hydraulic behavior changes in the spatial and
temporal mode that are completely different compared to others. Most of the partitioning algorithms
lack exhaustive analyses of the similarity of the hydraulic and physical aspects in DMAs, such as the
number of nodes and balance in terms of water demand and pressure. It is therefore not sufficient to
offer a universal O&M solution to a utility. Awareness will make DMA segmentation more reliable
when physical properties and hydraulic behavior are considered in network partitioning. Realizing
the limitations of Diao et al. [19] and Ciaponi et al. [40], Creaco et al. [73] incorporated engineering
aspects (i.e., demand supplied along the pipe and pipe length) into WNP processes. However, unlike
Giustolisi and Ridolfi [41,66], they focused on applying heuristic procedures to improve the original
fast greedy partitioning algorithm to maximize the modularity index developed by Clauset et al. [64].
Two heuristic optimization techniques were developed and applied to the formulation of modularity
to perform different merging combinations. In the first technique, randomness was added to the
DMA merging process, which allows for the acquisition of numerous WDN-partitioning probabilistic
solutions while generating a higher modularity increment during the merging steps and a lower number
of boundary pipes compared with the traditional deterministic approach. The second technique
illustrated the trade-offs between various engineering aspects by embedding the former technique
inside a multi-objective genetic algorithm optimization [74].

Evaluation of DMAs scenarios after sectorization must also guarantee that hydraulic indicators
are at an acceptable or higher threshold compared with the original network. Because different criteria
lead to various DMA layouts, Brentan et al. [43,44] proposed a method that considers the relationship
between many technical criteria, such as demand and pipe length, to create different DMA scenarios.
The social community detection algorithm was used to define DMAs. To assess the performance of
DMA generation, a comprehensive analysis was proposed that considered performance indicators such
as resilience index, demand similarity, pressure uniformity, water age, cost, and energy consumption,
hopefully provides decision-makers with an optimal DMA configuration.

3.4. Multilevel Graph Partitioning

Multilevel partitioning [72] is a fundamental approach based on an analogy of graph theory and
graph-partitioning principles that uses parallel computing to allocate workloads among processors
to minimize communication and equally distribute the computational burden among them. Based
on that approach, the objective is to create subzones by equally distributing loads, such as DMA size,
pipe length, water demand, and flow [45]. Recently, much effort has been devoted to developing
techniques and heuristic procedures for optimal segmentation of a water network into isolated DMAs
by balancing pipe length, nodal demand, and flow within each DMA [16,37,45,46].

Sempewo et al. [45] presented an automated prototype tool for the analysis of network spatiality
to create analogy subzones based on balancing pipe length and demand at each zone using distributed
computing called multilevel recursive bisection (MLRB) for monitoring and controlling leakage in
the WDN. The core purpose of the MLRB algorithm was to design a highly effective method to deal
with parallel k-way partitioning of a graph in computer science. The successor application of MLRB
was mentioned by Di Nardo et al. [17,18,75]. They proposed a procedure adapting the traditional
phase of the MLRB to create an automated tool for smart water network partitioning (SWANP). In the
MLRB algorithm, three phases illustrating the computation of k-way partitioning in the graph are:
coarsening, partitioning, and uncoarsening with refinement [72]. The coarsening phase simplifies the
original graph by collapsing adjacent vertices in terms of maximally matching a graph with different
techniques. The next phase is partitioning. First, the network is subdivided into a two-way partition.
Each subgraph is then divided into bisections to obtain k-way partitioning. The boundary pipes that
have the start and end nodes in different subgraphs must be minimized for associated weights as well.
Finally, the uncoarsening phase, also known as the recovering and refining process, is completed by



Water 2020, 12, 1002 12 of 29

returning to the graphs in the first phase to reconsider constituent nodes. During each recovery level,
a local refinement optimization of the partition is applied to obtain more equal districts. Figure 5
visualizes the processes in the MLRB algorithm.
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Alvisi [46] proposed a procedure for automated network sectorization using a combination of
the MLRB graph partitioning algorithm and hydraulic simulation. However, unlike the traditional
approach, it can simultaneously allocate the nodes to perform the best network partitioning into a given
number of DMAs and identify the best locations for flow meters and valves in the network. Perelman
et al. referred to a similar application [37] in which they used MLRB to compare performance in a WNP
with other approaches, such as community structure and global clustering. This approach can assign
weights to nodes and pipes that would otherwise not have been considered for the graph-clustering
algorithm where the network clustering phase was considered a topology characteristic. Moreover, in
terms of computational efficiency, MLRB showed advances in the uniform allocation of computation
processes, considering more than one object simultaneously while minimizing the volume of information
exchanged between them.

3.5. Spectral Graph Algorithms

Spectral graph theory is a mathematical approach to study the relationship of graph properties
by associating both linear algebra and graph theory to determine the eigenvalue and eigenvector
properties. Spectral clustering uses the spectrum in eigenvectors of the adjacent matrix to cluster
groups of points into communities [49,54]. In spectral clustering, the row of eigenvectors of the
Laplacian matrix for a pair of the nodes is similar if the nodes belong to the same cluster. Spectral-based
graph clustering has been implemented in many fields over the last decade, especially in computer
sciences, bioinformatics, and data analysis. Recently, in the field of WDN management, spectral graph
theory has been used to define an optimal cluster configuration, a preliminary analysis of network
vulnerability, and robustness through graph matrices eigenvalues [76,77] and a toolset for WDN
management has been proposed [49]. Several types of research have applied spectral graph theory for
WDN management, but in this subsection we focus on effective approaches that have been proposed
for water network clustering. The core idea of spectral clustering is the Laplacian matrix as defined by
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three equations. The first is the non-normalized Laplacian relationship, which solves a relaxed version
of the Ratiocut problem proposed by Von Luxburg [78]:

L = D−A, (4)

where D is a diagonal matrix of nodal degrees ki, D = diag(d), in which d = [k1, k2, . . . , kn]
T. A is the

adjacency matrix.
The other two matrices are normalized graph Laplacians, which are closely related and can be

defined as
Lsym = D−1/2LD−1/2 and (5)

Lrw = D−1L, (6)

where Lsym is a symmetric matrix proposed to solve the NCut problem [78] and Lrw is closely related to
a random walk, which can be used to solve the same problem.

The Laplacian matrix of an undirected graph has the following properties [78,79]

• L is symmetric and positive-semidefinite with eigenvalues λi ≥ 0 for all i.
• Every row sum and column sum of L equals zero.
• The smallest eigenvalue λ1 of L equals zero.
• L has n non-negative and the number of connected components in the graph equals the algebraic

multiplicity of λ1 = 0 ≤ λ2 ≤ · · · ≤ λn.

Aim of spectral graph partitioning is to divide graph G into p ≤ n subgraphs G1, G2, . . . , Gp. Then,

V = V1 ∪V2 ∪ · · · ∪Vp where Vi ∩V j = ∅, i , j, (7)

Let Gk = (Vk, Ek) represents for subgraph k, in which k = 1, . . . , p and Vk is the set of vertices
of subgraph Gk. From Equation (7), an edge that has its endpoints in different vertex subsets is not
contained in any of the formed subgraphs Gk and is called an intercluster edge. Let a set of the
intercluster edges with one endpoint in Vk be denoted as Equation (8).

∂(Vk) :=
{
i j : i ∈ Vk and j < Vk

}
, (8)

Two different sets of edges can thus be distinguished as follows.

• intracluster edges: E1 ∪ E1 ∪ · · · ∪ Ep, and

• intercluster edges: ∂(V1)∪ ∂(V2)∪ · · · ∪
(
Vp

)
.

From the optimal bipartitioning of a graph point of view, minimizing the cut values are objective
functions. Von Luxburg [78] and Shi and Malik [80] proposed these functions to optimize cut value,
called ratiocut method and normalized cut method, in Equations (9) and (10), respectively.

min
V1,V2,..., Vp

∑p

k=1

vol(∂(Vk))

|Vk|
, (9)

min
V1,V2,..., Vp

∑p

k=1

vol(∂(Vk))

vol(Vk)
, (10)

where vol(∂(Vk)) is the sum of the weights on the all intercluster edges in ∂(Vk); |Vk| is the number of
vertices in Vk; and vol(Vk) is the sum of the weights on the vertices in Vk.

Equations (9) and (10) are NP-complete problems, however, they can be relaxed to find approximate
solutions proved by Von Luxburg [78] and Shi and Malik [80] and reformed as Equations (11) and
(12) following

LU = UΦ for ratio cut (11)
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LU = DUΦ for normalized cut (12)

where Φ := diag
(
λ1,λ2, . . . ,λp

)
∈ Rp×p and U :=

[
u1, u2, . . . , up

]
∈ Rn×p.

Equations (11) and (12) are eigenvalue problems for p smallest eigenvalues λ1 = 0 ≤ λ2 ≤ · · · ≤ λp

of the Laplacian matrix L and their corresponding eigenvectors u1, u2, . . . , up.
The spectral clustering algorithm for a non-normalized Laplacian matrix can be described as

shown in Figure 6. For other normalized spectral clustering, refer to Reference [78].
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Using the spectral clustering methods mentioned above, many studies have adopted the spectral
graph theory [47–49,81]. Di Nardo et al. [47] defined the optimal layout of DMAs in a real WDN. The
authors took into account both geometric features (i.e., connectivity) and hydraulic pipe features (i.e.,
diameter, length, conductance, flow) through weight-adjacency matrices, which led to significantly
different layouts of the DMAs. In particular, they compared different weighted spectral clustering (i.e.,
normalized versus non-normalized Laplacian) to determine the effectiveness of those approaches and
the optimal choice of weights.

One of the most useful approaches for handling WDN complexity is a graph spectral technique
(GST). Di Nardo et al. [49] pointed out that GST can analyze network topology by taking advantage of
the properties of some graph matrices, providing a complete toolset to evaluate the performance and
the evolution of networks. Based on two graph matrices (i.e., adjacency and Laplacian), the authors
highlighted that GST metrics and the algorithms accomplish some crucial tasks of WDN management
using topological and geometric information. In addition to the inherent ability to define the optimal
clustering layout proposed in the literature, GST assisted in the calculation of a surrogate index for
assessing topological WDN robustness using two indices, such as spectral gap and the algebraic
connectivity. Additionally, the spectral technique also provides a framework that ranks important
nodes in WDN to provide a useful approach to identify the location of valves or sensors or even
determine the most influential nodes in a network [49].

Similarly, Liu and Han [48] also proposed a strategy for automatic DMA design based on
spectral clustering and graph theory. The spectral algorithm was used to determine the best node
clusters, which correspond to the DMAs’ configuration based on steady-state simulations using
the peak-hour demand. The study proposed a method for DMA design that combines spectral
clustering, graph theory, and network centrality analysis. First, a combination of graph spectral
theory and k-mean clustering was implemented to generate the initial DMAs. Then, to improve the
cluster quality, a genetic algorithm (GA) was added to converge on a global optimum. To measure
network centrality, the eigenvector centrality [82] was used to identify the critical nodes, and edges
betweenness centrality [83] were adopted to measure the important pipes, creating a high-quality
cluster. Most recently, Zevnik et al. [81,84] proposed spectral graph partitioning based on a generalized
and normalized cut method and compared it with two known spectral methods (ratio cut and
normalized cut).
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In the field of machine learning, graph Laplacians are used not only for clustering, but also for many
other tasks, such as semi-supervised learning. Herrera et al. [52,85] demonstrated that graph-based
semi-supervised learning methods [86] can take into account various criteria for segmentation of WDNs
into DMAs. In this method, the kernel matrix [87] was first defined and then the adjacency matrix was
enriched by adding hydraulic data such as weight factors to transform the results into a kernel matrix.
The spectral clustering algorithm was adapted to this new matrix. Finally, graph-based semi-supervised
learning methods were conducted. A similar method was found in a study by Giudicianni et al. [36,88]
in which semi-supervised multiscale clustering was used to create dynamic DMAs. Compared with
methods that use only topological connectivity or vector information, semi-supervised clustering
showed improvement by integrating both forms, leading to the efficient development of robust DMAs.

Spectral clustering can take into account topological, geometrical, or hydraulic aspects as weight
factors, which allows for a careful consideration of alternative factors that can affect the goals of
the DMA design and provide a multidimensional view to help managers make better decisions.
However, for large-scale networks that have thousands of nodes and links, spectral clustering has
limited applicability and becomes infeasible due to the computational complexity of Q

(
n3

)
[52], where

n is the number of nodes.

3.6. Multi-Agent Approach

A multi-agent system (MAS) [89] is a loosely coupled network of autonomous problem solvers
composed of multiple interacting intelligent agents. Each agent works independently but can also
interact with others to solve potential conflicts through negotiation. The properties of MAS can be
described as follows.

1. Each agent has an imperfect standard or may lack the capacity for problem solving, and therefore
has a somewhat limited and unbalanced perspective;

2. There is no global information;
3. Data is decentralized; and
4. Computation is asynchronous.

MAS networks are suitable for handling multiple-problem approaches or multiple-agent solving
entities. Known as a complex system due to the joining of many physical devices, a WDN comprises
multiple parties with different goals, actions, and information and is a dynamic system. A small
change in behavior of the parties may result in unpredictable patterns in the entire system. WDNs
and multi-agents exhibit a strong similarity, and MASs can therefore provide solutions to distributed
applications, such as the problem of network partitioning, which is known to be complex and has
multiple constraints. MASs have been successfully applied to heterogeneity problems in the water field.
They have proven to be highly efficient at optimizing water networks, control systems for municipal
water, water pollution diagnosis, water quality enhancement, and water demand management [90].

In terms of WDN clustering, many elements must be simultaneously considered. A network
can be divided into elements, which are considered as agents that communicate with each other.
Izquierdo et al. [90] were the first to develop a suitable software environment to formulate DMA
segmentation in a WDN using a multi-agent approach. They proposed a likelihood method by running
a simulation as verification to divide networks into subsectors based on sources, nodes, and pipe
properties, which consider nodes and pipes as agents of a separate breed. This can be seen as a premise
to improve as well as implement the multi-agent methods in different studies. Herrera et al. [52]
assumed an a priori set of DMAs based on the homogeneity of the districts, which was related to the
source tanks in the network, where each reservoir was seeded for the corresponding DMAs. These
agents adopted a method of clustering by elicitation, linking their adjacent nodes to the source points,
and scanning the likelihood of each being assimilated into the corresponding DMA.

On the other side, Hajebi et al. [51] combined a k-means clustering method and multi-agent
approach to WNP. In particular, k-means graph clustering was used to divide the network topology into
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a predetermined number of clusters and then a MAS was implemented to negotiate the configuration of
the network by adjusting nodes on the boundary pipes of the corresponding clusters while considering
the hydraulic constraints. Compared with previous studies by Herrera et al. [50], differences in the
approaches are evident. In the former study, DMA layouts were determined based on the source points
of the network and expanded by negotiation, while the latter started from the geographical clustering
of the network and boundary pipes were modified to obtain the best hydraulic performance.

4. Sectorization to Locate Flow Meters and Valves

Immediately after forming DMAs from a clustering phase, it is important to optimize the state
of the boundary pipes, namely the position and number of gate valves and flow meters required
to achieve reliable DMA operation. This is also known as a decision support tool to help utilities
solve optimization problems while investigating the best trade-offs between the sectorization cost
of investment versus indicators of the benefit of DMA installation. The position of these devices
is important because closing a valve impedes hydraulic behavior and reduces network reliability.
After segmentation of a network into districts, the standard requirement of a network is still to
ensure adequate quantity and quality as well as appropriate pressure. Many algorithms and heuristic
procedures have been proposed to find the optimal solution for this phase, which is concerned primarily
with optimizing hydraulic performance and leak-reduction efficiency.

Many heuristic procedures are available to maximize the benefits of physical demarcation of a
water network into DMAs, but this work has been implemented largely with evolutionary algorithms,
which include single or multi-objective functions and are constrained by hydraulic or economic
conditions. In this section, we focused on the optimization approaches to discuss the sectorization
phase in WNP.

4.1. Single-Objective Optimization Approach

After a set of boundary pipes Nbp are defined in the clustering phase, the first objective is to
determine how many flow meters N f m and gate valves Ngv to insert along the boundary pipes. Most
researchers agree that fewer flow meters will reduce reconstruction and operating costs, as well as the
initial cost of installing the flow meters, which are often more expensive than gate valves [6,17,47,49].

In addition, the positions of the gate valves and flow meters have a significant effect on network
properties such as hydraulic performance, resilience index, leakage rate, and water quality. WDN
sectorization should therefore be considered as a multi-objective optimization problem to maximize
the benefits of implementing DMAs. However, to simplify computational demands, some hypotheses
or heuristic processes have been proposed to convert a multi-objective problem into a single objective
and apply evolutionary algorithms to achieve feasible or optimal solutions.

Because the number of feasible solutions is large, various heuristic optimization techniques have
been studied [6,91–94]. Although the objective functions and constraints are different among the various
approaches, they all aimed to achieve as high as possible a network performance after sectorization.
The total power of a WDN is classified into the dissipated power at pipes (i.e., internal power loss)
and the supplied power at node (i.e., external power supplied). Di Nardo et al. [6,17,18,49,92,95,96]
suggested the objective function to maintain the hydraulic performance of the network at the lowest
dissipated power that consequently maximizes the nodal supplied power by maintaining the nodal
head as high as possible after sectorization. The objective was defined in the following equation.

max

γ n∑
i

(zi + hi)Qi

, (13)

where γ is the specific weight of water and zi, hi, and Qi are the elevation, pressure, and water
demand at node i, respectively. For a large and complex network, it is not easy to decide how many
flow meters should be positioned among boundary pipes due to the trade-offs between hydraulic
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performance and investment cost. To deal with this problem, Shao et al. [97] proposed a function that
converted a dual-objective problem (i.e., hydraulic performance and cost) to a single-objective problem
by considering the master-subordinate relationship of the two objective functions, which improved the
computational efficiency.

In addition, a changing flow due to pipe failure can cause changes in velocity, energy losses in
pipes, and pressure at nodes, especially in a looped network. This will cause changes in the pathway of
water particles to the nodes. Moreover, if a node is being supplied at the minimum required pressure,
it will not be able to provide the necessary flow and pressure. In the worst-case scenario, the network
must ensure a capacity to provide a surplus power to overcome system failures. This is an approach
proposed by Todini [98] to measure system resilience when redesigning a system or when system
malfunction occurs. Based on that criterion, when reconstructing the system by creating isolated DMAs,
several studies [34,36,46,60] have used a resilience index (Equation (14)) as an objective function for
sectorization optimization. The objective function can be maximized to indicate that a greater surplus
of available power leads to a higher network resilience such that:

Ir =

∑nn
i=1 Qi(hi − hmin)∑nr

r=1 QrHr −
∑nn

i=1 Qihmin
, (14)

where nn and nr are the numbers of demand nodes and reservoirs, respectively; Qi and hi are water
demand and pressure at node i; Qr and Hr are the water discharge and total head of the source or tank
r; and hmin is the minimum required pressure for adequate service.

For cost analysis, Gomes et al. [99] proposed an optimization model to design DMAs based on
different decision-makers’ options to reduce the total cost. Referring to different future scenarios for
water demand (that will increase) and the infrastructure degradation forecasts, the cost of WNP was
assessed. An objective function aims to minimize the cost of DMA redesign and first considers the cost
of pipe reinforcement or replacement with flow meters and gate valves. Second, to ensure that the
model approximates reality, the cost function is multiplied by the weight or probability of occurrence
for each of the scenarios. A similar study that considers economic and energy criteria for DMA design
can be found in Di Nardo et al. [75].

For reducing the leakage in WDNs, Creaco and Haidar [100] proposed a linear programming
framework to optimize control valve settings. Accordingly, isolation valve closures, control valve
installations, and DMAs creation are simultaneously optimized to search optimal solutions in the
trade-off between installation costs, leakage, and demand uniformity across DMAs.

To solve the optimization problems mentioned above, evolutionary search algorithms have been
applied. The GA [101] has been widely implemented by Di Nardo et al. [6,47,75,91,95]. Meanwhile,
Shao et al. [97] improved the GA for faster and superior layout of flow meters and valves by modifying
crossover and mutation mechanisms. In addition, the simulated annealing algorithm was presented
by Gomes et al. [61,99,102].

4.2. Multiple-Objective Optimization Approach

WNP is a complicated task and must achieve many goals. Zhang et al. [42] proposed a
multi-objective optimizing approach for sectorization, in which three objective functions were used: the
number of boundary pipes, network pressure uniformity, and water age uniformity. Zhang et al. [103]
proposed a multi-objective optimization to obtain more reasonable schemes for sectorization of a
WDN by simultaneously considering pressure stability, water quality safety, and system reconstruction
costs. For pressure stability, the average pressure was minimized, but was still above the minimum
pressure. Water age is the time spent by a water parcel as it travels from a source to nodes in the
network, which represents the water quality in a WDN. Additionally, the costs of installing flow meters
and valves should be minimized depending on the size and number of DMAs. However, if only the
initial investment cost of these devices is considered, it is impossible to comprehensively evaluate the
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expense of the WNP. De Paola et al. [104] presented an objective function to deal with the total cost of
sectorization, which also involves water leakage costs and energy consumption by pump operations.

Even if we consider all the criteria in the process of network sectorization, it is impossible to
provide an optimal result due to trade-offs. The current partitioning techniques prioritize only a few
representative sets of criteria, and do not fully address the best practical problems of DMA design.
In an attempt to provide a comprehensive review of the criteria when dividing the network as close
as possible to reality, Hajebi et al. [105] considered two sets of objectives in the sectorization task,
the structural objective and hydraulic objective. For the structural objective, they considered the
minimum cut size and minimum boundary pipe diameter. For the hydraulic objective of the network
after segmentation, they considered four objectives, including minimization of the average excessive
pressure at nodes, minimization of dissipated power, minimization of elevation differences in each
DMA, and maximization of network resilience.

In another combination, a series of energy, operative, and economic criteria were optimized in the
sectorization process [58,59]. Five objectives were addressed concerning the minimum deviation of the
resilience index [95], which measures the capacity of the network to conquer system failures, the ability
of the system to ensure an appropriate service pressure in the whole network, and minimization of the
variation of the operational power, which assessed the reliability of a sectorization layout based on a
pressure target. Operative criteria were also formulated as objective functions of pressure at nodes.
When pressure dropped, a reduction in the leakage was expected. Variation of nodal pressure should
therefore be minimized. However, pressure at nodes after sectorization needs to be higher than the
minimum threshold required for service. To accommodate this constraint, a penalty cost for a nodal
pressure deficit was added. Finally, the cost criteria when performing sectorization are also important.
The cost of positioning and operation of flow meters are expected to be higher than that for boundary
valves. Therefore, an objective function to minimize the cost for installing and operating the devices
needs to be considered. Similarly, Brentan et al. [43] adopted a multilevel optimization concept to
reduce the complexity of sectorization. In their approach, two groups of the objectives were minimized.
The first one corresponded to structural costs, which were related to valve and flow meter installation,
while the second group reflected hydraulic performance, such as minimum pressure and maximum
resilience index.

Giudicianni et al. [88] recently developed a heuristic framework for dynamic partitioning of
WDNs using multi-objective functions to address different goals for saving energy, water, and
costs. Specifically, they proposed a method for zero-net energy management of a WDN using
microhydropower stations [106] along the boundary pipes during the day and a reduction of water
leakage at night.

To provide a comprehensive method for optimal DMA design, Galdiero et al. [107] proposed
a decision-support tool that focused on water network segmentation by considering two objective
functions. A total cost function including the initial cost for device investment and a daily cost
due to water leakages were considered to minimize and compared as trade-offs with changes in
hydraulic performance in terms of the maximum resilience index. To integrate different algorithms and
multi-objective functions to the development of a decision support tool, Di Nardo et al. [18] developed
advanced software called SWANP. A clustering model was implemented based on MLRBs, which
are multiagent approaches to water network clustering. In the sectorization phase, an optimization
algorithm was proposed using multi-objective functions to find optimal DMA configurations that
complied with the level of customer service and considered the minimum pressure and maximum
resilience index, and balanced the cost of investment and operation by minimum devices inserted
to achieve isolated DMAs. SWANP was written on a Python environment with a user interface and
was evaluated as an effective decision support system providing the manager with different optimal
layout solutions.

Many optimization algorithms have been applied to deal with discrete nonlinear combinations
and solve the multi-objective optimization of water network sectorization. NSGA-II [74] has been
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widely applied to multi-objective optimization problems. In terms of water network sectorization,
NSGA-II has been used in many studies [103–105,107] to obtain the Pareto front, which contains a set
of Pareto optimal solutions, thus providing support for managers charged with making more accurate
and reasonable decisions based on their priorities and objectives. Zhang et al. [42] implemented an
auto-adaptive many-objective algorithm [108] to solve the sectorization problem that shows some new
features compared with NSGA-II. Giustolisi and Ridolfi [41] used a multi-objective GA to support
network segmentation. Campbell et al. [58], and Gilbert et al. [94] applied an agent-swarm optimization
algorithm [109]. In addition, the combination of three optimization algorithms of GA, particle-swarm
optimization [110], and soccer-league competition [111] was suggested in Brentan et al. [44].

4.3. Iterative Approach

In addition to the described optimization methods, iterative methods were applied to the placement
of flow meters and valves [19,41,48,96]. An iterative method is a mathematical procedure that can
generate a feasible solution using an initial guess to generate a sequence of solutions. The result is
considered convergent when the initial set of criteria is met. Diao et al. [19] considered DMA size and
minimum pressure as criteria, and used them as constraints in the heuristic-based iterative method
to define the feedlines for each DMA. The approach determines the location of flow meters among
boundary pipes between DMAs. In addition, Liu and Han [48] proposed an iterative method based on
a heuristic procedure to determine the best location of flow meters subject to constrain head pressure
at nodes. The iterative method permits the selection of one flow meter based on the shortest path
from the source that can improve the pressure in each iteration. Di Nardo and Di Natale [96] inserted
a certain number of flow meters on boundary pipes and then designed a procedure to alternately
change the quantity and position of flow meters to achieve an optimal solution based on hydraulic
performance constraints testing.

4.4. Adaptive Sectorization for Dynamic DMAs

In normal working conditions, a DMA layout is permanent and optimized by WNP processes to
satisfy the hydraulic constraints and network performance indices. In abnormal cases, such as pipe
breaks, fire-fighting, and unexpected increases in water demand, permanent DMAs may produce
failures in preserving or maintaining regular water supplies. To adapt to such conditions and overcome
the drawbacks that a permanent DMA can cause, Giudicianni et al. [36,88] proposed creating dynamic
DMAs that allow for expansion of existing DMAs. That is, the small DMAs are dynamically aggregated
into larger ones using a semi-supervised clustering algorithm. This approach allows for a new
configuration that always includes former DMAs and maintains the set of boundary pipes at each
subzone. In some cases, by controlling the dynamic gate valves, the operator restores connectivity to
its original configuration and consequently helps the utility periodically desegregate.

In addition, Wright et al. [112] proposed a method of integrating the advantages of DMAs in
reducing leakage while improving network resilience and water quality by dynamically reconfiguring
network topology and pressure control through optimizing valve settings and boundary pipes status
using a sequential convex programming approach. The proposed approach leaned on the self-powered
multifunction network controllers that allowed adjustments of the network topology and continuously
monitored the dynamic hydraulics based on consumers’ actions (i.e., the varieties of the system’s water
demands). In low demand periods, original DMAs were preserved to capture the minimum night
flow within small isolated areas and maximize the ability to detect leaks. In peak demand periods,
DMAs were then aggregated into larger pressure-controlled zones to maximize the resilience index
and improve energy efficiency due to reduced internal losses that come with using larger DMAs. The
core idea here was inserting the network controller associated with dynamically reconfigurable DMAs
that allows a utility to monitor high-resolution, time-synchronized, dynamic pressure conditions
of the network. Similarly, Perelman et al. [113] used a linear programming approach to automate
reconfiguration of an existing WDN into DMAs. The network was reorganized into a star-like topology
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by identifying and decomposing the existing network into a main network and subnetworks based on
graph theory. Center nodes were located in main pipes and played an important role as key connections
between transmission main pipes with water sources and other nodes in the rest of the network. The
proposed method provided a flexible tool for water utilities by allowing only existing valves to be
closed, saving investment and operation costs for additional valve installations.

Ideas derived from DMAs’ limitations in emergencies, especially in the case of fire-fighting,
overcome this drawback. Di Nardo et al. [18,114] recently proposed a method that allows for the
redesigning of static DMAs to dynamic layouts. A heuristic procedure based on a GA was developed
to determine the number of gate valves that have to be motorized and remotely controlled to satisfy
hydraulic performance in a fire-fighting event. This practical technique provided system operators with
a quick decision-making tool to respond to unexpected incidents in the network and eventually leads to
a smart water management paradigm. Unlike the approaches proposed above, Santonastaso et al. [115]
developed a dynamic scheme for adjusting a WNP by accounting for the real positions of isolation
valves present in the WDN. To do this, the adjacency matrix of the WDN was changed and replaced
with a dual topology based on WDN sectorization and isolation valves. DMAs obtained in this
approach allowed topology matrix segments to merge while inter-DMA boundary pipes were forced
to be selected among the valve-fitted pipes that separated segments. Feasible DMAs were generated
that did not require additional isolation valves.

To visualize the procedure of WNP technique in the abovementioned different phases, Figure 7
illustrates the procedure of WNP for a real-life WDN in Parete town, South Italy [47,49]. In this case,
4 DMAs were generated in the clustering phase based on the normalized spectral algorithm, and a
heuristic procedure based on GA is applied in sectorization phase to locate the control devices while
maximizing the total nodal power of the network.
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distribution network (WDN) in Parete, South Italy (adapted from Di Nardo et al. [47,49]); (a) original
water network, (b) clustering phase, and (c) sectorization phase.

5. Performance Assessment of Water Network Partitioning

As mentioned in Section 2, the water network segmentation to DMAs is expected to bring
many benefits along with effective reduction measures for invisible water losses, manage pressure
uniformity, and prevent network contamination. However, in some cases, it may also decrease the
hydraulic performance and reliability of the network. To measure how this change affects network
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hydraulic behavior, performance indices (PIs) can quantify the benefits and drawbacks that DMAs
bring. A PI test allows for the evaluations of the performance of the original networks compared
with those of the divided networks. Most were estimated using a hydraulic simulation solver based
on the demand-driven analysis. Most studies applied multiple PIs to evaluate the effectiveness of
DMAs, such as resilience indices, pressure indices, uniformity indices, water quality indices, and fire
protection indices.

The first to be mentioned is the resilience metric, which monitors the power balance of a water
network, as proposed by Todini [98] in the form of Equation (14). According to this metric, WDN
resilience is defined as the capacity to overcome sudden system (hydraulic or mechanical) failure.
The resilience index is often used to evaluate the performance of a WNP as a comparison of network
power before and after the sectorization. Most studies have stated that the resilience index is not
significantly affected by network sectorization compared to its benefits [3]. Herrera et al. [116]
proposed a graph-theoretic approach by adopting the K-shortest paths algorithm [117] to assess the
resilience of larger-scale partitioned WDNs. To do this, all nodes in every DMA are aggregated into a
sector-node, where a new DMA-graph is represented by sector-nodes and edges that are abstracted
by sector-to-sector connectivity. A mapping function was used to transform the resilience of nodes
to a sector-scale resilience. They showed that the resilience of individual nodes in the DMAs closely
links to the corresponding sector-nodes resilience. This establishes a different way to identify DMA
configurations that have a major impact on the resilience index.

If a resilience index evaluates the overall performance of the network, hydraulic statistical indices
allow for the evaluation of the level of service that a water system supplies to its customers, providing
managers information on pressure change in terms of mean, minimum, maximum, and spatio-temporal
deviations. More specifically, Di Nardo et al. [118] proposed several indices, such as a mean pressure
surplus and mean pressure deficit compared with the design pressure.

On the other hand, water quality is measured by water age in a network and is influenced by
network topology, flow velocities, and pipe lengths. The age of the water affects residual chlorine
levels. Lower chlorine induces bacterial growth, and higher values indicate worse performance. Many
studies used the water age index as an indicator to assess the impact of DMA design on water quality.
Grayman et al. [10] and a series of studies by Di Nardo et al. [118] illustrate that after incorporating
DMAs into a WDN, there was no systematic difference in the computed average water age between
alternative scenarios. Although there can be significant variations in water age by node due to valve
closures, when considered as a whole, no homogeneous difference was found.

Meanwhile, partitioning a WDN into subnetworks with gate valves can prevent the spread
of contamination in the case of malicious attacks. Di Nardo et al. [28,119] proposed a method
that uses a simple backflow attack with cyanide to investigate the effects of network partitioning.
Grayman et al. [10] proposed an index to quantify the potential health impacts from contamination
incidents in the WDN.

Several hydraulic uniformity indices [44,48,120,121] have been developed to evaluate the
performance of DMAs. The size uniformity index reflects the cumulative demand deviation of
all DMAs compared with a hypothetical DMA with average demand, for which a smaller value
indicates a better performance. Pressure uniformity was suggested to guarantee that all nodes
belonging to a certain district would have similar pressure patterns. A lower index value indicates
better performance. Total head uniformity is also used to measure the variance of total heads along
the nodes, which has the same meaning as pressure uniformity. Liu and Han [48] proposed a
decision-making framework to determine the optimal DMA design by quantifying various indices,
such as DMA uniformity, modularity index, and resilience index. Similarly, evaluating the benefits
brought by DMAs in terms of cost-benefit analysis allows managers to make sensible decisions and
create functional and efficient DMAs. Ferrari and Savic [25] proposed a comprehensive method that
considers alternative DMA configurations to show the savings that utilities can obtain by considering
three indices related leakage reduction, burst-frequency reduction, and pressure-sensitive demand
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reduction compared with the original network. Pressure reduction across the network was the main
factor leading to reducing leakage and burst frequency. The study provided a decision-support tool for
economic performance analysis of various DMA layouts.

In the case of a fire, while water demand is high for fire-fighting at a few nodes, the network must
still have the capacity to supply enough water to users, especially during peak demand hours. This
superposition of demand creates energy-loss leaps in pipes, leading to lower pressures at that time.
Moreover, when creating isolated DMAs, some pipes feeding a district are closed and this could have
negative impacts on the amount of flow entering a DMA. To test this situation, Grayman et al. [10] and
Di Nardo et al. [118] developed a fire protection index based on the number of nodes with a pressure
lower than the required pressure designed for the fire-fighting event. Those results indicated that some
negative pressure values were occurring while most of the nodes had acceptable pressure. However,
a significant difference was found between looped and branched networks.

WDN is a dynamic system in which pressure can vary significantly due to variations in
water demand at nodes. Addressing spatial-temporal variability of water demand in the network,
Di Nardo et al. [122] proposed a procedure for WNP under stochastic water demand and quantified
its effects on hydraulic performance. The study revealed that by applying random variability of water
demand, the magnitude of pressure distribution within the network was affected significantly. This
led to a decrement of surplus pressure and network resilience compared with the constant-demand
condition. To create feasible DMAs, especially for a WDN characterized by a small deviation between
the surplus pressure and required standard pressure, spatial-temporal variability of water demand
should be considered in WNP.

6. Discussion and Future Work

This paper provided a comprehensive review of the relevant studies on WNP over the last decade.
The WNP procedure consists of two basic phases. First, the clustering phase involves the formation
of the sizes and dimensions of DMAs as well as the definition of the boundary pipes that feed or
interconnect DMAs. This phase is commonly associated with use of a clustering algorithm. In this
study, six commonly applied algorithms such as (i) Graph theory, (ii) community structure algorithm,
(iii) modularity-based algorithm, (iv) multilevel graph partitioning, (v) spectral graph algorithm, and
(vi) multi-agent approach, are presented and discussed in-depth to understand how they work and
handle in formation of the feasible DMA configurations. These algorithms are commonly based on
the graph theorem that relies primarily on the network’s topology. Since WDN is an infrastructure
system with particular properties, the water network clustering algorithm allows for tailoring by
appending weights to pipes or/and nodes to mimic distributing loads across the WDN. Many criteria
for DMA design, such as hydraulic performance, network topology, system reliability, water quality,
and cost-benefit ratio, are considered in this phase to minimize the number of boundary pipes and its
goal is to define the reasonable size and configuration of DMAs.

Second, the sectorization phase is a physical segmentation process that identifies the position of
gate valves and flow meters among the set of boundary pipes to satisfy operational constraints. This
task requires the designer to apply an optimization algorithm or heuristic procedures to ensure that the
locations of devices will have the least negative impact on the hydraulic performance of the network,
minimize the energy use and leakage and be cost-effective.

The improvements and innovations in WNP developed to date often come from innovative
approaches, either with the clustering algorithm or sectorization optimization. Those innovative
features have emerged from combinations of clustering algorithms and alternating with flexibility
or/and developing various objective functions based on the different criteria designs to propose a
heuristic procedure for creating the most reliable DMAs. Many different approaches have been
proposed for the automated creation of DMAs. However, several shortcomings remain to pursue in
the future.
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• Clustering is the crucial phase for WNP. Several algorithms and software tools were developed to
deal with the large-scale networks that are burdensome to tackle manually. Various engineering
aspects were embedded as weights to modulate WDN characteristics. More extensions of the
existing graph clustering algorithms to weighted networks would be of great interest, as well as
novel methods for clustering directed graphs.

• While there were many different approaches for the identification of DMAs in water networks,
few studies tackled to determine the optimal number of DMAs for a given network. It is an
open question and requires a decision-making procedure utilizing various network performance
quantification metrics.

• In the sectorization phase, it still lacks how to assess the pump and tank operations in the
partitioned network. Moreover, an approach to consider the consequences of device placements
to the leakage, energy use, and post-damage restoration should be studied quantitatively in
this phase.

• A demand-driven analysis (DDA) is generally used for WNP under the normal working condition
at peak hour demand. In DDA, the supplied demand is assumed to be independent of pressure and
this approach is valid when the pressure is above the minimum pressure requirement. In reality,
a WDN works more likely as a pressure-driven analysis (PDA), in which the nodal consumption
depends on the nodal pressure. Therefore, in pressure-deficient conditions (e.g., pipe failures,
fire-fighting, unexpected water demand increase), a PDA should be applied for the novel dynamic
WNP that adapts flexibly under the abnormal operating conditions.

• Last but not least, a WDN is supplied by single or multiple sources, with different elevations,
divergent intended pressure in each zone. It also can be expanded or replaced according to urban
planning needs. Further research should address the change of network’s topology, controlling
hydraulic uniformity in each zone as well as improving system resilience. Future research needs
to be conducted to improve the abovementioned limits and eventually to provide optimal DMA
layouts for efficient network operation and management.
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