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Abstract: Continental-scale river forecasting platforms forecast streamflow at reaches that can be
used as boundary conditions to drive a local-scale flood inundation model. Uncertainty accumulated
during this process stems not only from any part of the forecasting chain but can also be caused by
the daily variations in weather forcing that keeps evolving as the event advances. This work aims to
examine the influence of the evolving forecast streamflow on predicting the maximum inundation
for extreme floods. A diagnostic case study was made on the basis of a hindcast of Hurricane
Matthew striking the eastern U.S. in 2016. The U.S. National Water Model was one-way coupled to
a hydrodynamic inundation model through a developed automated workflow. Although the river
forcing has significantly mismatched hydrographs versus observations, the simulated peak water
surface elevations and maximum extents were validated to be comparable with the observations,
which indicates that the inundation model may not be sensitive to the inherited uncertainty from the
weather forcing. Moreover, the uncertainty of the forecast streamflow time series caused only one
order of magnitude fewer variations in inundation prediction; this dampening effect may become
clearer for extreme events with large areas inundated. In addition, the forecast total volume of
stream discharge appears to be an important metric for assessing the performance of river forcing
for inundation mapping, as a linear correlation between the total volume and the accuracy of the
predicted peak water surface elevation and maximum extent was found, with the coefficients of
determination all above 0.8. Extra best-practice experience of running similar operational tasks
demonstrated the tradeoff between the cost and accuracy gain.

Keywords: flood modeling; streamflow forecasting; National Water Model; hydrodynamic model;
riverine inundation; shallow water equations; GPU acceleration

1. Introduction

Effective evacuation and damage reduction for extreme flooding events rely heavily on the
accuracy of mapping the worst-case inundation, which provides pivotal information for consideration
by civil protection authorities issuing early warnings to evacuate populations and secure infrastructures
and properties. Mapping inundation in a timely and accurate manner for the consequential floods
caused by major weather events is never easy and depends on a cascading chain of model structures
with uncertainties accumulated at every node. A typical model chain usually takes an ensemble
of numerical weather predictions (NWPs) as the boundary conditions to force a hydrologic model
to simulate rainfall-runoff processes over the catchment and then adopts the simulated overland
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runoff as the successive boundary conditions to drive a hydraulic channel routing model to predict
streamflow [1–3]. The chain of models coupled at various scales makes up the backbone of the current
continental-scale and global-scale streamflow forecasting platforms, such as the European Flood
Forecasting System (EFFS), the U.S. National Oceanic and Atmospheric Administration’s National
Water Model (NWM), or the Global Flood Awareness System (GloFAS). The subsequent streamflow
forecasts usually have a relatively coarse resolution to fulfill the task of guiding a local-scale flood
prediction [4], whereas a hydrodynamic model and locally resolved grids are usually further needed
for this purpose.

Uncertainties in the inundation prediction mainly arise from the unpredictability of streamflow
forcing and from the incompleteness of the physical processes included in inundation models. The
uncertainty in streamflow forecasting can stem from any parts of its forecasting chain such as
the physical/statistical mechanisms, model structure, observation data flow, and parameterization.
Selecting a range of the NWPs and parameters with textbook values usually leads to a wide envelope
of uncertainty space. Bracketed by such wide extremes that can hardly be met, the uncertainty
envelopes are more indicative of how inaccurate a forecast could be but are less insightful regarding
the forecasting capacity that a model chain can achieve in a real situation. Given a cluster of predicted
inundation scenarios with various probabilities, the local authorities would still need to make binary
decisions such as whether or not to order an evacuation. Instead of simplifying and accelerating
the decision-making process, an ensemble of forecasts implicitly transfers part of the obligation of
predicting the flooding situations from scientists to administrators. To resolve this challenge, the
decision-makers will then have to spend more time gaining the relevant expertise to fully understand
each situation. Given that the forecast ensembles can come from other disciplines such as transportation
and electricity networks, the ensembles of the multi-disciplinary ensembles can be even trickier to
conclude. Moreover, even though the meteorological ensembles tend to increase the capability to issue
flood warnings [5], the chance of false warnings would inevitably increase. Further, an ensemble
approach does not compensate for errors among diverse models and does not eliminate the correlation
between predictions [6,7]. Therefore, although the ensemble-based forecasts can create confidence
intervals outlining the worst guesses of a future situation to strengthen our faith in them in general,
deterministic forecasting can be at least an equally useful effort to help decision-makers. After all, error
analysis of the latter’s products through hindcasts is the essential way to narrow down the uncertainty
brackets for the ensemble of forecasts in the long run.

As the streamflow products from the continental-scale forecasting platforms become increasingly
accessible, uncertainty propagation through the model chain of such systems has received greater
attention [8,9]. A few pioneer studies have extended the diagnosis of inundation prediction by
examining how the choices of the rating curves would affect the accuracy of the predicted inundation
extent [6,10,11]. Even though the prediction of flood extents often appears to be constrained by the
inadequacy and inconsistencies of rainfall forcing values [12], the impact of such uncertainties on the
inundation mapping is not completely understood. Although the model configurations are usually
set up before the event and hardly changed during an operational task, the weather forcing can be
updated frequently as the event progresses, which results in a varying prediction of streamflow and
inundation. For guiding the final decision-making process in response to every forecasting product, it
becomes necessary for direct users to further distinguish the uncertainty caused by the selections of
the parameters and the model structure from the uncertainty due to the pure variations in the driven
data flows.

However, to the knowledge of the authors, the influence of the evolving forcing data, in terms
of stream forecasts in this work, on the accuracy of inundation prediction is unclear and seldom
studied. As current practices, the uncertainty in the driven data is usually neglected during the
uncertainty analysis or bluntly counted towards other uncertainty sources. The real question is how
much uncertainty in the data inputs will be translated into a data-driven flood mapping. Lacking such
information, we would not completely comprehend the relative role of the uncertainty in parameters
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and model structures in affecting the inundation accuracy; their importance can be devalued if the
driving data may pass far more uncertainty to the predicted inundation products.

Although the pioneer studies explored the uncertainty propagation through the model chain
for some non-extreme fluvial floods [6,10,11], they did not often examine it for the extreme events
such as hurricane events with high-flow floods, both fluvial and pluvial ingredients, and catastrophic
consequences. It remains unknown if predicting extreme flood events may suffer more from uncertainty
propagation. The knowledge gap is not only because of the lack of supporting evidence, but also
because the relevant studies that have investigated extreme events or made such a comparison are
overall scarce.

Predicting the hurricane-level extreme flood events requires a compromise between accuracy and
efficiency. To accommodate the required lead time, the large-scale river forecasting systems usually
adopt one-dimensional kinematic-wave or diffusive-wave equations to represent channel flows [13,14],
which may or may not take account of adequate flow regimes on a local scale, especially when the
two-way interactions between the channel flow and overland lateral inflow exist. For example, some
non-physics-based simplified models could not be used for rapidly varying flow simulations [15].
Kinematic-wave equations can simulate gradually varying flow along steep channels, yet they miss
the flow dynamics over time, as well as the backwater effect [14,16]. Diffusive-wave equations,
commonly adopted by forecasting platforms, can simulate slowly to moderately rising flood waves
and backflow conditions. However, neglecting the acceleration and advection terms in the momentum
equation could be detrimental in determining the flood extent [17]. Moreover, the common forecasting
systems often represent the channel flow in one dimension, which then neglect the lateral diffusion
of flood waves and exhibit less reliable performance in estimating the distributed water depths [18].
Hurricane-level extreme events can come with floods and surges from the upstream and estuaries,
causing high peaks and complicated flow and inundation regimes, which theoretically exceed the scope
of the physical descriptions that simplified models are designed to incorporate. The hydrodynamic
models, based on shallow-water-equations, are suitable for a wide range of flow problems, and are,
therefore, the most widely used for inundation mapping [15]. Coupling the simplified momentum
equations embed in streamflow forecast data with the hydrodynamic inundation models is currently
the common practice for inundation forecasting. The soundness of coupling these models with various
levels of physical details, however, has not been comprehensively evaluated but has been recently
more frequently studied.

Corresponding to the above-mentioned knowledge gaps and research demands, the main
objectives of this study were to examine the uncertainty in forecast streamflow caused by the evolving
weather forcing during the operational forecasting tasks for hurricane-level extreme events and to
evaluate the influence of such uncertainty on the accuracy of riverine inundation predictions. The
forecast streamflow, as the main uncertainty source in this study, was used as the forcing to drive
the inundation model. Other potential uncertainty sources such as the model structure, parameters,
and geospatial auxiliary inputs (i.e., elevation and river network) were all fixed. The uncertainty in
weather forcing was assumed as implicitly embedded in the forecast streamflow and was not discussed
separately. A diagnostic case study was established on a hindcast of the major flooding events caused by
Hurricane Matthew, which struck the eastern United States in 2016. The forecast streamflow including
the lateral inflow from the bank was retrieved from the U.S. NWM. The inundation was simulated by a
hydrodynamic model based on two-dimensional shallow-water-equations. An automated workflow
via one-way coupling the NWM with the inundation model was developed. After the predicted peak
flood elevations and maximum flooding extents were validated against the observations, the findings
with regard to the error propagation were discussed accordingly. The best-practice experience of
coupling the NWM with a hydrodynamic model was summarized at last.
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2. Methodologies

2.1. River Forcing

This study used the streamflow and lateral inflow forecast by the U.S. National Water Model as
the river forcing to drive a high-resolution flood inundation model. The National Water Model, as an
implementation of the uncoupled Weather Research and Forecasting model-hydrological modeling
system (WRF-Hydro), simulates the full hydrologic system over the continental United States (CONUS).
Using the medium-resolution National Hydrography Dataset Plus Version 2 (NHDPlusV2) [19] dividing
the national river network into streamline segments, the NWM simulates streamflow and lateral
inflow at 2.7 million river reaches covering the entire CONUS. The hourly (short-range) and 3-hour
(medium-range) time series of forecast streamflow are encapsulated in the Network Common Data
Form (NetCDF) format. Each of the forecast points becomes the midpoint of the corresponding river
reach, and, therefore, provides an ideal boundary condition to force a local-scale riverine flood mapping.
However, to publish timely forecasts, the NWM is operationally configured to route channel flows by
the Muskingum–Cunge method, which is based on the kinematic-wave approximation and cannot
capture the backwater flows. Further, the channel spillage to the overland is currently not allowed,
which requires further improvements to provide the riverine inundation. Therefore, this study also
sought to explore how to use the NWM’s streamflow forecasts for guiding inundation mapping.

2.2. Flood Inundation Model

The flood inundation was simulated based on the Rapid Inundation Flood Tool (RIFT) which, as
an implementation of the Nuflood model [20], solves the two-dimensional shallow water equations
explicitly on a graphics processing unit (GPU) [21]. On the basis of the Kurganov–Petrova scheme [22,23],
its governing equations can be represented as follows assuming incompressible fluid and neglecting
Coriolis force, viscous forces, and wind stress:
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where η is water surface elevation (m); h is water depth; u and v are the flow velocities (m/s)
corresponding to x and y directions, respectively; g is the gravitational acceleration (9.81 m/s2); S0-x and
S0−y are the bottom elevation slopes (unitless) in the x and y directions, respectively; n is the Manning’s
roughness coefficient (0.035); ∆x and ∆y are the dimensions (m) of a grid cell; and ∆t is the variable
time step (s). The friction slope was calculated by Manning’s equation [24].

To be coupled with the NWM, RIFT was modified to include the former’s channel flow in the
continuity and momentum equations:
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where qin is the total streamflow (m3/s), and qin−x and qin−y are the proportions of the total streamflow
(m3/s) in the x and y directions, respectively. The NWM’s forecast streamflow was loaded only at
the head reaches of the channel network by being introduced into both the continuity equation and
momentum equations as the upstream boundary conditions. For all the remaining downstream reaches
in the network, the NWM’s forecast lateral inflow was loaded into the continuity equation only to
conserve mass; the lateral inflow represents the rainfall-caused overland runoff and usually comes with
a relatively much smaller velocity than the river flow, and thus the flow acceleration or deceleration
due to the discharge of the lateral inflow was neglected in this study. The hydrologic forcing generated
by the NWM was only “one-way” coupled to the inundation hydraulic model; in other words, the
former was applied as the boundary condition to drive the latter, whereas the reverse direction was
not simulated by this frame. The proportions of boundary inflow in the x and y directions were
approximated by the tangent directions of the NHDPlusV2 streamlines, which the NWM adopts for
building the stream network.

The computational domain was discretized by the “staggered” grid, where conserved unknowns
are averaged at the cell center, bathymetric elevations are reconstructed at the cell vertices, and the
derived fluxes are developed in the middle of the cell interfaces [22]. Every next-step solution (η, hu,
hv) was developed by the first-order Euler integration scheme. The time step was constrained by a
Courant–Friedrichs–Lewy (CFL) condition that guaranteed the fastest perturbation to pass through
one-quarter of the grid cell [22].

2.3. Statistical Metrics

The accuracy of the model chain was validated by comparing the simulated peak water surface
elevations and the maximum extents with the observations. The mean error (ME) and the 95%
confidence intervals of the mean absolute error (ME95%) were used to compare the observed and
modeled water levels:
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where η̂max,i is the simulated peak water surface elevation at the ith location, ηmax,i is the observed water
surface elevation at location i, z* is the corresponding standard score, σ is the standard deviation, Q̂i is
the forecast quantity, Q is the observed mean value, and N is the total number of pairs of comparisons.
The ME can be positive or negative; the closer to zero the value is, the more accurate the model results
are. The ME95% represents the variation of the model results. For extent mapping, the modeling
performance was assessed by two binary measures: fit (F) [18,25] and Peirce’s skill score (PSS) [26]:
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where PS1O1
j is assigned a value of 1 for wet grid cells identified by both the observation and simulation,

PS0O1
j is assigned a value of 1 for wet grid cells identified by observation but not by the simulation,

PS1O0
j is assigned a value of 1 for wet grid cells identified by simulation only, and PS0O0

j is assigned a
value of 1 for dry grid cells identified both by the observation and the simulation. Both F indicator and
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PSS indicators vary between 0 and 1; the closer to 1, the more accurate the results are. The F indicator
tends to be more sensitive to the wetted extent, whereas the PSS indicator also takes account of the dry
cells (

∑
PS0O0

j ). The error of simulated water surface elevation was further assessed by the percent
bias (PBIAS) and the Nash–Sutcliffe efficiency (NSE) representing their deviations from the observed
values:
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∑
(Q̂i −Qi)∑

Qi
, (12)
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)2

∑(
Qi −Q

)2 , (13)

where Qi is the observed quantity. The optimum value of PBIAS is zero, whereas the optimum value
of NSE is one. Both PBIAS and NSE were also used to assess the deviations of the forecast streamflow
from the observed streamflow.

2.4. Case Study

The case study was established on the basis of Hurricane Matthew, which occurred during 7–9
October 2016 and dumped 76–381 mm rainfall across the states of North Carolina and South Carolina,
resulting in major flooding and over $1.9 billion damage to public properties and infrastructures,
along with 33 fatalities [27]. To completely rebuild this historical event, the NWM short-range
hourly stream forecasts (15 hours duration) and the medium-range 3-hour stream forecasts (10 days
duration) published on 1–15 October 2016 (referred to as Forecast 1 Oct to 15 Oct afterward) were
retrieved. The forecast streamflow was compared to the observed hydrographs at a total of six U.S.
Geological Survey (USGS) stream gauges with available time series within the study areas (Table 1). To
lessen the local effects of internal boundary conditions due to the structural elements such as bridges
and culverts [10], the 30 m digital elevation model (DEM) collected from the USGS 3D Elevation
Program was hydro-enforced on the basis of the HydroDEM data from the NHDPlusV2 to enforce
channel connectivity.

Table 1. Locations of the selected United States Geological Survey (USGS) stream gauges and their
intersected National Water Model (NWM) reaches.

Gauge ID Name Latitude Longitude NWM Reach ID

02134500 Lumber River at Boardman, NC 34◦26’33" −78◦57’37" 9131716
02135000 Little Pee Dee R. at Galivants Ferry, SC 34◦03’25" −79◦14’50" 9114416
02089000 Neuse River near Goldsboro, NC 35◦20’15" −77◦59’51" 11239411
02088500 Little River near Princeton, NC 35◦30’41" −78◦09’37" 8786063
02134170 Lumber River at Lumberton, NC 34◦37’13" −79◦00’40" 9129886
02103000 Little River at Manchester, NC 35◦11’36" −78◦59’08" 8846189

The highest elevation of the floodwater surface can be marked by the identified and recovered
post-flood evidence, which is often named as high water mark (HWM) [28]. After Hurricane Matthew,
a total of 106 riverine HWMs with the reported peak water elevation were retrieved from the USGS
Short-Term Network (STN) Data Portal [29]. Coastal HWMs were excluded from this study to avoid
tidal and surging influence. The HWMs were divided into 10 clusters representing 10 individual study
sites. Although some HWMs could fall into multiple study areas, no HWMs were double counted
through the comparisons.

A 10 km long (in both directions) rectangular bounding box centered on each cluster of HWMs
was created as the forcing domain (Figure 1), within which the NWM river forcing corresponding to
inbound stream reaches was loaded into the inundation model. Again, the NWM forecast streamflow
and lateral inflow were applied to the head reaches (representing the river channels cut off by the
domain boundary as well as the internal headwater sources without any upstream connections) and
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the following downstream reaches, respectively (Figure 2). The 5 km and 20 km wide forcing domains
were further tested. Because the study regions have low-lying, flat terrains that affect the initial flow
direction, the discharge loaded at head reaches near the boundary might tend to exit the forcing
domain. To avoid such mass losses, we extended the forcing domain by up to 30 km longer in both
directions as an extra buffer zone, which together made up the complete computational domain for
each simulation. Because RIFT only registers the wet grid cells at each time step and excludes the dry
cells from the computation, the extra buffer zone did not significantly elevate the cost. Each simulation
began from a “wet” start when RIFT had been ramped up by iterating the initial river forcing until the
steady-state was reached. Only after this “spin-up” was the run formally launched and RIFT started to
pull the following time series of the corresponding river forcing and generate outputs.

The simulated flooded areas were validated against the maximum inundation extent of Hurricane
Matthew published by the U.S. Federal Emergency Management Agency (FEMA) Cloud GIS
Infrastructure Production Site [30]. Because this dataset did not cover South Carolina, the study sites
partly missed by this dataset were excluded from the extent validation. Additionally, the published
flood extents did not necessarily cover our entire study sites. To make a fair comparison, the flood
extents were only validated within a 1 km wide square bounding box, where simulated and observed
extents co-exist.

Figure 1. Study sites with the 10 km long rectangular bound centered on the 10 clusters of riverine
high water marks.



Water 2020, 12, 911 8 of 19

Figure 2. General workflow and an example network of the river reaches to be loaded by lateral inflow
and streamflow boundary conditions.

2.5. Automated Coupling Workflow

The simulations were launched inside a Linux environment operated by Ubuntu 16.04.2 LTS
equipped with the Intel Xeon CPU E5-2697 v4 (2.3 GHz) and NVIDIA Tesla K80 GPU (cores: 2496 × 2).
On the basis of the developed Python and Bash scripts, this running process was automated by
loosely coupling the NWM with the inundation model in terms of retrieving the NWM channel
forecasts, preprocessing input data, running RIFT, and postprocessing results (Figure 2). During the
preprocessing, the reaches within each study site were recorded in a list after being detected by clipping
the NHDPlusV2 streamlines by the boundary of interest. The list of reaches was then used to extract
the corresponding streamflow and lateral inflow time series out of the NWM forecast datasets, which
were then written into an individual hydrograph file for each stream reach. The list of reaches and
hydrograph files could then guide RIFT to load the discharge at the corresponding time and location.
Each forecast dataset was developed by merging the 15 NWM short-range (hourly) channel flow with
the 80 NWM medium-range (3-hour) channel flow published simultaneously. During the overlapped
first 15 hours, the short-range forecasts were solely used due to their higher accuracy, yielding a
total of 90 timestamps of discharge values for generated river forcing. Because each forecast dataset
predicted the next 10 days’ situation, its time frame only covered a segment of the event. Each run
lasted for 20 days, which included 10 days to load river forcing and the additional 10 days to allow the
peak to flow out of the domain. In this manner, 15 days of NWM streamflow forecasts (1–15 October
2016) were analyzed separately to examine their temporally evolving pattern and its impacts on the
inundation prediction.

3. Results and Discussion

3.1. Verification of Streamflow Forcing

The streamflow forecast by the NWM was verified against the observations at the six USGS
stream gauges (Figure 3). The forecast baseflow before and after the peak was generally well captured
for all days of forecasts, though the hydrographs appeared to be quite different during the peak
periods. It turned out that the shape of all observed hydrographs was not well preserved in the
river forcing, indicating that potential problems may have existed in the current model setups.
Further, the river forcing released on various days also exhibited a great variance, which reflected
the influence of the evolving weather forcing because the same model chain was used throughout
the event. For the forecasts made in advance of the peak, the major flood pulse was mostly missed
or significantly underestimated. Such underestimation was also found for other continental-scale
streamflow forecasting systems [1,16]. This could be due to the limitations of the meteorological
forcing used to drive the streamflow forecasting [12]. When approaching the days of the real peaks, the
hydrographs were mostly forecast to have taller and thinner spikes with significantly overpredicted
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peak flow compared to the observations. In addition, those forecast hydrographs tended to have a
higher rising limb before the crest, whereas their falling limbs generally dropped down quickly before
the observed peaks arrived. To sum up, similar to the previous finding regarding the EFFS forecasts [31],
the flood waves in this study were forecast to arrive earlier than the real fronts and took less time
to pass through the channels. This may have been due to neglecting the convection terms in the
kinematic-wave routing approximation adopted by the current NWM operational configuration, and
also partly due to neglecting the overbank spillage, which together led to faster and more floodwater
routed through the channel to the downstream.

1 
 

 
Figure 3. Comparisons between the hydrographs observed from the United States Geological
Survey (USGS) stream gauges and the hydrographs developed by the National Water Model
streamflow forecasts.

Accordingly, the statistical test also shows that some of the forecast streamflow time series at
the selected reaches did not have acceptable NSE coefficients (Figure 4). The exceptions include the
forecasts made subsequent to the actual peaks at gauge 02103000 (9–11 October forecasts) and gauge
02088500 (11–13 October forecasts), which both matched well with the falling limbs of the observed
hydrographs. Only the selected six stream gauges within the study sites recorded data during the event,
and thus only the river reaches hosting those gauges were analyzed. However, considering that each
study site had a total of 100–700 river reaches, they were expected to contribute a considerable amount
of uncertainty in terms of volumes and dynamics to the inundation mapping. Between streamflow
and lateral inflow, the latter may have relatively less contribution because it took up an average of
25% of the total incoming volume, utilizing the 8 October forecast as an example. However, this ratio
varied in a wide range between 4% to 60% across different sites, and depended on factors such as the
area of the domain, density of the river network, and the local stream orders.
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Figure 4. Nash–Sutcliff efficiency coefficients for comparing the National Water Model (NWM) forecast
streamflow with the United States Geological Survey (USGS) observed streamflow.

3.2. Inundation Validation

Driven by the streamflow and lateral inflow forecasts, the hydrodynamic model was run to map
the corresponding riverine flood. The simulated inundation was validated against the HWMs and the
published flood extents. On a point-to-point basis, the simulated peak water surface elevation of the
corresponding grid cell covering each HWM was retrieved from the RIFT outputs via postprocessing.
The comparison results were grouped by the days of streamflow forecasts to reflect the evolution of
weather forcing along with the time (Figure 5). The errors were measured by ME and ME95%. Across
all days of river forcing applied, the maximum water surface elevations were underestimated by less
than 1 m on average. The forcing of 8 October 2016 achieved the best overall accuracy with an ME of
−0.06 m. This corresponds with the previous observation that 8 October 2016 was one of a few river
forcing datasets whose hydrographs had larger peaks than the observed ones (Figure 3).

Figure 5. The mean error and the 95% confidence levels of the errors of the simulated peak water
surface elevations.
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The simulated maximum flood extents generally fit with the published maps, as the F and PSS
indicators were both around 0.6 (Figure 6). Consistent with the depth validation, the river forcing of 8
October 2016 best predicted the overall flood extents with the F indicator as 0.73 and the PSS indicator
as 0.74. Before and after the actual peaks occurred, the forecast hydrographs either underpredicted
or missed the real peaks (Figure 3), which may have caused relatively underestimated maximum
flood elevations and extents observed here. In this perspective, the worst-case river forcing, though
usually released as late as the actual peak, may usually be the most reliable one to use for predicting
the peak inundation situation for the extreme events. However, despite the significantly mismatched
forecast hydrographs, all river forcing ended up approximating the peak water elevations and flood
extents very close to the observed conditions. This indicates that the inundation model may not be
very sensitive to the uncertainty of the driving weather forcing.

Figure 6. The fit (F) and Peirce’s skill score (PSS) of the simulated inundated extents.

3.3. Error Propagation

As discussed previously, the evolving river forcing as the extreme event developed did not result
in very different flood inundation predictions. The simulated peak water elevations, as well as the
maximum extents, were not considerably different from the observations. Therefore, considering that
the forecast hydrographs appear to be quite different from day to day, our findings can indicate that
the uncertainty of the river forcing may have limited influence on the simulation of peak inundations.
To further examine this hypothesis, the river forcing and the subsequent predicted peak water surface
elevations and extents were compared to the corresponding observations again and summarized
statistically. Specifically, the time series of the forecast streamflow were compared to observations
with PBIAS and NSE computed. The forecast streamflow was confirmed as having a wide range of
variations, with PBIAS varying from −0.89 to −0.15 and NSE varying from −0.64 to 0.53 (Table 2). In
contrast, the simulated peak water surface elevations had one order of magnitude fewer variations,
with PBIAS ranging from −0.03 to 0.00 and NSE ranging from 0.98 to 0.99 (Table 3); the simulated peak
flood extents also had approximately one order of magnitude fewer variations, with the F indicator
changing from 0.50 to 0.73 and the PSS indicator changing from 0.48 to 0.74. In other words, the errors
of forecast streamflow time series did not cause an equal magnitude of errors in the peak inundation
prediction. Therefore, the uncertainty in the weather and river forcing may not effectively accumulate
and propagate into the inundation prediction for extreme events. This is consistent with multiple
previous findings; for example, although the ensemble of forecast hydrographs mostly missed the
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observed peaks, 85% of the observed extents were predicted correctly [1]. Similarly, the uncertainty of
inflow magnitudes did not show a notable influence on the downstream maximum water depths across
different cross sections [32]. Our finding may also partially explain why only limited variations in
the predicted inundation extents were attributed to the rainfall-runoff and inundation models [31]. In
accordance with the previous study, the inundation model seems to be able to dampen the uncertainty
originated from the ensemble of forecast precipitation [6]. Our study further shows that this effect may
become more prominent in extreme events. When the affected areas are largely inundated, the errors
caused by the uncertain meteorological forcing and flood models may thereby be concealed by the
inundation-focused evaluating metrics.

Another aspect of this finding may be more important. The highly uncertain weather and river
forcing may not need to be extremely accurate to predict a reasonable inundation map for extreme
events. This may help relieve the demand for using the ensemble of NWPs and reduce the required
lead time. Compared to the peak water elevations, the maximum flood extents seemed to be relatively
more affected by the uncertainty of river forcing. Consequently, improving the prediction of the overall
inundation extent may be more cost-effective to invest than the prediction of the peak water surface
elevations for certain hot spots.
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Table 2. Statistics of the forecast streamflow compared to the stream gauge observations.

Forecast 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7 Oct 8 Oct 9 Oct 10 Oct 11 Oct 12 Oct 13 Oct 14 Oct 15 Oct

PBIAS −0.60 −0.62 −0.85 −0.60 −0.89 −0.17 −0.15 −0.15 −0.21 −0.45 −0.54 −0.58 −0.54 −0.52 −0.51
NSE 0.07 0.14 −0.37 0.23 −0.52 0.31 0.28 0.25 −0.64 0.31 0.38 0.35 0.46 0.50 0.53

Abbreviations: PBIAS, percent bias; NSE, Nash–Sutcliffe efficiency.

Table 3. Statistics of the simulated peak water elevations compared to the high water marks.

Forecast 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7 Oct 8 Oct 9 Oct 10 Oct 10 Oct 10 Oct 10 Oct 10 Oct 10 Oct

PBIAS −0.03 −0.03 −0.03 −0.03 −0.03 −0.02 −0.01 0.00 −0.01 −0.02 −0.03 −0.03 −0.03 −0.03 −0.03
NSE 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98

Abbreviations: PBIAS, percent bias; NSE, Nash–Sutcliffe efficiency.
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3.4. Accuracy Measure of River Forcing

Although the errors of the peak inundation predictions did not increase with the errors of river
forcing by the same order of magnitude, the mechanism controlling this uncertainty propagation is
still unclear. The water elevations and extents were best predicted on the basis of the river forcing of 8
October 2016 (Figure 5, Figure 6, Table 3, Table 4), which, however, did not result in the single highest
PBIAS and NSE statistics against other forecasts (Figure 4, Table 2). This discrepancy was caused by the
restricted 10-day window of the river forcing. For example, even if the streamflow time series forecast
on 15 October 2016 did not capture the peak event, it still fit well with the observed streamflow for
the next 10 days, yielding the highest NSE value (Table 2). In this regard, fitting the time series of
the forecast streamflow to the observation would not guarantee the accuracy of inundation mapping
for extreme events. To look for a better metric, we computed the total of the volumetric discharge
of six sampled stream gauges altogether through the entire event (1 October to 25 October 2016).
Benchmarked by this observed volumetric total, the deviation of the total forecast streamflow volume
of the six corresponding NWM reaches was also computed by each of the 15 river forcing datasets.
Even though the 10-day forcing window was shorter than the observed data window (25 days), the
point here was to quantify the deviation in total volume forecast by the streamflow forcing. The
difference between the observed and forecast total flow volumes was statistically assessed by the
percent bias again (denoted as PBIAS-V-NWM). The latter (PBIAS-V-NWM) was then compared to the
NSE and PBIAS of the simulated peak water elevations (Figure 7), and to the F and PSS indicators of
the simulated maximum flood extents (Figure 8). The comparisons present a clearly linear correlation
between the discrepancy in the total volume forecast by the NWM river forcing and the accuracy of
the peak inundation predictions, with the coefficients of determination all above 0.8. This indicates
that the total volume is an important measure of the accuracy of river forcing for flood simulations. It
explains why the forcing of 8 October 2016, with the highest PBIAS-V-NWM, best predicts the peak
inundation conditions, as discussed previously. Therefore, for the purpose of predicting inundation for
extreme events, forecasting the correct total volume of floodwater seems to matter more than having a
forecast hydrograph well fit to observations within a limited time slice. This also helps explain why the
lack of forecast total rainfall due to the deficient weather forcing led to an underpredicted inundation
extent [31]. It is further consistent with the previous finding that the magnitude of inflow can be an
important factor determining the maximum water level [11].

Table 4. Statistics of the simulated peak flood extents compared to the published extents.

Forecast 1
Oct

2
Oct

3
Oct

4
Oct

5
Oct

6
Oct

7
Oct

8
Oct

9
Oct

10
Oct

11
Oct

12
Oct

13
Oct

14
Oct

15
Oct

F 0.57 0.60 0.51 0.63 0.50 0.67 0.70 0.73 0.69 0.68 0.66 0.63 0.61 0.59 0.58
PSS 0.56 0.59 0.49 0.62 0.48 0.66 0.70 0.74 0.70 0.68 0.65 0.63 0.60 0.58 0.56

Abbreviations: F, the measure of fit; PSS, Peirce’s skill score.
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Figure 7. The percent bias of the total volume of the National Water Model (NWM) streamflow forecasts
was compared to the NSE (a) and PBIAS (b) of the simulated peak water elevations. The red line refers
to the linear fit. Abbreviations: PBIAS-V-NWM, percent bias of the total volume of NWM forecast
streamflow; NSE-RIFT, Nash–Sutcliffe efficiency of the peak water elevations simulated by Rapid
Inundation Flood Tool; PBIAS-RIFT, percent bias of the peak water elevations simulated by Rapid
Inundation Flood Tool; R2, coefficient of determination.

Figure 8. The percent bias of the National Water Model (NWM) streamflow forecasts was compared
to the F (a) and PSS (b) of the simulated maximum flood extents. The red line refers to the linear
fit. Abbreviations: PBIAS-V-NWM, percent bias of the total volume of NWM forecast streamflow;
F-RIFT, the measure of fit of the maximum flood extents simulated by Rapid Inundation Flood Tool;
PSS-RIFT, Peirce’s skill score of the maximum flood extents simulated by Rapid Inundation Flood Tool;
R2, coefficient of determination.

3.5. Tradeoff in Domain Size

The impact of the domain size on computational cost was examined in the hope of providing the
extra best-practice experience for similar operational tasks. Additional domain sizes (5 km and 20
km) were tested on the basis of the forcing of 8 October 2016, which was proven to best predict the
inundation. The peak water surface elevations were underpredicted for all domain sizes (Figure 9),
which further reflects that the total volume of incoming discharge was underpredicted by the river
forcing. As more river reaches were incorporated by using a larger forcing domain, the mean error
became closer to zero. However, the improvement in ME slowed down when the domain size increased
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from 10 km to 20 km. Consistently, the maximum flood extents were better predicted as the domain size
increased, but the improvement also became sluggish near the end. Considering that the computational
cost did rise exponentially (Figure 9), the gain in accuracy would not keep pace with the rising cost
as the domain enlarges. We found that the computational cost of our runs can depend on factors
including the number of boundary conditions, the total volume of inflow, and the complexity of local
topography. Out of our tests, a 10 km boundary seems to be a good starting size for predicting the
riverine inundation, which seems to well balance the accuracy and the cost. Notably, we found that
increasing the size of the forcing domain, that is, loading more river forcing in a larger area enclosing
the area of interest, ended up with slightly lower F and PSS values for one of our sites (Figure 10). This
might be because as more river reaches were incorporated in a larger domain, the overbank spillage
from the minor tributaries and ditches may not have been well captured by the published flood extents
(causing a larger

∑
PS1O0

j ). This stresses the need to establish a well-accepted suite of verification and
validation datasets for post-hurricane hindcasts.

Figure 9. The changes in the statistics of the simulated peak water surface elevations (a) and maximum
extents (b) as well as the changes in the computational costs (c) along with the increase in the size of the
forcing domain. The forecast streamflow of 8 October 2016 was used for all simulations. Abbreviations:
F, the measure of fit; PSS, Peirce’s skill score.

Figure 10. The changes in simulated inundated areas along with the increase in the size of the forcing
domain where forcing was loaded, compared to the flood extents published by the U.S. Federal
Emergency Management Agency (FEMA).

4. Conclusions

Although several studies have traced the uncertainty propagation from the weather forcing to
flood forecasting, the influence of the evolving weather states, as an extreme event advances, on the
inundation prediction is seldom examined thoroughly. This study aimed to diagnose the uncertainty
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caused by such temporal evolution of forecast streamflow on inundation mapping for a real hurricane
event. An automated workflow loosely coupling the NWM channel model with a high-resolution
hydrodynamic inundation model was developed. The proposed workflow was validated by measured
peak water surface elevations and maximum extents reported for Hurricane Matthew striking the
eastern U.S. in 2016. A total of 15 forecasting datasets were examined at 10 study sites. The hydrographs
forecast by the NWM river forcing on different days varied significantly as the event proceeded, and
their shapes were also very different from the observed hydrographs, with NSE ranging from −15.09 to
0.96. The streamflow forecasts released before the actual peak period tended to miss or underpredict
the observed peak flow. The forecast hydrographs released near the actual peak time did predict a
spike, which, however, had a thinner and sharper shape with the overestimated extremes happening
earlier than the real peak.

The river forcing with such significant uncertainty was then applied as the upstream and lateral
inflow boundary conditions to drive the inundation model, which turned out to well predict the
overall inundation conditions. The predicted peak water surface elevations and flood extents were all
found to have one order of magnitude lower variations than the forecast river forcing when they were
compared to their corresponding observations. The PBIAS and NSE of the predicted maximum water
surface elevations both varied in narrow ranges from −0.03 to 0.00 and from 0.98 to 0.99, respectively.
Consistently, the F and PSS indicators for the predicted maximum flood extent ranged from 0.50 to
0.73 and from 0.48 to 0.74, respectively. Considering the river forcing as the only uncertain contributor
in this study, this demonstrated that the uncertainty of the forecast streamflow may not considerably
cascade to the inundation mapping. Compared to the predicted peak water surface elevations, the
predicted maximum flood extents seem to be slightly more subject to the variations in river forcing.

The total volume of discharge through the event was found as a better metric to assess the accuracy
of weather/river forcing for inundation mapping, whereas the conventional metrics measuring the
fitness between the forecast streamflow time series with the observations within the forecasting
time window did not guarantee an accurate prediction of inundation. Both the PBIAS and NSE
of the simulated peak water levels were shown to be highly correlated with the PBIAS of the total
volume of forecast streamflow (PBIAS-V-NWM), with the coefficients of determination as 0.88 and
0.89, respectively. The F and PSS indicators of the simulated maximum extents also exhibited a linear
correlation with the PBIAS of the total volumes of river forcing (PBIAS-V-NWM), with the coefficients
of determination as 0.82 and 0.83, respectively.

This study argues that besides the temporal pattern as commonly emphasized by streamflow
forecasting, the accuracy of the forecast total volume is another important ingredient for inundation
predictions. In the studied extreme event, we offered new evidence that the forecast streamflow with
imperfect temporal patterns did not cause the maximum inundation to be predicted far from the
observations, as also shown by other models during different events [1,6,31,32]. This study further
found that the flood extents and maximum water elevations tend to be better predicted when the
volume of total incoming streamflow is more accurately forecast. It should not be interpreted that the
temporal pattern of the forecast streamflow is unimportant for all cases, because the timing of the peak
affects the decision of when to evacuate especially during flash floods. Although circumstances can be
different case by case, we intend to stress that the community of streamflow forecasting should pay as
much attention to matching the peak as to matching the total volume. In addition, considering that
some recent hurricanes (such as Harvey and Florence) could be long-lived in the coastal zone leading
to long-lasting inundation, the total consequences heavily depend on the largest affected area and the
maximum depth of floodwater. Their predictions are proven by this study to be highly related to the
accurate forecasting of the streamflow volume. This finding may also help explain why although the
uncertainty of applying various rating curves for streamflow forecasting may affect the downstream
inundation predictions [10], its influence was reported as not being dominant [11,32]. We infer that the
accuracy of the forecast streamflow volume could be an additional important metric for diagnosing
such inundation predictions. While we have demonstrated the significance of volumetric accuracy of
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streamflow forecasting on inundation prediction, we do not fully understand this effect for the events
with significantly different sizes, topographies, and flow regimes such as compound floods. We need
more follow-up studies on how the accuracy of the forecast streamflow volume in various cases affects
the inundation prediction.

This work provides extra best-practice experience for similar operational tasks that need to
predict a local-scale flood inundation driven by the streamflow forecast by large-scale river forecasting
platforms. The gain in accuracy is not proportional to the increase in computational time. Modeling a
larger forcing domain would require an exponential increase in cost. Our study shows that a 10 km
boundary enclosing the area of interest seems to be a good starting point for loading the river forcing,
which achieved an efficient compromise between the accuracy and the cost. Considering that study
areas have low-lying terrains with a strong tendency of backwater flow near the boundary, a 10 km
wide bounding box could, therefore, be recommended as the minimum forcing domain for most
cases. An extra buffer zone may still be needed, depending on how a boundary is handled by the
inundation model.
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