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Abstract: Soil salinity is one of the major factors causing land degradation and desertification on earth,
especially its important damage to farming activities and land-use management in arid and semiarid
regions. The salt-affected land is predominant in the Keriya River area of Northwestern China.
Then, there is an urgent need for rapid, accurate, and economical monitoring in the salt-affected
land. In this study, we used the electrical conductivity (EC) of 353 ground-truth measurements
and predictive capability parameters of WorldView-2 (WV-2), such as satellite band reflectance
and newly optimum spectral indices (OSI) based on two dimensional and three-dimensional data.
The features of spectral bands were extracted and tested, and different new OSI and soil salinity
indices using reflectance of wavebands were built, in which spectral data was pre-processed (based
on First Derivative (R-FD), Second Derivative (R-SD), Square data (R-SQ), Reciprocal inverse (1/R),
and Reciprocal First Derivative (1/R-FD)), utilizing the partial least-squares regression (PLSR) method
to construct estimation models and mapping the regional soil-affected land. The results of this study
are the following: (a) the new OSI had a higher relevance to EC than one-dimensional data, and (b) the
cross-validation of established PLSR models indicated that the β-PLSR model based on the optimal
three-band index with different process algorithm performed the best result with R2

V = 0.79, Root
Mean Square Errors (RMSEV) = 1.51 dS·m−1, and Relative Percent Deviation (RPD) = 2.01 and was
used to map the soil salinity over the study site. The results of the study will be helpful for the study
of salt-affected land monitoring and evaluation in similar environmental conditions.

Keywords: soil salinization; optimized spectral algorithm; Keriya River; EC; arid region

1. Introduction

Soil salinization is one of the most serious damaging environmental problems worldwide,
especially in a hyperarid region [1]. Approximately 1.128 billion hectares of global lands were
affected by soil salinization [2], and in China, salinized areas accounting for approximately 9 percent
of the national land resources [3,4]. Major causes of soil salinization can be separated into two
ways: one way from primitive soluble saline water, scarce precipitation, and intense evaporation
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and the other way from shallow groundwater levels, excessive agricultural activities, and flooding
irrigation agriculture [5,6]. Quantitative analysis of salt-affected land is one of the effective methods to
evaluate the extent of soil salinization, and there is a wide divergence in the embedding temporal and
spatial dimensions.

Soil salinization is also an important factor leading to land desertification and degradation.
Excessive soil salinity poses a serious threat to the healthy growth of crops and vegetation and to
the sustainable development of eco-environmental systems [7]. There is an urgent need for dynamic
monitoring, which can provide a sufficient understanding of the importance of current soil salinization.
It is very important in sustainable development for the regional agricultural and eco-environmental
system. Its help to control soil salinization is also further effective in soil remediation and land
rehabilitation [8].

There were numerous methods to detect soil salinization; among them, soil electrical conductivity
(EC) field measurements has a strong relationship with soil salinization, which is often used for
dynamic monitoring of salt-affected land [9]. However, the EC method detecting soil salinity is highly
accurate, but the shortcomings of this method are the too slow processing, discontinuity, limited
space, and financially expensive; furthermore, it is difficult to carry out regional scientific research.
Nowadays, remote sensing (RS) technology provides a more efficient way to evaluate soil salinization;
the advantages of this method include the quick processing, low cost, efficiency, and use of historical
analyses compared to conventional methods. It also exposes the spatiotemporal variation of soil
salinization from the past to the present [4].

The optimal spectral indices that combined with various spectral reflectances could express more
unexpressed spectral features and could further improve the correlation between remote sensing data
and the ground targets [10]. The wavelengths (red (R), blue (B), near-infrared (NIR), and green (G)) of
satellite images have different spectral behaviors on varying degrees of salinization so that the salinity
map of the soil is detected based on optimum spectral indices.

Research of soil salinity monitoring and mapping based on various spectral soil salinity indices
has attracted many scientists. Khan’s research team assessed the hydro-saline land degradation by
using a simple approach of remote sensing indicators [11,12]. Allbed and their colleagues evaluated
the soil salinity using vegetation indices derived from IKONOS high spatial resolution imageries [13].
Triki’s research team used Landsat 8 data to generate nineteen spectral indices (Normalized Difference
Vegetation Index (NDVI), Soil index (SI1, SI2, SI3, SI), soil adjusted vegetation index (SAVI), SI1-IDNP,
ASTER-SI, SI-VIR, Intensity Index (Int1, Int2), and Band Index (BI).), analyzed the correlations between
reflectance indices and EC measured on laboratory, and demonstrated that the Short Wave Infrared
(SWIR) offers a good correlation with −57% [14,15]. The research based on spectral indices has shown
a variable degree of success, and spectral indices have been successfully used as indirect indicators for
monitoring and mapping soil salinity [13,15].

Agriculture in the Keriya Oasis is the primary style of land use, which mainly relies on the
water resources from the Keriya River for irrigation. A combination of the hyper dry arid climate,
geomorphological, soil formation conditions, and shallow groundwater levels facilitated the movement
of dissolved salts to the land surface. Our research team also did some study on soil salinity detection
and maps on the Keriya River site [16,17]. We found that such phenomena caused soil salinization
and desertification, especially in the transitional belt between the oasis and the desert. The riparian
ecosystem of Keriya River is very fragile due to the hyper dry climate, low precipitation, strongly
potential evaporation, and active wind erosion. Most of the soils in these regions are sandy, silty
sand, coarse in texture, and low in nutrients [16]. Therefore, it is necessary to offer data sources and
parameters (based on the Multi-Spectral Instrument (MSI) onboard WV-2 image) for the detecting and
mapping of soil salinity for Keriya Oasis and for avoiding and preventing disasters and risks from
soil salinization.

In this study, we utilized the high spatial resolution of WorldView-2 satellite images to improve
the estimation performance. The main aim of this study is to develop new combination spectral
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indices and to further enhance the correlation coefficient with specific data; this study would ultimately
contribute to detecting and mapping soil salinity in the Keriya River site. An intensive understanding
of the salt dynamics in the soil profile and the timely monitoring of the spatial distribution of soil
salinity has become an imperative task for both agricultural sustainability and ecological stability.

2. Materials and Methods

2.1. Study Area

The Keriya River is located in the southern part of the Taklamakan Desert in the Xinjiang Uyghur
Autonomous Region of China [17,18]. This river originates from the Kunlun Mountains and flows
through the Keriya Oasis, and after approximately 700 km, the river ends in the hinterland of the
Taklamakan Desert [18]. This region has a temperate continental arid climate that is characterized by
hyper aridity. On average, the region receives 45 mm of precipitation annually but experiences mean
evaporation of 2600 mm annually, which is more than 50 times the mean annual precipitation [16].
This oasis is located on a fluvial plain with relatively flat terrain, loose soil, high salt concentrations,
and low soil fertility [18]. Sparsely vegetated riparian areas are covered with dominant desert species
such as Phragmites australis, Tamarix chinensis, Populus euphratica, Alhagi sparsifolia, Karelina capsica,
and Kalidium gracile [19]. The sample plot was selected in the lower riparian area of the Keriya River
because of the high spatial variability in soil salinity, relatively flat terrain, and sparse vegetation cover
observed during the pilot investigation (see Figure 1). Additionally, the riparian ecosystem became
more vulnerable due to the intensified agricultural activities and deep drainage systems in the upper
reaches which brought more leached saline water to the lower reaches.
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Figure 1. Location of study area and distribution of sampling points.

2.2. Field Measurement

The sample plot was surveyed using an EM38-MK2 m (Geonics Ltd., Mississauga, ON, Canada)
connected with global positioning system (GPS) and data logging unit. Transects were chosen based
on their geographic locations, local soil conditions, degree of vegetation, and site accessibility. During
the surveying, field measurements were made strictly following the protocols and guidelines for
Electromagnetic Interference (EMI) field-scale measurements outlined by Corwin [20]. The vertical
dipole orientation mode of the EM38-MK2 m, with one transmitter coil and two receiver coils that are
separated from the transmitter coil at distances of 0.5 m and 1.0 m (investigation depth of 0.75 m and
1.5 m), were used, and measurements were taken at 353 points along 12 transects (see in Figure 1).
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Raw binary data files (N38) were converted to American Standard Code for Information Interchange
(ASCII) files (M38) in the DAT38MK2 software®. An average from five readings at each sample point
was calculated as the representative value of the apparent electrical conductivity.

2.3. Selection of Spectral Indices and Sensitive Bands

The satellite data (WorldView-2 (WV-2) multispectral data) acquisition and processing in this
study were as follows:

(1) WV-2 multispectral data includes multispectral bands and was described in Table 1. The images
were geo-rectified to a Universal Transverse Mercator (UTM) coordinate system using the World
Geodetic System (WGS) 1984 datum assigned to north UTM zone 44 [17].

(2) Spectral radiometric calibration and atmospheric and Geometric corrections were performed on
the WV-2 [21].

(3) The FLAASH model was used to eliminate atmospheric and adjacency effects for images using the
Environmental for Visualizing Images (ENVI 5.3, EXELIS VIS) software package® [22]. The WV-2
image was resampled into 2-m resolution, and the River channel with water bodies was clipped
out due to the inaccessibility for sampling.

Table 1. WorldView-2 spectral details.

Bands Wavelength (nm) Resolution

Coastal 400–450

Multispectral: 1.85 m GSD at nadir,
2.07 m GSD at 20◦ off-nadir.

Blue 450–510
Green 510–580
Yellow 585–625

Red 630–690

Red Edge 705–745
Panchromatic: 0.46 m GSD at

nadir, 0.52 m GSD at 20◦ off-nadir.Near-IR1 770–895
Near-IR2 860–1040

One of the most effective approaches for exploring significant relationships between the electrical
conductivity data and hyperspectral data is conducting a comparative analysis of Ratio index (RI),
Simple normalized index (NDI), and Soil salinization index (SI1 and SI2), which are calculated from
narrowband reflectance factor spectra. We identified the wavelengths or spectral indices (showed in
Table 2). The optimized spectral indices (OSI) were applied to identify optimal wavelengths or indices.
The spectral indices are defined as follows:

Table 2. Optimized spectral indices selected in this study.

Optimized Spectral Index Abbreviation Equation Reference

Ratio index RI Rλ1/Rλ2
[23]Normalized difference index NDI (Rλ1 − Rλ2)/(Rλ1 − Rλ2)

Soil salinization index1 SI1 Sqrt (Rλ1
2
× Rλ2

2)

Soil salinization index2 SI2 Sqrt (Rλ1
2 +Rλ2

2 + Rλ3
2) [11]

Note: R is the spectral reflectance value, and the subscripts λ1, λ2, and λ3 are wavelengths in nanometers (nm).

2.4. Model Generation and Data Analysis

To investigate soil salinity using WorldView-2 data and soil salinity (EC) data in the study site,
the workflow was presented in Figure 2 and described in the following sections.
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Figure 2. Overall workflow of the study.

2.5. Partial Least-Squares Regression

Partial least-squares regression (PLSR) is a multivariate regression method that specifies a linear
relationship between a set of dependent response variables, Y, and a set of predictor variables, X [24,25].
To select the optimal number of factors and to avoid overfitting, we calibrated the model by an iterative
leave-one-out cross-validation criterion called the “minimum predicted residual sum of squares”. Root
mean square error (RMSE) was minimized by iteratively leaving one sample out of the calibration
dataset and by calibrating the model from the remaining dataset [17,25–27].

2.6. Model Evaluation

Validation of the models is an important step to ensure models quality [28–30] once all the
developed models were verified by authentication methods (showed in Table 3) as follows:

(1) A high coefficient of determination (R2), indicating a strong linear relationship.
(2) Low Root Mean Square Errors (RMSE) of the model’s variables, indicating that the low error

between measured and predicted data were calculated by the equation listed in Table 3.
(3) Relative Percent Deviation (RPD), indicating the predictive ability of the model. Its computation

process is the ratio between standard deviation (SD) and standard error of prediction (SEP).
According to the predictive ability of the model, the RPD is divided into three categories: (1) The
value of RPD exceeds 2.0, indicating a model with better predictive ability. (2) The RPD values
ranging from 1.4 to 2.0 represent a model with general predictive ability. (3) The RPD value is
less than 1.4, indicating that it has poor predictive ability.

Table 3. Model evaluation index.

Index Equation

Coefficient of Determination R2 =

 ∑N
i=1(xi−x)(yi−y)√∑N

i=1(xi−x)2+
∑N

i=1(yi−y)2

2
Root Mean Square Error RMSE =

√∑N
i=1(γi−βi)

2

n

Relative Percent Deviation RPD = SD/SEP

Note: xi and yi are measured and predicted values, respectively; x and y represented the means measured and
predicted values, respectively; and n is the number of samples.
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3. Results and Analysis

3.1. Statistical Characteristics of the Sampling Data

Soil electrical conductivity data (EC) were obtained using an EM38-MK2 m, and field measurements
were taken at 353 points along 12 transects through the study area (showed in Figure 1). Based on an
analysis of the original data, abnormal values that were caused by natural factors were eliminated to
reduce their influence on the accuracy of the model. Subsequently, the data were divided into two
subsets by uniform space. One subset was used for training (n = 247), and the other subset was used
for testing purposes (n = 106). As can be seen in Figure 3, the mean values of EC that correspond to the
calibration set and the validation set were 4.63 dS·m−1 and 4.54 dS·m−1, and the standard deviation
(SD) was 1.99 dS·m−1 and 2.20 dS·m−1, respectively. The mean value from all field sampling points
was 4.60 dS·m−1, which is between the mean value both of calibration and validation sets.
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3.2. Analysis Correlation between EC and Bands of Worldview2-Images

Based on the data source of the reflectance from remote sensing images and the measured soil
electrical conductivity, five mathematical transformation methods were adopted to the remote sensing
data, such as First Derivative (R-FD), Second Derivative (R-SD), Square data (R-SQ), Reciprocal inverse
(1/R), and Reciprocal First Derivative (1/R-FD). The correlation between different transformation
methods was analyzed. The relationship between EC and remote sensing data with its mathematical
transformation was analyzed, as shown in Figure 4.

The reflectance of bands ((coastal) Band1, (blue) Band2, (green) Band3, (yellow) Band4, (red) Band5,
(red edge) Band6, (near-IR1) Band7, and (near-IR2) Band8) corresponding to each sampling point were
extracted by using the ENVI (Version 5.3) software, and correlation analysis was performed based on
R-Programming. Figure 4a–c were the correlation results based on original data, R-FD data, and R-SD
data, respectively. Among them, the R-FD data (Band5, Band6, Band7, and Band8) had a significant
correlation with the EC data and the highest correlation was −0.51** (p < 0.01) whereas the R-SD data had
a low correlation with the EC data and the highest correlation was −0.40** (p < 0.01). Figure 4d–f were the
correlation results based on 1/R data, R-SQ data, and 1/R-FD data, respectively. Among them, the 1/R data
and R-SQ data (Band6, Band7, and Band8) had a significant correlation with the EC data and the highest
correlation was ±0.48** (p < 0.01) whereas the 1/R-FD data had a low correlation with the EC data and
the highest correlation was 0.36** (p < 0.01). In the original data and 5 mathematical transformations,
the highest correlation was selected as the sensitive bands and PLSR modeling variables.
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Figure 4. Correlation between EC and bands selected from Worldview-2 image: (a–c) the correlation results based on original data, first derivative (R-FD) data, and
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3.3. Analysis Correlation between EC and Optimized Spectral Index

3.3.1. Two-Dimensional Correlation Analysis

The optimized spectral indices (NDI, RI, and SI1) selected in the study site were calculated
from remote sensing data and an index that calculates all possible combinations as a pair of bands.
Figures 5–10 summarized the correlation between optimized spectral indices and EC based on different
mathematical methods. The X and Y axes represent Rλ1 and Rλ2, respectively, within the spectral region
of 400–1040 nm. The color bar on the right indicates the mapping of the correlation coefficient values
to the colormap. The upper and lower limits of the color bar are the maximum positive correlation
coefficient and the maximum negative correlation coefficient, respectively.

In Figure 5, the optimized spectral indices based on R-data illustrated that the NDI and RI indices
of band (B2, B3, B6, and B7) combinations had a good correlation with EC. The SI1 index of band
(B7 and B8) combinations had a significant negative correlation with EC. The correlation coefficient
(p = 0.01) of optimum band combination indies (NDI(B6,B2), RI(B6,B3), and SI1(B8,B8)) reached −0.45**,
0.45**, and 0.50**, respectively. In Figure 6, the optimized spectral indices based on R-FD data indicated
a better correlation with EC. The correlation coefficient (p = 0.01) of optimum band combination indies
(NDI(B7,B1), RI(B8,B7), and SI1(B5,B3)) reached −0.43**, −0.41**, and −0.54**, respectively.

As is shown in Figure 7, based on R-SD data, the optimal spectral combinations for NDI, RI, and
SI1 indies provided a low correlation with EC data and the highest correlation coefficient reached ±0.3.
In Figure 8, based on R-SQ data, the correlation coefficient (p = 0.01) of optimal band combination
indies (NDI(B6,B2), RI(B6,B2), and SI1(B8,B7)) reached −0.45**, 0.45**, and −0.48**, respectively. In Figure 9,
the optimized spectral indices based on 1/R data illustrated that the NDI and RI indice of band (B2, B3,
B6, B7, and B8) combinations had a significant correlation with EC. The correlation coefficient (p =

0.01) of optimal band combination indices (NDI(B7,B2), RI(B5,B2), and SI1(B8,B8)) reached 0.45**, −0.46**,
and 0.41**, respectively. The 1/R-FD data (Figure 10) illustrated that the optimized spectral indices (NDI
and RI) provided the better correlation with EC than SI1 index and that the maximum of correlation
coefficient reached 0.41** (NDI(B8,B5)), 0.42** (RI(B8,B3)), and −0.34** (SI1 (B6,B4)).

Overall, the 2D correlation coefficients can provide additional detailed spectral information linked
to EC. This band combination method further indicates that the optimal spectral combinations for NDI,
RI, and SI1 were relatively scattered and not concerned, but the correlation was significantly improved.
The bands of Worldview-2 image identified as important features in the VIS-NIR region corresponded
to B2, B3, B6, B7, and B8. These bands’ combination is relatively related to the conductive elements in
the soil.
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3.3.2. Three-Dimensional Correlation Analysis

The spectral indices (SI2) selected in the study site were calculated from remote sensing data
(spectral bands B1–B8) and an index that calculates based on the three-band combination in all possible
combinations. The three-dimensional (3D) maps (showed in Figure 11) contained the horizontal slice
map and vertical slice map, and the slice maps indicated the correlation between the EC and the
spectral index (SI2).

Optimal slice maps based on different mathematical methods (R-FD, R-SD, R-SQ, 1/R, and 1/R-FD)
are shown in Figure 12a–f. The three axes in the slice maps delegate the reflectance of bands (Rλ1 Rλ2,
and Rλ3), respectively, within the spectral region of 400–1040 nm. The color bar on the right indicates
the mapping of the correlation coefficient values to the colormap. The upper and lower limits of the
color bar are the maximum positive correlation coefficient and the maximum negative correlation
coefficient, respectively.

According to the correlation with EC, the optimal band combinations for SI2 based on different
mathematical methods were picked out. As can be seen from the slice maps, the combinations
of the three-band usually inferred the better correlation. Thereinto, the most effective spectral
indices (SI2(B8,B8,B8), SI2(B5,B4,B4), SI2(B1,B5,B1), SI2(B8,B8,B8), SI2(B8,B8,B8), and SI2(B7,B7,B6)) based on different
mathematical methods (R-FD, R-SD, R-SQ, 1/R, and 1/R-FD) had the significant correlation with
maximum correlation coefficients of −0.48, −0.54, −0.35, −0.47, 0.44, and −0.34, respectively. Among
all three-band indices, the Sqrt ((B5)2 + (B4)2 + (B4)2) based on R-FD data has the best correlation
coefficient with −0.54. Comparing to 2D indies, the three-band combination index enriched the data
set and expanded the range of EC-related data.



Water 2020, 12, 880 13 of 22

Water 2020, 12, x FOR PEER REVIEW 18 of 27 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. Cont.



Water 2020, 12, 880 14 of 22

Water 2020, 12, x FOR PEER REVIEW 19 of 27 

 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 11. Cont.



Water 2020, 12, 880 15 of 22

Water 2020, 12, x FOR PEER REVIEW 20 of 27 

 

   
(m) (n) (o) 

   
(p) (q) (r) 

Figure 11. The correlation analysis between EC and optimized spectral indices based on different mathematical algorithms. (a)-(r) represent the horizontal slice 

map and vertical slice map, and the slice maps indicated the correlation between the EC and the spectral index (SI2), respectively. 
Figure 11. The correlation analysis between EC and optimized spectral indices based on different mathematical algorithms. (a–r) represent the horizontal slice map
and vertical slice map, and the slice maps indicated the correlation between the EC and the spectral index (SI2), respectively.



Water 2020, 12, 880 16 of 22

Water 2020, 12, x FOR PEER REVIEW 21 of 27 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 12. The correlation analysis between EC and optimized spectral indices based on reciprocal first derivative. (a)-(f) represent the correlation EC with SI2, 

respectively. 
Figure 12. The correlation analysis between EC and optimized spectral indices based on reciprocal first derivative. (a–f) represent the correlation EC with
SI2, respectively.



Water 2020, 12, 880 17 of 22

3.4. Estimation PLSR Models and Evaluation

In the study site, we have one-dimensional (OD), two-dimensional (2D), and three-dimensional
(3D) relations to analyze the correlation between EC and remote sensing data. In this process,
the five mathematical algorithms used transmit remote sensing data: the spectral covariates (eight
spectral bands, optimized spectral indices, optimized satellite soil salinity indices (SI1), and optimized
Three-Band Indices (SI2)). We applied all the best correlation coefficients in each form of the
transformation algorithms to build estimation models for salt-affected land estimation. The evaluation
of the estimation models is illustrated (shown in Figure 13).
Estimation PL 

illustrated (shown in Figure 13). 

 
 

 

1 
 

Figure 13. The scatter plot of measured versus predicted EC. (a) the result of Raw-I-PLSR model, (b) the
result of Raw-II-PLSR model, (c–h) the results of (I-VI) PLSR models, (i) the result of α-PLSR model,
and (j) the result of β-PLSR model.

The estimating performances of Raw-I-PLSR and Raw-II-PLSR models with 6 spectral parameters
(Band8R, Band5R-FD, Band1R-SD, Band8R-SQ, Band81/R, and Band61/R-FD) indicates the low RPD values
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of 1.52 and 1.65. The PLSR models (I-PLSR, II-PLSR, III-PLSR, IV-PLSR, V-PLSR, and VI-PLSR) and
SI2-PLSR model were established in 2-dimensional and 3-dimensional data (2D and 3D), and the
contrast of estimation models, indicating that predictive ability and stability of models in 2D and 3D,
has been made better than in the Raw-PLSR model (shown in Table 4). The predictive ability of the
β-PLSR performed the best result. The β-PLSR model has the highest R2

V value with 0.79 and the lowest
RMSEV value with 1.51 dS·m−1 and RPD value with 2.01. With the classification rule of RPD, it is the
most effective model in this study site and the best-implemented model that met all the model selection
and validation criteria and that was used to predict and map the spatial variation in soil salinity.

Table 4. The contrast of estimation models with soil salinity (ds·m−1).

Type Acronym Parameters R2
c RMSEc R2

v RMSEv RPD

OD
Raw-I-PLSR 4 0.45 1.81 0.42 1.93 1.52
Raw-II-PLSR 3 0.49 1.84 0.49 1.96 1.65

2D

I-PLSR

3

0.58 1.74 0.56 1.83 1.76
II-PLSR 0.76 1.76 0.72 1.79 1.96
III-PLSR 0.42 1.82 0.40 1.98 1.51
IV-PLSR 0.58 1.82 0.55 1.91 1.78
V-PLSR 0.63 1.75 0.61 1.78 1.87
VI-PLSR 0.43 1.97 0.39 2.05 1.31

3D
α-PLSR 4 0.69 1.73 0.65 1.74 1.89
β-PLSR 3 0.80 1.40 0.79 1.51 2.01

Note: I, II, III, IV, V, and VI indicate that the spectral indices (NDI, RI, and SI1) are optimized based on raw data and
its mathematical transformation algorism (R-FD, R-SD, 1/R, R-SQ, and 1/R-FD). C represents calculation, V represents
validation, and PLSR represents Partial least squares regression.

3.5. Soil Salinity Maps with EC Data

The PLSR models calibrated in this study site were applied to map soil salinity with EC data
and used the optimal PLSR model (β-PLSR) to build the spatial distribution of soil salinity in the
study region (Figure 13). Furthermore, in accordance with the classification rules of soil electrical
conductivity [31,32], the spatial classification map was further categorized into four levels of EC/dS·m−1

(non-saline soil (0–2), slightly saline soil (2–4), moderately saline soil (4–8), and strongly saline soil
(>8)). The salt-affected soil that is characterized by low or no-vegetation coverage demonstrated high
EC values, and the higher the vegetation coverage, the lower the EC value (Figure 14). On the whole,
the strongly EC value primarily occurs on both sides of the Keriya River. It also appears that the
vegetation coverage played an imperative role in preventing soil salinization.
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4. Discussion

4.1. Application of Multidimensional Modeling with Different Algorithm

In recent studies, previously published spectral indices about salt-affected land have been used
for monitoring soil salinization based on different images data, and remote sensing data includes
VIS-NIR wavelengths in general [33]. The studies of soil salinization were carried out using different
methods in arid and semiarid regions. For instance, Ding [34] established models based on Landsat
images and EC data using universal kriging (UK) and a spectral index regression (SIR) (R2 = 0.43,
R2 = 0.39). Combined with indices (SI, OLI-SI, and NDVI) and images (Landsat TM and ASTER),
and Allbed A [13] indicated the possibility of applying IKONOS image and spectral indices (SAVI,
NDSI, and SI-T) in the prediction of soil salinization using a stepwise regression method, and the
results yielded R2 = 0.65 and RMSE = 3.9 dS·m−1.

Despite the hyperspectral remote sensing image and the consecutive spectral wide bands, it can only
provide single salinization information and fixed spectral indices. Besides, the published spectral indices
are not more sensitive to salt-affected land in different environmental conditions. The multi-spectral
remote sensing images can provide effective data resources and advisable temporal resolution.
Thereinto, the WV-2 image has high resolution and eight spectral wavebands. It is necessary to fully use
high resolutions and its limited wavebands information; the OSI is the appropriate methods in mining
of limited remote sensing data. For waveband information analysis of this study, the OSI is combined
with different band information based on the fixed calculation formula. Increasing the relevance of
OSI furthermore to the ground physical parameters such as EC is the main target. However, combined
with high spatial resolution, image data and optimal spectral indices constructed the estimation PLSR
model and performed the best results with R2

V = 0.79, RMSEV = 1.51 dS·m−1, and RPD = 2.01, which
could monitor and map the salt-affected land successfully in Keriya River regions.

4.2. Estimation of Salt-Affected Land in Arid and Semiarid Regions

Salt-affected land is an appreciable effect by various environmental considerations, and severe
salt-affected land eventually results in land desertification and lead to sustainable development of
local agriculture [35]. In the study site, we analyzed the sensitivity of spectral wavebands from the
WV-2 image to EC data and used all possible combined bands (2D and 3D indices) for estimating EC in
the Keriya River areas. The results of Bannari [8] illustrated that the red band yields the best ability on
features of salt-affected land. Our studies also showed that the red band based on R-FD data has a
high relevance to EC; that the combined bands of 2D and 3D indices are mainly concentrated at red
edge, near-IR1, near-IR2 in this study site; and that the results of study are similar to peer researchers’
conclusion [13,36,37]. Eventually, it found that the two-band indices and three-band indices showed
better results than other single spectral bands in this study.

More importantly, at the same time, the salinization information is quickly obtained through
remote sensing data and soil salinization biological improvement measures are implemented promptly.
The model generated high-resolution (2 m × 2 m) EC spatial distribution maps and revealed more
details with salt-affected land than low spatial resolution. This study is expected to provide a method for
the dynamic monitoring of soil salinization in arid or semiarid regions similar to the current study area.
This method may need to adjust the spectral indicators according to local environmental conditions.

The remote sensing time series data is intended to be adopted in the future and to further
improve the accuracy and stability of the estimation model for mapping salt-affected land in different
stages. In addition to including different stages of data in a future study on this site, we also intend
to focus on planning strategies for restoring the local ecological environment and for supporting
sustainable development.
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5. Conclusions

In this study, the predictive ability of WV-2 bands and OSI in the Keriya River Basin was
investigated by using EC data collected in the field. The feature of spectral bands was extracted and
tested, and the spectral band more sensitive to EC was determined to build different OSI (NDI and RI)
and soil salinity indices (SI1 and SI2). Among these indices, the SI1 (Sqrt(B32

× B52)) based on R-FD
data has a higher correlation coefficient of −0.54. For the all three-band indices, the combinations of
three bands usually revealed better correlation coefficients, and the SI2 (Sqrt(B52 + B42 + B42)) based
on R-FD data has the best correlation coefficient of −0.54, indicating that leading into the red edge
could enhance the sensitivity of the OSI to EC.

In arid and semiarid areas, OSI is an effective method to accurately monitor salt-affected land.
Based on high spatial resolution (2 m × 2 m) of WV-2 and EC data, the PLSR models were constructed
using different spectral indices, including reflectance of bands, published soil salinity index, and newly
constructed OSI (2D index and 3D index).

The estimation ability changes with the input of different variable data, and the evaluation indexes
of the RF-PLSR model are R2

V = 0.79, RMSEV = 1.51 dS·m−1, and RPD = 2.01, which show the best
state among the ten PLSR models. The field-tested results of soil salinity used to detect soil salinity
based on optimal spectral index results in are good correlation with each other. Then, the finding of
this study should help to control soil salinization and are further effective for soil restoration and land
reclamation of this region and other similar arid regions.
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