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Abstract: Global Climate Models (GCMs) can provide essential meteorological data as inputs for
simulating and assessing the impact of climate change on catchment hydrology. However, downscaling
of GCM outputs is often required due to their coarse spatial and temporal resolution. As an effective
downscaling method, stochastic weather generators can reproduce daily sequences with statistically
similar statistical characteristics. Most weather generators can only simulate single-site meteorological
data, which are spatially uncorrelated. Therefore, this study introduces a method for multi-site
precipitation downscaling based on a combination of a single-site stochastic weather generator,
CLIGEN (CLImate GENerator), and a modified shuffle procedure constrained with multi-model
ensemble GCM monthly precipitation outputs. The applicability of the downscaling method is
demonstrated in the Huangfuchuan Basin (arid to semi-arid climate) for a historical period (1976–2005)
and a projection period (2021–2070, historical, the representative concentration path (RCP) 2.6, RCP4.5,
RCP4.8 scenarios) to generate spatially correlated daily precipitation. The results show that the
proposed downscaling method can accurately simulate the mean of daily, monthly and annual
precipitation and the wet spell lengths, and the inter-station correlation among 10 sites in the
basin. In addition, this combination method generated the projected precipitation and showed an
increasing trend for future years. These findings could help us better cope with the potential risks of
climate change.

Keywords: CLIGEN; weather generator; multi-site statistical downscaling; spatial correlation;
precipitation

1. Introduction

The Inter-Governmental Panel on Climate Change (IPCC)’s fifth assessment report indicates
that the global temperature has increased by about 0.89 °C over the period from 1901 to 2012 and,
during this period, the temperature increase was mainly concentrated between 1951 and 2012, and was
about 0.72 °C [1]. With climate change, the hydrological cycle is expected to intensify with implications
for water resources availability. For future climate change projections, Global Climate Models are
widely used in the fields of hydrology, biology and environmental studies. In hydrology, they are
often used as inputs for hydrological models to evaluate the impact of climate change on runoff [2,3],
sediment yield [4,5] and soil erosion [6,7]. However, due to the incomplete understanding of the
physical mechanism of climate change and the large amount of calculations, GCM output often has
coarse spatial and temporal resolutions. On one hand, they will affect the simulation accuracy of
climate characteristics at the catchment scale; on the other hand, the GCM’s output usually does not
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match hydrological models in scale. Therefore, it is necessary to downscale the GCM’s output for
hydrological applications.

So far, there are two main methods for downscaling the GCM’s output, i.e., dynamic downscaling
and statistical downscaling. Dynamic downscaling methods simulate climate change by nesting
regional climate models in GCMs, which have the advantages of being physically based, unaffected
by observation data, and suitable for multiple resolutions. The amount of calculation is usually
large, and the model structure is complex. Statistical downscaling methods predict climate change by
establishing relationships between observed data and regional meteorological factors, they involve
relatively small amounts of calculation, simple model formulation, and they can correct the systematic
errors of GCMs.

The most common statistical downscaling approaches can be classified into three categories [8]:
perfect prognosis (PP), model output statistics (MOS) and stochastic weather generator (WG). As a
statistical downscaling method, stochastic weather generators can generate multi-year time series
based on the statistical characteristics of the observed weather data, and provide scale-matched
input data for hydrological models. Stochastic weather generators mainly include CLIGEN(CLImate
GENerator) [9], WXGEN [10], WGEN(Weather GENerator) [11], USCLIMATE [12] and LARS-WG(Long
Ashton Research Station-Weather Generator) [13]. CLIGEN is a stochastic weather generator established
by the United States Department of Agriculture (USDA) to provide a climate input for Water Erosion
Prediction Project(WEPP) model [14,15], which includes daily precipitation, precipitation pattern,
maximum and minimum temperature, dew temperature, wind direction, wind speed and solar
radiation [16]. It has been used widely to downscale the monthly data of GCM outputs [17–22].

Daily precipitation is one of the most important input variables for hydrological models. At first,
a stochastic weather generator is used to generate single-site precipitation [23–27]. For a basin,
there are often dozens or even hundreds of precipitation stations, however, due to the fact that
precipitation is generated independently, the inter-station spatial correlation is not properly maintained,
which will affect the simulation of basin extreme flow and the accuracy of the hydrological model
output [28–30]. In order to address the problem of poor spatial correlation of inter-station precipitation
sequences, the statistical downscaling method has expanded from the single-site to the multi-site
approach. Multi-site weather generators (MSWG) can generate climate variables dependently, such as
precipitation and temperature, for multiple sites over a watershed based on the statistical characteristics
of the observed data. During the last few decades, some scholars have developed a series of multi-site
weather generators. Wilks extended the commonly used single-site weather generator by driving
it with temporally independent but spatially correlated random numbers [31]. Brissette presented
an algorithm for the efficient stochastic generation of multi-site precipitation data, following the
Wilks approach to deal with the spatial intermittence problem [32]. Li proposed a precipitation data
post-processing technique called the two-stage shuffle procedure to reproduce the spatial correlation
of precipitation generated by stochastic weather generators [33]. Chen presented a new Matlab-based
stochastic weather generator (MulGETS) for generating multi-site precipitation, using a multi-gamma
distribution to address the spatial correlation of precipitation amounts [34]. Srivastav proposed a new
multisite, multivariate maximum entropy bootstrap weather generator (MEBWG), which matched the
original time sequence by reordering the random series [35].

In the above studies, Li proposed that the two-stage shuffle procedure has good universality
as a post-processing technique, because it can be used for reconstructing the spatial correlation of
single station meteorological data from any source. However, the meteorological downscaling data
of other methods need their own models, and the applicability of the multi-site downscaling data
generated by these models in each research area needs to be further verified. So far, many mature
methods have been proposed for downscaling meteorological data, most of which are based on local
climatic characteristics [36–38]. Some models are suitable for wet areas, some models are suitable for
large scales, and some models can simulate extreme rainfall well. However, many of these methods
are single-site downscaling methods, which restrict their use to some extent. The two-stage shuffled
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procedure can improve the applicability of these methods to better study regional climate characteristics
and hydrological simulation.

Hydrologic and sediment delivery models, such as SWAT, have been calibrated using site-specific
daily weather data. In order to use such models to assess the impact of climate change on water
balance and sediment budget, it is of critical importance to use daily weather data for the same
sites for a particular river basin. While stochastic weather generators such as CLIGEN are known to
reproduce daily precipitation sequences adequately, the generated daily precipitation data are spatially
uncorrelated because they are generated independently. The combination of CLIGEN-generated
daily precipitation with the modified shuffle technique of Li [33] to preserve the spatial correlation
on a daily scale has not yet been attempted. The primary objective of the study is to test whether
independently generated daily precipitation data based on GCM output can be shuffled to preserve
the spatial correlation, along with observed statistics of daily precipitation for 10 sites in the arid basin
in northern China.

2. Materials and Methods

2.1. Study Area

The Huangfuchuan Basin has an arid to semi-arid climate. The annual precipitation is low, and it
mainly occurs as rainstorms. The water resources of the basin are relatively scarce, and their spatial and
temporal distribution is uneven [39]. The ecological environment and socio-economic development in
the basin are very sensitive to climate change, especially precipitation changes [40,41]. The basin is
currently not affected by resource development, and the hydrological processes are mainly controlled
by natural factors [42].

The Huangfuchuan Basin is located in the middle reaches of the Yellow River at 39.20◦–39.90◦ N
and 110.30◦–111.15◦ E and is one of the major tributaries of the Yellow River, with an area of 3426 km2

and the length of mainstream is 137 km (Figure 1) [43]. The elevation ranged from 821 m to 1475 m.
The annual precipitation of Huangfuchaun basin is between 350 mm and 450 mm, mainly concentrated
in June to September, accounting for 80% of the annual precipitation [44], and often occurs over a
relatively small area, and of short duration and high intensity [45]. The average annual temperature is
6.2–7.2 °C, the annual sunshine hours are more than 3000 h, the annual relative humidity is 53%–56%.

Figure 1. Location of study area and distribution of precipitation stations, hydrological station and
meteorological station (elevation derived from the 30 m digital elevation model (DEM)).
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2.2. Datasets

2.2.1. Observed Data

In this study, daily precipitation data for 10 stations from 1976 to 2012 in the Huangfuchuan
Basin were obtained from the Yellow River Conservancy Commission (Table 1) [43]. The basin
precipitation was calculated by the Thiessen Polygon method. The digital elevation model (DEM) with
the horizontal resolution of 30 m in the Huangfuchuan Basin was obtained from International Scientific
& Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn/). The DEM was used to generate the river network and basin boundaries.

Table 1. Precipitation stations and hydrological stations in the Huangfuchuan Basin.

Abbreviation Station
Name Elevation (m) Latitude(N) Longitude (E) Annual Precipitaiton

1976–2005 (mm)

Wlg Wulangou 1204 39◦57′ 110◦41′ 298.89
Dsx Deshengxi 1193 39◦51′ 110◦35′ 313.40
Sgd Shagedu 976 39◦38′ 110◦52′ 388.61
Gc Gucheng 975 39◦32′ 110◦59′ 381.86
Ljt Liujiata 1162 39◦52′ 111◦04′ 357.51
Hzt Haizita 1132 39◦47′ 111◦07′ 404.47
Hf Huangfu 860 39◦17′ 111◦05′ 397.40
Nl Nalin 1060 39◦43′ 110◦48′ 341.68

Xyz Xiyingzi 1070 39◦37′ 110◦43′ 343.69
Ct Changtan 989 39◦36′ 111◦10′ 379.65

2.2.2. GCM Outputs

The GCM outputs were obtained from the Coupled Model Inter-comparison Project 5 (CMIP5)
project of the IPCC Fifth Assessment Report (https://esgf-node.llnl.gov/search/cmip5). In this study,
we selected 15 Global Climate Models under historical, Rcp2.6, Rcp4.5 and Rcp8.5 emission scenarios
based on the relevant literature [46,47] to test the proposed downscaling method and forecast the
future precipitation. Some scholars evaluated the applicability of these models in China [48,49].
The multi-model ensemble mean is, overall, superior to any individual model in reproducing the
observed climate changes [50]. Therefore, the projections of precipitation under the representative
concentration path (RCP) scenarios are derived from the arithmetic ensemble mean of the 15 GCMs’
outputs [51]. The information on the 15 global climate models is shown in Table 2. It is necessary to
explain that, although IPCC provided the GCM daily precipitation data, we still needed GCM monthly
precipitation data to drive the hydrological model. Maurer compared the utility of daily vs. monthly
large-scale climate data, indicating that monthly GCM outputs are more credible and readily available
than those on a daily scale [52]. Meanwhile, due to the coarse spatial resolution, if we chose GCM daily
precipitation, it would have been more difficult to get accurate wet spells. For example, the inverse
distance weighting (IDW) method was used to interpolate the GCM data at the four nearest neighboring
grid points to the target site [53]. If the target site was located in a grid without rainfall, but the other
grid had rainfall, wet spells would be increased artificially after interpolation. To be consistent with
the observed data, the historical GCM monthly precipitation (1976–2005) was downloaded to test the
performance of the proposed downscaling method. For climate change projections, the Rcp2.6, Rcp4.5
and Rcp8.5 scenarios were selected for 2021–2070 because our follow-up research will focus on the
changes in water and sediment yield over the next 50 years based on the downscaling data.

http://www.gscloud.cn/
https://esgf-node.llnl.gov/search/cmip5
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Table 2. Information of 15 global coupled climate models.

Model Institution Resolution

CNRM-CM5 CNRM/Centre Europeen de Recherche et Formation
Avancees en Calcul Scientifique, France 128 × 256

CSIRO-Mk3-6-0

Commonwealth Scientific and
Industrial Research

Organisation in collaboration
with the Queensland Climate
Change Centre of Excellence

96 × 192

GFDL-CM3
Geophysical Fluid Dynamics Laboratory

90 × 144
GFDL-ESM2G 90 × 144
GFDL-ESM2M 90 × 144

GISS-E2-H NASA Goddard Institute for Space Studies 90 × 144
GISS-E2-R 90 × 144

HadGEM2-AO National Institute of Meteorological Research/Korea
Meteorological Administration 144 × 192

IPSL-CM5A-MR Institute Pierre-Simon Laplace 143 × 144

MIROC5

Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

128 × 256

MIROC-ESM
Japan Agency for Marine-Earth Science and

Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and National

Institute for Environmental Studies

64 × 128

MIROC-ESM-CHEM 64 × 128

MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 96 × 192

MRI-CGCM3 Meteorological Research Institute 160 × 320

NorESM1-M Norwegian Climate Centre 96 × 144

2.3. Spatial Interpolation Method

The GCM outputs are stored as raster data, and the data are associated with the value of the entire
grid cell. However, because the grid center is located at a distance from the precipitation station and a
grid cell may include several precipitation stations, this is obviously unreasonable. Therefore, the GCM
raster data need to be interpolated to the corresponding precipitation station using the spatial scale
conversion method. Some studies have verified the feasibility of the inverse distance weighting
(IDW) interpolation method in rainfall interpolation. Borges et al. compared the spatial interpolation
method for an estimation of precipitation distribution, and the results showed the five interpolation
methods, IDW included, that had the smallest error and the largest correlation coefficient and Nash
coefficient [54]. Chen et al. used the inverse distance weighting method to estimate the spatial
rainfall distribution in central Taiwan and proved the feasibility of the method [55]. Compared to the
Kriging method, Cao proves that IDW method has better practicability, because the Kriging method
requires more complex computation and takes more computation time, but the interpolation results
are not significantly affected [56]. Therefore, IDW was chosen as the spatial interpolation method for
precipitation in this study.

First, according to the latitude and longitude of precipitation stations, the nearest four grid center
points were determined to calculate their angular distance from precipitation station [51]:

D = cos−1(cosθd cosθs(cosωd cosωs + sinωd sinωs) + sinθd sinθs) (1)

where D is the angular distance, θd is the latitude of the target precipitation station, ωd is the longitude
of the target precipitation station, θs is the grid center latitude and ωs is the grid center longitude.



Water 2020, 12, 904 6 of 21

Second, we calculated the weight of each grid point [51]:

Wi = (1/Di)
/ 4∑

n=1

(1/Di) (2)

where Wi is the ith grid weight, n is the grid number.
Finally, the data of four grid center points were multiplied by their respective weight coefficients

and added together to obtain the GCM data for the desired station.

2.4. Temporal Downscaling Method

2.4.1. Equidistant Cumulative Distribution Functions Matching Method (EDCDFm)

The principle of the Equidistant Cumulative Distribution Functions Matching Method (EDCDFm)
is to modify the shape of the theoretical probability distribution function of the simulated precipitation
data based on the shape of the theoretical probability distribution function of the observed precipitation
data [57], and its deviation correction formula is as follows [58]:

x̃m− f ,cor = xm− f + F−1
o−c

(
Fm− f

(
xm− f

))
− F−1

m−c

(
Fm− f

(
xm− f

))
(3)

where x̃m− f ,cor is the post-corrected GCM monthly data for a future period; xm-f is the pre-corrected
GCM monthly data for a future period, F−1

o−c(F
−1
m−c) is the inverse function of the CDF of the observed

(GCM output) monthly data for a current period and Fm-f is the CDF of the GCM monthly data for a
future period.

This study used the mean, standard deviation, mean errors, relative deviation and Root Mean
Square Error (RMSE) to evaluate the performance of corrected GCM monthly data. The calculation
method is as follows:

ME =
1
t

t∑
n=1

(Sn −On) (4)

RD =

∣∣∣∣∣ME

O

∣∣∣∣∣ (5)

RMSE =

√√√√
1
t

t∑
n=1

(Sn −On)

2

(6)

where Sn and On are the simulated monthly data, and the observed monthly data, respectively.

2.4.2. CLIGEN Model

The CLIGEN model requires the following five input parameters to generate daily precipitation
sequences for each month of the year [24]; it is a wet day when the precipitation amount is more than
or equal to 0.1 mm:

• Average daily precipitation on wet days (Pw);
• Standard deviation of wet day precipitation (Sd);
• Coefficient of skewness of wet day precipitation (Skew);
• The probability of a wet day following a wet day (P(W|W));
• The probability of a wet day following a dry day (P(W|D)).

Therefore, when using the CLIGEN model to downscale GCM-generated monthly precipitation
to daily precipitation sequences, these five parameters are needed for each month. The following
procedure was followed to determine these parameter values:
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(1) Observed daily precipitation data for 1976–2005 were first used to compute the mean (P_mon)
and the variance (Var_mon), and the five CLIGEN parameters using daily observations, each month
and for each site;

(2) A linear relationship between P_mon and P(W|D) for each month for all sites was assumed so
that the wet-following-dry transition probability can be estimated for future years, i.e.,

P(W|D) = a+b× P_mon (7)

(3) It was assumed that the probability of occurrence of a wet day, P(W), was proportional to
P(W|D). In other words, since [59]:

PW =
P_mon(1− P(W|W) + P(W|D))

Nd × P(W|D)
, (8)

it follows that:
P(W|D) = α× P(W), (9)

P(W|W) = 1− α+ P(W|D)′ (10)

(4) When changes in P(W|W) and P(W|D) are relatively small, it can be assumed that the variance
in monthly precipitation is proportional to the variance in daily precipitation [59]. In this study,
the changes of P(W|W) and P(W|D) from step (3) above are small (<0.02), so the standard deviation for
climate projections based on the GCM data was calculated as follows:

Sd = Sdo

√
Var
Varo

, (11)

where Sd and Sdo are the standard deviation of daily precipitation on wet days for GCM output and
observed data, respectively, and Var and Varo are the variance of the monthly precipitation for GCM
output and observed data, respectively.

The skewness coefficient of GCM output was assumed to be the same as the observed data.

2.4.3. Shuffle Procedure

Once the daily precipitation sequence was generated for each of the 10 sites in the Huangfuchuan
Basin, the two-stage shuffle procedure was applied to re-create the spatial correlation of precipitation
sequences for the ten stations, mainly following the method provided by Li [33] with two improvements:

(i) We used the Pearson correlation coefficient to adjust the input of the Spearman
correlation coefficient.

The main steps are as follows:
1. A linear relationship was established and expressed as [Cos] = a × [Ccp] + b, where [Cos]

was the observed Spearman correlation coefficient of the observed data, and [Ccp] was the Pearson
correlation coefficient of the CLIGEN-generated data after shuffling (post-shuffled);

2. The input correlation coefficient was adjusted with the equation [Cos]’ = a × [Cop] + b,
where [Cos]’ was the adjusted Spearman correlation coefficient of the observed data, and [Cop] was
the desired (observed) Pearson correlation coefficient;

3. The new Spearman correlation coefficient ([Cos]’) was used to reshuffle the CLIGEN-generated
precipitation sequences.

(ii) For the second shuffle phase, we rearranged the corresponding rows according to the
precipitation occurrence structure of the wet days in the control station, and carried out random
permutations for the dry days of each column. When we adjusted the rows of the post-shuffled
precipitation matrix according to the control station, the corresponding rows in other columns were
also rearranged simultaneously. Therefore, the Spearman rank and Pearson correlation coefficients
were conserved.
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3. Results

3.1. GCM Outputs Correction

The monthly precipitation of the multi-model ensemble was corrected. This study used the
Thiessen polygon method to calculate annual precipitation of the observed data, the pre-corrected
GCM historical data and post-corrected GCM historical data in the Huangfuchuan Basin, respectively.
The corresponding evaluation indicators are listed in Table 3. After correction, the average precipitation
decreased from 499.70 mm to 357.64 mm, and the standard deviation changed from 22.83 mm to
85.02 mm. The results show that the evaluation indicators of post-corrected GCM historical data have
been significantly improved, indicating that the EDCDF method is feasible. Therefore, we corrected
the GCM projected data (Rcp2.6, Rcp4.5 and Rcp8.5 scenarios) for the next 50 years (2021–2070).
The annual average precipitation under Rcp2.6, Rcp4.5 and Rcp8.5 scenarios from 2006 to 2100 is
389.30 mm, 400.72 mm, and 414.14 mm, respectively, indicating that the precipitation in this basin
would show an increasing trend in the future, and the increase percentages were 8.50%, 11.69% and
15.43%, respectively, compared with the observed value (1976–2005).

Table 3. Comparison of annual precipitation before and after deviation correction in the
Huangfuchuan Basin.

Data Mean (mm) Standard Deviation(mm) ME (mm) RD RMSE (mm)

Observation 358.79 80.46
GCM historical data

before correction 499.70 22.83 140.91 0.39 152.64

GCM historical data
after correction 357.64 85.02 −1.15 0.003 100.83

A time series of the annual averaged precipitation in Huangfuchuan Basin from 1976 to 2100
for the multi-model ensemble is shown in Figure 2. Many studies show that China’s precipitation
will increase in the future [48,50,51,60], and this trend also exists in this basin, but the inter-annual
variation in GCM outputs before correction is smoother. This is because, compared to individual
models, the model ensemble mean is, to a certain extent, able to reduce the spread among the models to
better approach the observed changes and trends. However, it will also smooth the natural variability
in the internal climate system [50]. After correction, the GCM output can increase the inter-annual
variation and maintain the original data trend. Compared with the GCM outputs before correction,
the standard deviation increased by 69.88 mm, 87.4 mm and 85.32 mm, respectively.

3.2. Evaluation of CLIGEN-generated Daily Precipitation Based on GCM Outputs without Using
Shuffle Procedure

3.2.1. Applicability Evaluation of the Proposed Downscaling Method

The daily precipitation sequences were generated based on observed statistical characteristics
by the CLIGEN model, because the precipitation amount is controlled by precipitation on wet days
and the number of wet days [61]. Thus, we calculated the average daily precipitation on wet days
and the number of wet days in the generated precipitation sequences (Figure 3). The results showed
that the calculated result had a good linear relationship with observed values and the R-square values
were very close to one. The Nash coefficients were 0.99 and 0.96, respectively. Therefore, the proposed
downscaling method can accurately simulate the change in the precipitation amount.
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Figure 2. Time series of annual averaged precipitation in Huangfuchuan Basin from 1976 to 2100 for
the multi-model ensemble. Above the dotted line is the time series before the Equidistant Cumulative
Distribution Functions Matching Method (EDCDF) method correction, and below is the modified
time series.

Figure 3. Comparison, in terms of average daily precipitation on wet days and wet spell lengths, between
statistical values of the observed data and the CLIGEN-generated data without using shuffle procedure
(pre-shuffled data) in the Huangfuchuan Basin. The historical period is 1976–2005. (a) average daily
precipitation on wet days; (b) wet spell lengths.

3.2.2. Evaluation of the Parameter α Value and R-square Value of Linear Equation

The linear relationship between observed average monthly precipitation and P(W|D) was
established. Figure 4a shows that most of the R2 values were inversely proportional to their average
monthly precipitation. Because P(W|D) reflected the probability of independent precipitation, it would
decrease with precipitation increase. The magnitude and distribution characteristics of the coefficient α
are shown in Figure 4b. The results show that the α values were mostly 0.6~1.0. However, the α value of
Wulangou precipitation station in January was more than one. The question could be well understood,
as when there was no continuous precipitation and precipitation did not occur on the first day of the
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month, the number of wet days following a dry day (Ndw) of the month should be equal to the wet
days (Nw). The sum of Ndw and the number of wet days following a dry day (Ndd) was less than the
total days of the month, so the P(W|D) (it can be calculated as follows: P(W|D) = Ndw/(Ndw + Ndd))
was more than the P(W) (which can be calculated as follows: P(W) = Nw / Nd). We assumed that the
linear relationship and the α value remained unchanged for each month, and it was also possible to
apply them to future studies, so the CLIGEN parameters of GCM precipitation data could be calculated.

Figure 4. (a) The R-square value for linear fitting of P(W|D) and average monthly precipitation for each
month for 10 stations in the Huangfuchuan Basin; (b) the calculated α value of observed data for each
month for 10 stations in the Huangfuchuan Basin. The historical period is 1976–2005.

3.2.3. Evaluation of Daily Precipitation Amount

The QQ plots were plotted in Figure 5 for ten precipitation stations. Figure 5 showed that when the
precipitation was small, the downscaled GCM historical data had a good correspondence relationship
with the observed data. As the precipitation increased, the deviation would occur, which also illustrated
that the GLIGEN model had weaker ability to simulate the extreme value. Except for the Xiyingzi
rainfall gauging station, the scatter points of other gauging stations were near the 1:1 line and we
considered that the two distributions were similar in the historical period. The precipitation under
the Rcp2.6 scenario is slightly more than the observed values, indicating that the daily precipitation
will increase in the future. The precipitation under Rcp4.5 and Rcp8.5 scenarios shows that the
precipitation in the low quantile will decrease and the precipitation in the high quantile will increase.
Such precipitation distribution may increase the risk of future floods.

3.2.4. Evaluation of Aunual Average Wet Spell Lengths Lengths and P(W|W)

The downscaled GCM average wet spell lengths and P(W|W) were compared with the observations
(Figure 6). Figure 6a illustrates that the pre-shuffled average historical wet spell lengths are slightly
longer than the observed values for most rainfall gauging stations, but they had a good linear
relationship, the Nash coefficient was 0.93, indicating that the downscaled GCM historical data can
reproduce wet spell lengths very well. All of the wet spell lengths under Rcp2.6, Rcp4.5 and Rcp8.5
scenarios were larger than the observed values, indicating that the wet spell lengths will be an increasing
trend in the future. Figure 6b illustrates the change in average P(W|W) (the probability of a wet day
following a wet day) at ten rainfall gauging stations. The downscaled GCM historical P(W|W) has
a good linear relationship with the observed values. Under the Rcp2.6, Rcp4.5 and Rcp8.5 scenario,
the P(W|W) will increase at Deshengxi, Shagedu, Nalin and Xiyingzi rainfall gauging stations, while the
P(W|W) will decrease at Gucheng and Haizita rainfall gauging stations. It also shows that the risk of
flood may increase in some areas.
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Figure 5. QQ plots of observed vs. pre-shuffled daily precipitation for ten rainfall gauging stations
in the Huangfuchuan Basin. The historical period is 1976–2005. The projection period is 2021–2070
(pre-shuffled, the CLIGEN-generated daily precipitation sequences based on GCM outputs without
using the shuffle procedure).

Figure 6. Comparison, in terms of wet spell lengths and the probability of a wet day following a
wet day (P(W|W)), between statistical values of the observed data and the CLIGEN-generated data
without shuffling (pre-shuffled data) in the Huangfuchuan Basin. The historical period is 1976–2005.
The projection period is 2021–2070. (a) wet spell lengths; (b) P(W|W), the probability of a wet day
following a wet day.

3.3. Reconstruction of Inter-Station Spatial Correlation of CLIGEN-Generated Daily Precipitation Sequences

In order to rebuild the inter-station spatial correlation, we should make the Pearson correlation
coefficient of post-shuffled precipitation sequences equal to or closer to the observed Pearson correlation
coefficient. However, it is very difficult to directly reconstruct the Pearson correlation coefficient.
Some studies have shown that when there was a good linear relationship between the simulated
Spearman correlation coefficient and the observations, the Pearson correlation coefficient of simulated
data was closer to the observed values [62]. As a post-processing method, the shuffle procedure had
been proven to effectively reconstruct the Spearman rank correlation [33,63]. Therefore, we rebuilt the
Spearman rank correlation using Li’s method.

The inter-station spatial correlation was reconstructed based on the observed Spearman rank
correlation coefficient. Figure 7 showed that the Spearman correlation coefficients of pre-shuffled
historical data were between−0.1 and 0.2, and the linear correlation between the two groups of variables
was weak. After using the shuffled procedure, the inter-station Spearman correlation coefficients were
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significantly improved and the R-squared values were very close to one, indicating that the shuffle
procedure was effective in reconstructing the Spearman correlation coefficient.

Figure 7. The inter-station Spearman rank correlation for observation (OBS), CLIGEN-generated
single-site precipitation sequences (pre-shuffled, without using shuffle procedure) and shuffled
precipitation sequences (post-shuffled, using shuffle procedure) without adjusting the input correlation
coefficient. The historical period is 1976–2005. The projection period is 2021–2070.

Meanwhile, we calculated the corresponding Pearson correlation coefficient of post-shuffled
data using Li’s method (Figure 8). Although the inter-station spatial correlation was improved,
the post-shuffled values were lower than the observations and R-square values were far less than
one. In this study, the desired Pearson correlation coefficients were not obtained only using the
observed Spearman rank correlation coefficient. This result also indicates that the aim of obtaining
the desired Spearman rank correlation seems to be unimportant in rebuilding the spatial correlation.
However, we could establish a linear relationship between the input Spearman correlation coefficients
and the output Pearson correlation coefficients.

Figure 8. The inter-station Pearson spatial correlation for observation (OBS), CLIGEN-generated
single-site precipitation sequences (pre-shuffled, without using shuffle procedure) and shuffled
precipitation sequences (post-shuffled, using shuffle procedure) without adjusting the input correlation
coefficient. The historical period is 1976–2005. The projection period is 2021–2070.

We tried to use the desired Pearson correlation coefficients to adjust the input Spearman correlation
coefficients; meanwhile, the new shuffled results were obtained (Figure 9). The new post-shuffled
results were closer to the observations compared to the old post-shuffled results. Figure 8 shows
that the new scatter points can be better distributed on both sides of the 1:1 line, and the R-squared
values are closer to one. Therefore, the modified shuffle procedure can be used to rebuild the spatial
correlation of the CLIGEN-generated single-site precipitation sequences.
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Figure 9. The inter-station Pearson spatial correlation for observation (OBS), CLIGEN-generated
single-site precipitation sequences (pre-shuffled, without using shuffle procedure) and shuffled
precipitation sequences (post-shuffled, using shuffle procedure) with adjusted the input correlation
coefficient. The historical period is 1976–2005. The projection period is 2021–2070.

3.4. Evaluation of Post-Shuffled Daily Precipitation Sequences

The primary principle of the shuffle procedure is to rearrange the precipitation occurrence
structure, while the precipitation amount and number of wet and dry days of post-shuffled data
would not be changed. Therefore, we mainly evaluated some statistical characteristics related to the
precipitation occurrence structure—for example, the probability of a wet day following a wet day
(P(W|W)), the probability of a wet day following a dry day (P(W|D)) and annual precipitation. In order
to conduct a more comprehensive evaluation, we added some statistical characteristics, including other
CLIGEN parameters, except P(W|W), P(W|D) and average monthly precipitation. In fact, the added
parameters were unaffected by the adjustment of the precipitation occurrence structure.

3.4.1. Comparison of CLIGEN Parameters between the Observed Data and the Downscaled GCM Data

The five post-shuffled CLIGEN parameters were compared with the observed values (Figure 10).
Figure 10 shows that in the historical scenario, the simulated results of average daily precipitation on
wet days, standard deviation and P(W|D) of post-shuffled historical data are much better than other
statistical characteristics, their R-square values are more than 0.9 and they have a better correspondence
relationship with the observed values. The simulated results for the probability of a wet day following
a wet day (P(W|W)) and the skewness coefficient of wet day precipitation (skew) of post-shuffled
data are not good enough, but the R-square values are also more than 0.5. The simulated P(W|W)
values are slightly smaller than the observed values; however, the simulated P(W|D) are slightly larger
than the observed values. This is because P(W|W) and P(W|D) are calculated by the number of wet
days following a wet day and the number of dry days following a wet day, and they show an inverse
relationship. According to the previous analysis, the simulated historical wet spell length was larger
than the observed values, and the precipitation was mainly on a single day. Thus, the simulated
number of dry days following a wet day would be more, this result led to the simulated values being
less than the observed values. The skewness coefficient was a statistical parameter reflecting the form
of random series distribution. All of the simulated results were more than zero, indicating that the skew
direction of distribution was consistent with the observed values; within the statistical characteristics
of distribution exist errors.

The post-shuffled projected CLIGEN parameters were compared with the post-shuffled historical
data. In terms of average daily precipitation on wet days (Pw), the projected values were more than
the historical values. The increased values under Rcp2.6, Rcp4.5 and Rcp8.5 scenarios are 0.29, 0.38
and 0.48 mm, respectively. In the projection period, the simulated scatter points of standard deviation
are more divergent, indicating that the differences in daily precipitation will increase in the future.
The R-square values of the skewness coefficient are larger than the historical, indicating that the
precipitation distribution in the future is more consistent with the observed values. Compared to the
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historical scenario, the P(W|W) shows significant differences, but the P(W|D) under Rcp2.6, Rcp4.5 and
Rcp8.5 scenarios increases by 5.10%, 2.17% and 4.65%, respectively, indicating the wet spell lengths in
the future will increase.

Figure 10. Comparison, in terms of CLIGEN precipitation parameters, between the statistical values of
the observed data and the CLIGEN-generated historical single-site data after shuffling (post-shuffled
historical data) and the CLIGEN-generated projected single-site data with using shuffle procedure
(post-shuffled projected data) for ten precipitation stations in the Huangfuchuan Basin. The historical
period is 1976–2005. The projection period is 2021–2070. (average daily precipitation on wet days (Pw);
standard deviation (SD) of wet day precipitation; skewness coefficient of wet day precipitation (skew);
the probability of a wet day following a dry day (P(W|W)); the probability of a wet day following a wet
day (P(W|D)).

3.4.2. Comparison of Monthly and Annual Precipitation in the Huangfuchuan Basin

The catchment monthly precipitation of observed data, the post-shuffled historical data and
the post-shuffled projected data were calculated and compared (Figure 11a). Figure 11a shows
that the simulated historical monthly precipitation was generally consistent with the observed
values; the simulated projected monthly precipitation was more than the observed values in most
months. The average precipitation in summer and the percentage of summer precipitation as annual
precipitation were calculated, respectively. The observed average summer precipitation was 235.03 mm,
accounting for 65.51% of annual precipitation, and the simulated historical average precipitation in
summer was 236.89 mm, accounting for 65.32% of annual precipitation. The simulated average summer
precipitation is 1.86 mm more than the observation, and the Mean of Absolute value of Relative Error
(hereafter denoted as MARE) was only 0.79%. The simulated average monthly precipitation was
0.32 mm more than the observed values, and the MARE was 1.08%. The above results indicated that the
CLIGEN model was applicable to simulations of the monthly precipitation in the Huangfuchuan Basin
and could be used to simulate monthly precipitation in the future. The simulated projected precipitation
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(Rcp2.6, Rcp4.5 and Rcp8.5 scenarios) was compared with the simulated historical data. The result
shows an increasing trend, with percentage increases of 19.37%, 21.04% and 26.16%, respectively.
In summer, due to the fact that the precipitation will increase, some measures for flood control and
water and soil conservation are needed.

Figure 11. (a) Comparison, in terms of monthly precipitation, between the statistical values of the
observed data and the downscaled GCM data with proposed method in the Huangfuchuan Basin;
(b) comparison, in terms of annual precipitation, between the statistical values of the observed data,
the downscaled GCM data without using shuffle procedure (pre-shuffle) and the downscaled GCM
data with using shuffle procedure (post-shuffle) in the Huangfuchuan Basin. The historical period is
1976–2005. The projection period is 2021–2070.

In terms of annual precipitation, nine kinds of datasets were compared (Figure 11b). The observed
annual precipitation was 358.79 mm. The downscaled GCM historical annual precipitation was
362.65 mm and the corresponding MARE was 1.08%. The downscaled GCM average annual
precipitation amounts under the Rcp2.6, Rcp4.5 and Rcp8.5 scenarios are 402.63, 393.06 and
405.01 mm, respectively. The observed maximum catchment annual precipitation was 485.70 mm,
the downscaled historical calculation (pre-shuffle) was 413.42 mm and the corresponding MARE was
14.88%, the downscaled historical calculation (post-shuffle) was 541.40 mm and the corresponding
MARE was 11.47%. The observed minimum catchment annual precipitation was 248.07 mm,
the downscaled historical calculation (pre-shuffle) was 297.68 mm and the corresponding MARE was
20%, the downscaled historical calculation (post-shuffle) was 264.84 mm and the corresponding MARE
was 5.06%. The above results indicated that the spatially uncorrelated precipitation sequences would
affect the catchment extreme precipitation, and the shuffle procedure was effective for rebuilding the
catchment extreme precipitation.

The extreme precipitation is often an important factor for water production and sediment yield,
and accurate simulation results are required. This study’s introduced downscaling method can
effectively solve this problem by rebuilding spatial correlation. Under Rcp2.6, Rcp4.5 and Rcp8.5
scenarios, the downscaled GCM maximum catchment annual precipitation amounts before using the
shuffle procedure are 496.16, 467.08 and 517.33 mm, respectively; the downscaled GCM maximum
catchment annual precipitation amounts after using the shuffle procedure are 655.11, 683.94 and
709.89 mm, respectively. After using the shuffle procedure, the range of annual precipitation can
effectively increase. The above results show that both the maximum and average annual precipitation
is largest in the Rcp8.5 scenario, indicating the annual precipitation change is the most significant in
this scenario.
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3.5. Comparison of Spatial Distribution of Annual Precipitation

According to the observed annual precipitation and the downscaled GCM annual precipitation
for ten rainfall gauging station, we used the inverse distance weighting method to get the spatial
distribution map of average annual precipitation, which is shown in Figure 12. It shows that the
there is no significant change in the location of the rain center, which is mainly concentrated in the
middle of the basin. The northwest of the basin has the least precipation. The spatial distribution
of the downscaled historical precipitation is almost consistent with the observed result, indicating
the proposed method can simulate spatial ditribution very well. Under Rcp2.6, Rcp4.5 and Rcp8.5
scenarios, the amount of precipitation has an obvious increase trend. In order to better cope with
climate change, the main control measures should be concentrated in the middle of the basin in the
future management processes.

Figure 12. Comparison, in terms of spatial distribution of annual precipitation, between the observed
data and the downscaled GCM data for ten precipitation stations in the Huangfuchuan Basin.
The historical period is 1976–2005. The projection period is 2021–2070.

4. Discussion

CLIGEN is a stochastic weather generator established by the United States Department of
Agriculture (USDA) to provide a climate input for Water Erosion Prediction Project (WEPP)
model [14,15], which includes daily precipitation, precipitation pattern, maximum and minimum
temperature, dew temperature, wind direction, wind speed and solar radiation [16], its feasibility has
been verified by many scholars [9,14,17,18,24,25,27,61]. However, due to the fact that it is a single-site
weather generator and there is no mature method to calculate the parameters based on the GCM
outputs, its application is limited. This study used the modified shuffle procedure proposed by Li [33]
to address the problem of the spatially uncorrelated downscaled CLIGEN-generated data. Meanwhile,
we proposed a method to calculate the CLIGEN precipitation parameters based on GCM monthly
outputs. The application range of the CLIGEN model is greatly improved. The proposed downscaling
method can provide a powerful support to study region climate change and hydrological processes.

Firstly, in order to reduce the uncertainty of GCM outputs, we used the CMIP5 multi-model
ensemble to study climate change in the future. Some studies show that, compared to individual
models, the model ensemble mean is, to a certain extent, able to reduce the spread among the models
to better approach the observed changes and trends [51,60]. The result shows that the future annual
precipitation will increase in the Huangfuchuan Basin, the increment from large to small is Rcp8.5,
Rcp4.5 and Rcp2.6, respectively. However, we also note that it smooths out the natural variability
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of the internal climate system. Therefore, it should be used with caution to study extreme climate
change [50].

Secondly, the shuffle procedure was used to reconstruct the spatial correlation of the
CLIGEN-generated independently precipitation sequences, and thus the spatial correlation was
significantly improved after shuffling. However, there are only 10 precipitation stations in
study area. As the study area increases, the number of precipitation stations also increases.
Correspondingly, the inter-station spatial correlation decreases. Future studies will further explore the
feasibility of the proposed method in large-scale river basins.

Finally, we found that the proposed downscaling method has some errors in the simulation
of P(W|W) and skewness coefficient. This is because in the CLIGEN model, the precipitation
occurrence structure mainly depends on the first-order two-state Markov chain. Although this
Markov chain has already been proven to have good applicability in simulating the probability of
precipitation transition [64], errors will still occur, because the Markov chain lacks physical mechanisms.
Many scholars have tried to simulate the precipitation transition probability by using a high-order
multi-state Markov chain [65,66], and obtained good results. Therefore, in order to simulate the
occurrence of precipitation more accurately, it is necessary to properly modify the first-order two-state
Markov chain.

We know that there are two kinds of downscaling method: dynamic downscaling method and
statistical downscaling method. The physical mechanism of the dynamic downscaling method is
clear, and it is not limited by the observation data. It can accurately simulate the characteristics of
regional climate variables. Some studies show that he grid-based precipitation data generated through
dynamical downscaling is able to better characterize the spatial pattern of precipitation and convection
processes of a catchment scale [67,68]. However, the computational cost of dynamical downscaling is
relatively high, and, due to the inherited GCM bias, as well as the bias caused by its own incomplete
understanding of the climate system, the results cannot be directly used to assess the runoff response at
the watershed scale or site scale [69]. The statistical downscaling method can make up the deficiency
of the dynamic downscaling method to some extent [70]. Future research will try to combine the
statistical downscaling method and dynamic downscaling method, and combine the advantages of
their respective methods to provide better technical support for coping with climate change.

5. Conclusions

In order to better cope with the potential impact of climate change, people pay more attention
to the understanding of future climate conditions. Moreover, the GCM outputs can meet people’s
needs. However, due to its coarse temporal and spatial resolution, an effective downscaling method is
often needed to provide a strong support for the study of regional climatic conditions and regional
hydrological process simulations. This study proposed a multi-site downscaling method based
on CLIGEN model and modified shuffle procedure. The CMIP5 multi-model ensemble monthly
precipitation data for ten precipitation stations in the Huangfuchuan Basin were downscaled. The GCM
data was divided into two parts: the historical period (1976–2005) and the future period (Rcp2.6, Rcp4.5
and Rcp8.5 scenarios, 2021–2070), which were used for testing and forecasting, respectively. The result
show (i) the proposed downscaling method can be used to address the problem of the coarse temporal
and spatial resolution of GCM data; (ii) the precipitation will increase in the projected period (2021–2070)
and, in terms of average daily precipitation, monthly precipitation and maximum annual precipitation,
the increment from large to small is Rcp8.5, Rcp4.5 and Rcp2.6, respectively. More precipitation will
increase the risk of flooding and soil erosion in the basin, and some measures should be taken to prevent
and control it. The main contributions of this study are (i) to verify the feasibility of the modified shuffle
procedure for data spatial correlation reconstruction, as a post-processing technology, which provides
a possible way to process not only data from other single point downscaling methods, but also other
meteorological data, such as temperature and humidity and (ii) to describe the characteristics of future
regional climate change based on a CMIP5 multi-model ensemble. Future research should focus on
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verifying the feasibility of this approach in different climate regions and combining it with hydrological
models to help us understand changes in hydrological processes in the context of climate change.
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