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Abstract: The Weather Research and Forecasting (WRF)-Hydro model as a physical-based,
fully-distributed, multi-parameterization modeling system easy to couple with numerical weather
prediction model, has potential for operational flood forecasting in the small and medium catchments
(SMCs). However, this model requires many input forcings, which makes it difficult to use it for the
SMCs without adequate observed forcings. The Global Land Data Assimilation System (GLDAS), the
WRF outputs and the ideal forcings generated by the WRF-Hydro model can provide all forcings
required in the model for these SMCs. In this study, seven forcing scenarios were designed based on
the products of GLDAS, WRF and ideal forcings, as well as the observed and merged rainfalls to
assess the performance of the WRF-Hydro model for flood simulation. The model was applied to the
Chenhe catchment, a typical SMC located in the Midwestern China. The flood prediction capability
of the WRF-Hydro model was also compared to that of widely used Xinanjiang model. The results
show that the three forcing scenarios, including the GLDAS forcings with observed rainfall, the WRF
forcings with observed rainfall and GLDAS forcings with GLDAS-merged rainfall, are optimal input
forcings for the WRF-Hydro model. Their mean root mean square errors (RMSE) are 0.18, 0.18 and
0.17 mm/h, respectively. The performance of the WRF-Hydro model driven by these three scenarios
is generally comparable to that of the Xinanjiang model (RMSE = 0.17 mm/h).

Keywords: the WRF-Hydro modeling system; flood prediction capability; multiple forcing scenarios;
small and medium catchments; distributed hydrological model; the Xinanjiang model

1. Introduction

Flood disaster is one of the common natural disaster, which often causes loss of life and
property [1,2]. The risk of extreme floods in large basins of China has been substantially reduced owing
to the improvement of flood forecasting skills in recent years [3]. However, flash flood forecasting and
prevention of the small and medium catchments (SMCs) remains an urgent problem [4,5]. The flash
floods taking place in the SMCs are characterized by short routing time, which makes flood prediction
difficult [6]. Additionally, flood simulation and forecasting for SMCs face more challenges due to
sparse observation and inadequate information of field data.
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Hydrological models have been widely used to forecast floods over the past decades [7–9].
According to whether hydrological processes, input-output data and parameters vary spatially,
hydrological models can be classified as lumped, semi-distributed and fully distributed models [9–12].
Currently, these three kinds of hydrological models are all used for flood forecasting in SMCs. In
general, the majority of these models are driven by gauge rainfall data; therefore, the leading time
(i.e., the time between flood warning and flood peak) predicted by these models is limited by the
catchment routing time. However, the leading time can be maximized by the predicted rainfall from
the Numerical Weather Prediction (NWP) models [13,14]. Therefore, the coupled meteo-hydrological
modeling system is recognized as a powerful tool for flood forecasting and warning [15,16].

The Weather Research and Forecasting (WRF)-Hydro modeling system [17], as a new generation
of fully distributed, multi-scale, physical-based hydrometeorological modeling system, is able to
simulate floods, hydrological states and spatial distribution of water resources [18,19]. At present,
the Noah or Noah-MP Land Surface Model (LSM) as the lower boundary condition of the NWP
model [20–22] is used as the runoff generation mechanism in the WRF-Hydro model. Compared
to the LSM, a hydrological routing module with finer grids is added to represent subsurface lateral
flow [23]. It is found that the WRF-Hydro model using assimilated precipitation based on the WRF
model yielded satisfactory results for the flood forecasting of ungauged basins [24]. The performances
of fully coupled WRF-Hydro modeling system outperformed the WRF-only model [25]. Other studies
on the performance and application of this model have been reported both in uncoupled (WRF-Hydro
only) and fully coupled methods (i.e., coupling WRF-Hydro and WRF modeling system) [18,24–28].

The WRF-Hydro model requires spatially distributed forcings including air temperature, surface
pressure, specific humidity, near-surface wind speed, incoming longwave and shortwave radiation
and rainfall [17]. In general, the available observations from gages in information-poor SMCs contain
rainfall, pan evaporation and streamflow at the catchment outlet, which are insufficient to drive the
model due to lack of the adequate observed forcings. However, the Global Land Data Assimilation
System (GLDAS) [29] as reanalysis data and the WRF model outputs as simulated data are able
to provide the adequate forcings for these SMCs. Although the observations, GLDAS and WRF
outputs are not available, ideal forcings generated by the WRF-Hydro model through some predefined
constants (e.g., surface pressure takes 100,000 Pa all the time) and functions (e.g., air temperature
ranges from 287 to 293 K in diurnal cycle) can be used to drive itself [17]. Hence, the GLDAS, WRF
outputs and ideal forcings are recognized as the meteorological forcings of the WRF-Hydro model for
SMCs in this study.

Rainfall is a crucial forcing of the WRF-Hydro model for flood simulation [5,30–32]. However,
rainfalls from the GLDAS, WRF outputs and ideal forcings may not be suitable for hydrological
simulation. Firstly, the GLDAS-derived rainfall fails to capture features of rainfall fields of SMCs
due to its temporal and spatial resolutions, 3 h, 0.25◦ × 0.25◦ [33–35]. Secondly, the WRF-derived
rainfall with flexible spatial resolutions is able to describe rain features such as storm center, but
sometimes overestimates the rain area and intensity [36,37]. Lastly, the rainfall from the ideal forcings
is only a predefined rainfall series (i.e., 25.4 mm/s for first hourly time step and zero thereafter) that
cannot be used in real case. In recent years, some data fusion methods such as precipitation merging
method [31,38–41] are normally applied to reduce the error and enhance the reliability of precipitation.
In this study, the Successive Corrections Method [42–45] was used to merge raw rainfall data from the
GLDAS and WRF with gauge data, respectively.

The main objective of this study is to identify the suitable forcings and to evaluate the corresponding
performances for the WRF-Hydro model under the multiple forcings scenarios based on observed
and merged rainfall, GLDAS, WRF outputs and ideal forcings. The model was applied to the Chenhe
catchment, a typical semi-humid SMC located in the Midwestern China. Moreover, the well-known
Xinanjiang model, which has been widely used in humid and semi-humid region, was adopted to
further investigate the flood prediction capability of the WRF-Hydro model.
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2. Data and Method

2.1. Study Catchment and Gauge Data

The study area is the Chenhe catchment of 1380 km2 in the Yellow River Basin, located in the
middle-south Shaanxi Province (Figure 1). The main river of this catchment is called as Heihe River
with length of about 105 km. This catchment locates on the northern slope of the Qinling Mountains
as one of the main mountain ranges in central China, which is a typical semi-humid catchment with
annual mean rainfall of 700–900 mm. The mean elevation of the catchment is about 1819 m a.s.l, with
the lowest point at the catchment outlet (579 m a.s.l), and the highest at the Mountain Taibai as the main
peak of Qinling Mountains (3771 m a.s.l), and almost 97.7% (1349 km2) of the region above 1000 m.
The mean slope is about 26.7◦, where the slopes of 86.4% (1193 km2) of the area vary between 10◦ and
50◦ and those of 61.9% (854 km2) of area between 20◦ and 40◦.
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Figure 1. The Chenhe catchment: (a) its location and the nested simulation domains 01, 02 and 03 in
the Weather Research and Forecasting (WRF) model (more details in Section 2.3), (b) the location within
Shaanxi Province and the range of domain 03 in the WRF model (in Section 2.3) and (c) the channels
and rainfall/discharge gauges in the Chenhe catchment.

The Chenhe catchment has a typical temperate continental monsoon climate with mean annual
temperature of 12.1 ◦C, ranging from −1.2 ◦C in January to 26.5 ◦C in July. This catchment is prone to
frequent severe floods especially during summer and autumn seasons (i.e., flood season, from June 1 to
October 31). Rainstorms with high intensity and short duration occur in summer and low intensity and
long duration in autumn. According to the USGS 24-category Land Use Categories, vegetation types
of the catchment include Savanna (60.9%), Grassland (12.3%), Mixed Forest (8.9%) and Deciduous
Broadleaf Forest (7.9%), interspersed with other types (e.g., Shrubland, Cropland, Woodland and
Pasture). The surface soil is loamy based on the USGS soil classifications of 16 categories.

The Chenhe gauging station located at the catchment outlet provides rainfall and discharge data.
The other eight gauging stations only provide rainfall data. Observations collected from the gauging
stations during the flood seasons between 2003 and 2011 are used to produce hourly rainfall and
streamflow records using linear interpolation. We adopted 19 typical flood events in this study, and
their properties (e.g., duration) are shown in Table 1. The spin-up period of the WRF-Hydro model
is set from 1 June to the beginning of the first flood event each year, where its minimum duration is
around 30 days in 2005 and the maximum is around 95 days in 2006. Note that the initial condition of
the WRF-Hydro model in the spin-up period is identical to that of the WRF model driven by the Final
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operational global analysis global analysis (FNL) data with the resolution of 0.1◦, 6-h, prepared by the
National Center for Environmental Prediction (NCEP) (https://rda.ucar.edu/).

Table 1. The set of flood events and spin-up period (UTC).

Year Spin-Up Period ID Events Start End

2003
1 June 2003, 0:00–
27 August, 18:00

1 030827 27 August, 18:00 4 September, 0:00
2 030902 2 September, 18:00 9 September, 12:00
3 030916 16 September, 6:00 24 September, 0:00

2004 1 June 2004, 0:00–
1 September, 6:00 4 040901 1 September, 6:00 9 September, 0:00

2005
1 June 2005, 0:00–

29 June, 18:00
5 050629 29 June, 18:00 4 July, 12:00
6 050716 16 July, 18:00 19 July, 18:00

2006
1 June 2006, 0:00–
2 September, 18:00

7 060902 2 September, 18:00 7 September, 18:00
8 060925 25 September, 12:00 3 October, 0:00

2007
1 June 2007, 0:00–

3 July, 18:00
9 070703 3 July, 18:00 7 July, 18:00
10 070808 8 August, 6:00 13 August, 0:00

2008 1 June 2008, 0:00–
20 July, 6:00 11 080720 20 July, 6:00 23 July, 12:00

2009
1 June 2009, 0:00–
17 August 18:00

12 090817 17 August, 18:00 24 August, 0:00
13 090910 10 September, 18:00 16 September, 18:00

2010
1 June 2010, 0:00–

21 July, 18:00

14 100721 21 July, 18:00 29 July, 6:00
15 100820 20 August, 12:00 23 August, 0:00
16 100822 22 August, 18:00 26 August, 18:00

2011
1 June 2011, 0:00–
3 August, 18:00

17 110803 3 August, 18:00 7 August, 18:00
18 110909 9 September, 0:00 15 September, 0:00
19 110916 16 September, 0:00 21 September, 0:00

2.2. GLDAS

The GLDAS (version 2.1), as a near real-time global terrestrial modeling system incorporating
ground observations and satellite data, provides meteorological forcing data on the global scale [29,46]
(https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS). This product can be used to drive LSMs
(e.g., Noah LSM) for simulating evaporation in many regions of China [47–50]. However, its resolution
is too coarse for hydrological simulation of the Chenhe catchment, which is only covered by 3 × 2
GLDAS grids. Therefore, the linear and Bilinear Interpolation Method [51] were employed to
disaggregate the 3 h, 0.25◦ × 0.25◦ GLDAS product into 1h and 1 km× 1 km resolution. More details
about GLDAS are given in [29] and [52].

2.3. The WRF Model

The WRF model, a new generation of mesoscale NWP model, has been widely used in the past
20 years [36,53]. It can produce high-resolution (1–10 km) simulations of meteorological variables such
as rainfall [33,34]. The WRF model (version 3.3) was used to generate all forcings for the WRF-Hydro
model over study catchment covered by three-nested domains of 25, 5 and 1 km resolution. The
outer domain (100 × 95 grids) covers the most of China (22.9◦–43.8◦ N, 95.3◦–122.4◦ E), the middle
domain (168 × 146 grids) covers the central China (30.6◦–37.1◦ N, 103.9◦–112.8◦ E) and the inner
domain (86 × 51 grids) covers the Chenhe catchment (33.6◦–34.1◦ N, 107.6◦–108.5◦ E) (Figure 1). Time
steps are 150, 30 and 6 s for three domains, respectively. Main physical parameterizations of the WRF
model are shown in Table 2. The WRF model was driven by the FNL data for each event. Ancillary
data, e.g., 30” land use and soil type, for the inner domain are provided by the static data of WRF
Preprocessing System (WPS) (https://www2.mmm.ucar.edu/wrf/users/download).

https://rda.ucar.edu/
https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS
https://www2.mmm.ucar.edu/wrf/users/download
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Table 2. Physical parameterizations of the WRF Model.

Category Parameterization Selected References

Microphysical processes WGM 3-class simple ice model [54]
Cumulus option Kain-Fritsch scheme [55]

Planetary boundary layer Yonsei University scheme [56]
Radiation scheme RRTM, Dudhia [57]

Land surface model Noah LSM [47]
Projection Lambert [58]

2.4. The WRF-Hydro Model

2.4.1. A Brief Description

The WRF-Hydro model is a distributed, physical-based and multi-parameterization model with the
combined infiltration-excess and saturated-excess runoff module. This model adopts high-resolution
routing modules (i.e., overland routing, interflow routing, base-flow routing, channel routing and
reservoir or lake routing) to allow multi-scale grids (i.e., LSM grids of kilometers and routing grids of
hundreds of meters). Some state variables need to be transmitted between LSM and routing grids
when the model is running. For example, soil moisture is mapped from LSM grids onto routing grids.
After routing calculation on the fine-resolution grids, the redistribution of soil moisture is aggregated
onto LSM grids. The disaggregation-aggregation methodology is described in [23].

Canopy interception of rainfall is described by the water balance equation, and water permeation in
subsurface layers is calculated using the Richards Equation [17,48]. Lateral subsurface flow calculated
by quasi three-dimensional flow is a function of topography, saturated soil depth and saturated
hydraulic conductivity [17,48]. The ponded water comes from three sources: infiltration excess,
exfiltration from saturated soil layer and water exchange between grids. Once the ponded water depth
exceeds the retention depth, the excess flows freely as surface runoff according to the Shallow Water
Wave Equations [59]. A conceptual water bucket model is used to calculate the water storage change
under subsurface layers. The Diffusion Wave Equations are used to describe channel routing, where
the shape and roughness of each stream order are predefined but can be calibrated. The Manning’s
Equation is used in both Shallow Water Wave Equations and Diffusion Wave Equations to simulate
friction action on the land surface and channel. More details are available in [17].

2.4.2. Data and Model Settings

The coarse digital elevation and other ancillary data (e.g., land use and soil type) on LSM grids
are from the WPS, while high-resolution terrain data required on routing grids are provided by
Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn/). Other high-resolution fields on routing grids such as flow direction and
channel network were obtained through ArcGIS. Note that the channel network was extracted from the
fine-scale terrain data with stream definition threshold of 320, thereby yielding a stream below every
20 km2 of contributing area in accordance with the actual channel network. The spatial resolutions of
the LSM and routing grids are 1 km and 250 m, respectively. The time steps of the terrain and channel
routing simulations are 15 s [17]. Main physical parameterizations of the model in this study are shown
in Table 3.

2.4.3. Calibration of Uncoupled WRF-Hydro Model

The calibration of the uncoupled WRF-Hydro model (version 5.0.3) was only performed in the
flood seasons of the first four years (2003–2006) due to high computational cost. For model calibration,
the model was only driven by one scenario: GLDAS forcings with observed areal precipitation. Namely,
the observed areal precipitation was obtained using the Inverse Distance Weight (IDW) method [61]
from rain gauge data, and the other forcings were extracted from the GLDAS product. It is because

http://www.gscloud.cn/
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other spatial interpolation methods (e.g., ordinate kriging method) are not suitable for SMCs due to
sparse observation [24], and the GLDAS as a reanalysis product has good performance in evaporation
simulation in China [49,50].

Table 3. The parameterizations of uncoupled WRF-Hydro model.

Category Parameterization Selected References

NWP model WRF model [36]
Land surface model Noah LSM [48]

Subsurface flow
(i.e., Interflow)

Distributed hydrology soil and
vegetation model [12]

Overland flow D8 method [60]

Baseflow Exponential storage-discharge
function [17]

Channel routing Diffusive wave [59]

In this study, six model parameters were calibrated including scaling factor on subsurface layer
depth (ZSOILFAC), the bucket model exponent of baseflow (GWEXP), referring soil permeability
(REFKDT), multiplier on maximum retention depth (RETDEPRTFAC), multiplier on Manning’s
roughness for overland flow (OVROUGHRTFAC) and multiplier on Manning’s roughness for channel
(MANNFAC). In fact, the soil moisture in the model depends mainly on the subsurface depth, while
the predefined depths may be not suitable for the SMCs. The ZSOILFAC is introduced to facilitate the
use of variable depths of the four subsurface layers at same scale rather than fixed as 0.05, 0.20, 0.45
and 0.80 m in [25], thereby influencing soil moisture. The specific meaning and function of these six
parameters are shown in Table 4.

Table 4. The parameterizations of WRF-Hydro model.

Name Meaning Relevant Variables

ZSOILFAC Scaling factor on subsurface layer depth Soil moisture
GWEXP The bucket model exponent of baseflow Drainage of groundwater
REFKDT Referring soil permeability Infiltration and permeation rates

RETDEPRTFAC Multiplier on maximum retention depth Retention depth capacity

OVROUGHRTFAC Multiplier on Manning’s roughness for
overland flow Overland runoff

MANNFAC Multiplier on Manning’s roughness
for channel Streamflow

The calibration of these parameters adopted the Manual Stepwise Approach [24,25] that selects the
best parameter value according to objective function. Two kinds of comprehensive objective functions
in terms of percent bias (PB) and Nash-Sutcliffe efficiency coefficient (NSE) were adopted in view of
the Compromise Programming Method [62] as follow.

min f PB =
n∑

k=1

PBαk , (1)

max fNSE= 1−
n∑

k=1

(1−NSEk)
α, (2)

where f PB and f NSE represent the objective functions for PB and NSE, respectively, α is the balancing
factor and its value takes 4 in accordance with [62], n the number of events in calibration period and k
the event number. The f PB is used to gain the optimum values of ZSOILFAC, GWEXP, REFKDT and
RETDEPRTFAC since these parameters have an impact on flood volume, and the f NSE the optimum
values of OVROUGHRTFAC and MANNFAC since they influence the hydrograph shape. Figure 2
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shows the sensitivity analysis for these six parameters, and the calibration ranges and steps of the
parameters are shown in Table 5. As a result, the optimum solutions are 0.2, 5.0, 0.7, 0.1, 0.2 and 0.8 for
ZSOILFAC, GWEXP, REFKDT, RETDEPRTFAC, OVROUGHRTFAC and MANNFAC, respectively.
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Figure 2. Calibration of (a) scaling factor on subsurface layer depth (ZSOILFAC), (b) the bucket
model exponent of baseflow (GWEXP), (c) referring soil permeability (REFKDT), (d) multiplier on
maximum retention depth (RETDEPRTFAC), (e) multiplier on Manning’s roughness for overland flow
(OVROUGHRTFAC) and (f) multiplier on Manning’s roughness for channel (MANNFAC), where the
red triangle in each figure represents the optimum solution.
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Table 5. The ranges and increments of main model parameters for the Manual Stepwise Approach.

Parameter ZSOILFAC GWEXP REFKDT RETDEPRTFAC OVROUGHRTFAC MANNFAC

Lower 0.1 1.0 0.1 0.0 0.1 0.1
Upper 1.0 5.0 2.0 1.0 2.0 2.0

Increment 0.1 1.0 0.1 0.1 0.1 0.1

2.5. The Xinanjiang Model

The Xinanjiang model [63], a conceptual semi-distributed hydrologic model, is widely used in flood
forecasting for humid and semi-humid watersheds in China [64–67]. It has four major components:
runoff generation, evapotranspiration, separation of runoff components and flow concentration with
main inputs of the model including observed rainfall and pan evaporation [63,68]. The Major model
parameters are shown in Table 6. Note that the Xinanjiang model was utilized as a tool for investigating
the flood prediction capability of the WRF-Hydro model owing to the satisfactory performance and
application in Chenhe catchment.

Table 6. The values and their functions of main parameters for the Xinanjiang model.

Parameter Value Meaning Function

K 0.5 The ratio of potential
evapotranspiration to pan evaporation Controlling the

simulated water volumeWM 160 mm Tension water storage capacity

SM 14 mm Gravity water storage capacity Controlling the
simulated hydrograph

shapeCS 0.08 The recession coefficient of runoff in
channel network

2.6. Forcing Scenarios Design

It is very significant for the WRF-Hydro model to choose the adequate and appropriate forcings
at first. Currently, there are three prominent methods to obtain the forcing data. Firstly, all forcings
derive from one source directly such as the WRF outputs and the Global Forecast System [24,28,69–71].
Secondly, forcings are from the combination of several products [19,25,72]. For example, reference [25]
acquired rainfall, air temperature, air pressure and air humidity from observation, wind speed and
incoming shortwave radiation from merged products, and incoming shortwave radiation from the
GLDAS. Lastly, forcings are provided by the WRF model using the fully coupled WRF-Hydro modeling
system [25,26].

In this study, we adopted the second method to generate the forcings of the uncoupled WRF-Hydro
model. Eight forcing scenarios (Table 7) were designed to find out the appropriate forcings and to
assess the performance of the WRF-Hydro model in SMCs. In fact, the forcings required in this model
are classified as rainfall and the remaining forcings. Rainfall products in this study include IDW
product, GLDAS-derived rainfall (Gr), WRF-derived rainfall (Wr), GLDAS-merged rainfall (Gm) and
WRF-merged rainfall (Wm). The Successive Corrections Method [42–45] was adopted as a precipitation
merging method, where its weight function takes the Cressman Weight Function [73], the number of
iterations 5, and influence radius 100 km. The remaining forcings contain GLDAS, WRF and ideal
forcings. The values of ideal forcings [17] generated by the WRF-Hydro model are shown in Table 8.
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Table 7. The key information of eight forcing scenarios in this study 1.

Number Scenario 2 Model
Input Meteorological Forcings

Rainfall The Remaining Forcings

1 G + Gr 3

WRF-Hydro

GLDAS-derived rainfall GLDAS
2 G + I IDW product GLDAS
3 W + Wr 4 WRF-derived rainfall WRF
4 W + I IDW product WRF
5 G + Gm GLDAS-merged rainfall GLDAS
6 W + Wm WRF-merged rainfall WRF
7 I + I IDW product Ideal forcings 5

8 XAJ Xinanjiang Rain gauge data and pan evaporation
1 See Section 2.6; 2 The abbreviation of each experiment; 3 All forcings in this scenario derive from the GLDAS
product; 4 All forcings in this scenario derive from the WRF outputs; 5 It can be generated by the WRF-Hydro model
when there are not any forcings available in a catchment, and more detail in Table 8.

Table 8. The values of ideal forcings.

Variable Name Description Prescribed Value or Range Timing

SWDOWN Incoming shortwave radiation 0–900 W/m2 Diurnal cycle
LWDOWN Incoming longwave radiation 375–425 W/m2 Diurnal cycle

Q2D specific humidity 0.01 kg/kg Constant
T2D Air temperature 287–293 K Diurnal cycle

PSFC Surface pressure 100,000 Pa Constant

U2D Near-surface wind speed in the
u-component 1.0 m/s Constant

V2D Near-surface wind speed in the
v-component 1.0 m/s Constant

2.7. Evaluation Metrics

The accuracy of the rainfall, evapotranspiration (ET) and streamflow are characterized by five
assessment metrics: percent bias (PB), root mean square error (RMSE), correlation coefficient (RR),
Nash-Sutcliffe efficiency coefficient (NSE) and Shannon entropy (SE).

PB =

n∑
i=1

(si−oi)

n∑
i=1

oi

, (3)

RMSE =

√√
1
n

n∑
i=1

(si−oi)
2, (4)

RR =

n∑
i=1

(si − s)(oi − o)√
n∑

i=1
(si − s)2

√
n∑

i=1
(oi − o) 2

, (5)

NSE =1−

n∑
i=1

(si−oi)
2

n∑
i=1

(oi − o) 2
, (6)

SE(
→
x ) = −

N∑
k=1

p(xk) log2(p(xk))
→
x = (x1, x2, · · · , xN)

T, (7)
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where si is the simulated results for each time step i, oi is the observed value, n is the total number
of time series,

→
x is a discrete random variable recording all different values in the grids, p(xk) is the

frequency of value of xk appearing in the grids and N is the length of the
→
x . The PB and RMSE measure

the errors of simulated results, and the RR and NSE quantify the degree-of-fit between simulation and
observation. The SE is regarded as a measure for spatial variability and the higher its values are, the
more complex related spatial information is. Note that the SE is only calculated within the Chenhe
catchment according to the spatially distributed rainfall or ET with 0.1 mm accuracy.

3. Results and Discussion

To evaluate the quality of precipitation, we first compared the five rainfall products (i.e., IDW,
Gr, Wr, Gm and Wm) using the metrics PB, RMSE and SE. Then, the WRF-Hydro-derived simulated
ET of the three scenarios (i.e., G + I, W + I and I + I) was analyzed through the PB, RMSE, RR and
SE to understand the impact of different forcings (without rainfall). Finally, we compared simulated
streamflow of the eight scenarios (i.e., G + Gr, G + I, W + Wr, W + I, G + Gm, W + Wm and I + I and
XAJ) at the outlet via the same metrics.

3.1. Evaluation of Five Rainfall Products

As mentioned above, we regarded the IDW product as observed areal precipitation. The cumulative
rainfall of the IDW, Gr, Wr, Gm and Wm is shown in Figure 3a, and the PB of the last four products
in Figure 3b. The Gr and Wr show relatively poor performance in terms of the PB (Figure 3b).
Significant negative errors are observed in 89.5% of events of the Gr, with mean rainfall only 44.4 mm
approximately 60% of the observed rainfall (74.7 mm). This is arguably due to information loss in the
coarse-scale grids. While an overestimation of rainfall is found in the Wr for 68.4% of events, with
mean rainfall up to 97.5 mm nearly 1.3 times higher than the observation counterpart. However, the
results of the PB in the Gm and Wm are improved when the Successive Corrections Method was
applied (Figure 3b). The PB mean-values of the Gm and Wm have dropped from −0.357 in Gr to 0.007
and from 0.353 in Wr to 0.228, respectively.
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Figure 3. Cumulative rainfall (a) of the Inverse Distance Weight (IDW), GLDAS-derived rainfall (Gr),
WRF-derived rainfall (Wr), GLDAS-merged rainfall (Gm) and WRF-merged rainfall (Wm) and the
percent bias (PB) (b) of last four rainfall products. The last columns in (b) represents the PB mean-values
of 19 events.

We further compared the hourly-scale rainfall series of four products before and after merging
with observation for all events (Figure 4). As shown in Figure 4a,b, the Gr has large negative bias
(PB = −0.406), while the Wr has positive bias (PB = 0.306) compared to observation. The Wr has
higher RMSE (1.550 mm/h) than the Gr (1.055 mm/h), confirming that raw rainfall of the WRF model
overestimates the hourly areal mean rainfall [36], even though the Wr has finer spatial resolution. Once
merging with gauging data, the Gr improves with RMSE-value soaring from 1.055 to 0.026 mm/h,
and the Wr also has a satisfying performance with RMSE-value increasing from 1.550 to 0.337 mm/h.
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Compared with raw products, the quality of rainfall from the GLDAS and WRF is improved through the
merging. The Gm performs better than the Wm possibly resulting from the coarser spatial resolution.Water 2019, 11, x FOR PEER REVIEW 11 of 23 
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Figure 4. Comparison of hourly (a) Gr, (b) Wr, (c) Gm and (d) Wm rainfall data with the
station observations.

After comparing the rainfall and time series, we investigated the spatial distributions of cumulative
rainfall on the highest rainfall day, e.g., September 18 for event 030916 and August 20 for event 100820
(Figure 5). The IDW product is able to capture the general features of rain distribution (e.g., storm
center), while its quality normally depends on the density and location of rain gages. The Gr has
a smooth spatial distribution nearly without any peaks or depressions and with lower SE-values
compared to others (5.67 and 6.62 for event 030916 and 100820, respectively), while the Wr has higher
values of SE (9.08 and 10.00 for event 030916 and 100820, respectively). After merging with observation,
the volume and spatial variability of rainfall products have been improved (Figure 5b–e,g–j), owing to
assimilation of field observations. As a result, the quality and reliability of the Gm and Wm outperform
those of Gr and Wr to flood simulation of the WRF-Hydro model in terms of the spatial distributions.

To further illustrate the impact of merging method on the spatial distributions of the rainfall
products, we also calculated the PB and RMSE of Gr, Gm, Wr and Wm based on the cumulative
rainfall on the highest rainfall day at 9 rain gauges for all events (Figure 6). The PB-distributions of
the Gm and Wm narrow around 0-line, and the majority of RMSE-values decline from above 50 mm
(68.4% and 63.2% for the Gr and Wr, respectively) to below 50 mm (84.2% and 68.4% for the Gm and
Wm, respectively). Therefore, the accuracy and spatial variability have been improved after merging
with observations, at least for 9 stations. Consequently, the IDW, Gm and Wm are more suitable than
the others for hydrological simulation of the WRF-Hydro model.
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performance with mean PB of 1.690, indicating it is suitable for study catchment to use the high-
resolution forcings (without rainfall) of WRF model (1 h, 1 km) to calculate ET, especially when the 
catchment area is small covered by a few GLDAS grids. The simulation of scenario I + I performs 
poorly compared to the others in terms of the PB (6.497), which overestimates ET clearly. It is 
attributed to the oversimplified generalization scheme of ideal forcings (Table 8). It implies that the 
forcings (without rainfall) from the GLDAS and the WRF are recognized as the suitable ones 
according to the PB of the ET volume when the rainfall is identical. 

 

Figure 6. Metrics of cumulative rainfall of Gr, Gm, Wr and Wm on the highest rainfall day at 9 rain
gauges based on all events: (a) PB and (b) RMSE. The red line is the median and red plus is the outlier
defined as points below the 5th percentiles or above 95th percentiles.

3.2. Evaluation of Daily WRF-Hydro-Derived ET in Three Scenarios

Except rainfall, the remaining forcings also have an effect on the streamflow simulation of
the WRF-Hydro model, and they are mainly utilized to calculate potential evaporation through
Penman-Monteith Equation, thereby affecting the simulated ET in the model. Therefore, the difference
of the forcings (without rainfall) can be indirectly quantified through the ET comparison. To make
the results comparable, we analyzed the daily ET of three scenarios, G + I, W + I and I + I, using pan
evaporation data collected at Heiyukou (HYK) Station. Note that the pan evaporation only provides a
reference for evaluating simulation since it only represents the one-point water surface evaporation
rather than actual ET. The hourly cumulative simulated ET from the model was transformed into daily
ET to keep consistent with the observation.

Figure 7a shows the daily mean ET-volume of observation, G + I, W + I and I + I, and
Figure 7b corresponding PB of the three scenarios at the grid containing HYK station for each
event. The simulated ET of G + I has a smaller PB mean-value (1.063) than those of other scenarios,
confirming that the GLDAS-derived forcings (without rainfall) have good skill in simulating ET despite
relatively coarse spatial distribution of GLDAS products (3 h, 0.25◦). The simulated ET of W + I has
intermediate performance with mean PB of 1.690, indicating it is suitable for study catchment to use
the high-resolution forcings (without rainfall) of WRF model (1 h, 1 km) to calculate ET, especially
when the catchment area is small covered by a few GLDAS grids. The simulation of scenario I + I
performs poorly compared to the others in terms of the PB (6.497), which overestimates ET clearly. It is
attributed to the oversimplified generalization scheme of ideal forcings (Table 8). It implies that the
forcings (without rainfall) from the GLDAS and the WRF are recognized as the suitable ones according
to the PB of the ET volume when the rainfall is identical.
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We further compared daily-scale simulated ET series of the three scenarios with pan evaporation
at HYK Station, respectively (Figure 8). The daily ET of the G + I has a better performance than the
others with narrower spread and smaller bias in terms of PB, RMSE and RR (Figure 8). Scenario W
+ I performs moderately, and most points (89.2% versus 81.9% in G + I) are above the 45◦ line. The
PB of the W + I (1.259) is twice greater than that of the G + I (0.511), and RR of the W + I (0.581) is
close to that of the G + I (0.580). The ET from scenario I + I is overestimated for nearly all points
(98.8%) despite its narrower distribution (range: 2.4 mm/day). The overestimations of ET at the grid
containing HYK station are observed in the three scenarios, possibly because the potential evaporation
is overestimated at this grid when the model is driven by these forcings (without rainfall). Compared
with scenario W + I and I + I, scenario G + I produces the best simulated ET, and GLDAS-derived
forcings (without rainfall) can serve as good ones to the WRF-Hydro model for the study catchment.
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Figure 8. Comparison of daily-scale (a) G + I, (b) W + I and (c) I + I simulated ET with pan evaporation
at HYK Station.

In order to learn the spatial pattern of simulated ET in the three scenarios, we took events 030916
and 100820 on the highest observed ET day (i.e., September 22 for event 030916 and Auguat 21 for
event 100820) for example. As shown in Figure 9, the spatial distribution of ET in scenario W + I
unanimously has the highest SE (4.494 in 030916 and 3.953 in 100820), suggesting that the forcings
(without rainfall) of the WRF model outputs capture the ET distribution. The G + I simulations
have lowest SE (2.719 in 030916 and 3.133 in 100820) compared to the others, arguably due to the
coarse resolution of the GLDAS data. The ET is overestimated over the whole catchment when using
scenario I + I to drive the WRF-Hydro model even if this scenario yields moderate SE (4.091 in 030916
and 3.385 in 100820). This implies that the overestimation of ET for the I + I may occur not only at
Heiyukou station, but also catchment-wide due to the generation pattern of the ideal forcings (Table 8).
Consequently, the forcings (without rainfall) derived from the GLDAS and WRF show good skills in
ET simulation according to error, correlation and spatial variability and are identified as good data set
for the hydrological simulation of the WRF-Hydro model in the Chenhe catchment.
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3.3. Evaluation of Streamflow for the Eight Scenarios

We first compared the streamflow simulations of the WRF-Hydro model among the seven forcing
scenarios (G + Gr, G + I, W + Wr, W + I, G + Gm, W + Wm and I + I) (Figure 10 and Table 9), and then
compared the three best results of the WRF-Hydro model (i.e., scenarios G + I, W + I and G + Gm) with
the result of the Xinanjiang model (i.e., scenario XAJ) (Figures 11 and 12). Note that the calibration of
the WRF-Hydro model was only preformed in scenario G + I, and the parameters after calibration
were adopted in the other scenarios.

Table 9. The mean values of four metrics shown in Figure 10.

G + Gr G + I W +Wr W + I G + Gm W +Wm I + I XAJ

PB −0.510 0.063 0.752 0.009 0.063 0.331 −0.291 0.147
RMSE (mm/h) 0.41 0.18 0.74 0.18 0.17 0.23 0.23 0.17

RR 0.031 0.852 0.533 0.837 0.844 0.899 0.770 0.934
NSE -0.47 0.61 −15.36 0.61 0.61 0.46 0.37 0.71



Water 2020, 12, 874 16 of 23
Water 2019, 11, x FOR PEER REVIEW 16 of 23 

 

  

   

Figure 10. Boxplots of (a) PB, (b) RMSE, (c) RR and (d) Nash-Sutcliffe efficiency (NSE) of events in 
eight scenarios. The meanings of red line and plus are identical to Figure 5 and blue square is the 
average. The values of black dotted lines in (a), (b), (c) and (d) are 0, 0.25 mm/hr, 0.8 and 0.5, 
respectively. Noted that the distribution of the W + Wr in (d) does not contain all points, and the other 
three outliers are −13.5, −34.2 and −224.7. The mean NSE of the W + Wr, −15.36, is not shown too. 

Table 9. The mean values of four metrics shown in Figure 10. 

 G + Gr G + I W + Wr W + I G + Gm W + Wm I + I XAJ 

PB −0.510  0.063  0.752  0.009  0.063  0.331  −0.291  0.147  

RMSE(mm/hr) 0.41  0.18  0.74  0.18  0.17  0.23  0.23  0.17  

RR 0.031  0.852  0.533  0.837  0.844  0.899  0.770  0.934  

NSE -0.47  0.61  −15.36  0.61  0.61  0.46  0.37  0.71  

3.3.1. Comparison of the Scenarios Using the WRF-Hydro Model 

Scenarios G + I, W + I and G + Gm perform well, indicated by smaller PB (0.009–0.063) and RMSE 
(<0.2 mm/hr) and narrower spreads than other scenarios using the WRF-Hydro model, similar to that 
of scenario XAJ (Figure 10). These results indicate that scenarios G + I, W + I and G + Gm have good 
and similar performances when regarding them as forcings to drive the WRF-Hydro model. 
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events greater than 0.7 has a narrower spread than that of the WRF-Hydro model. In fact, the low 
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the events with higher NSEs (i.e., NSE ≥ 0.7), while the WRF-Hydro model shows moderate results 
for the events with lower NSEs (i.e., NSE < 0.7). It is possibly because the simulation of the WRF-
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Figure 11. Hydrographs of Events 030916 and 100820, and corresponding statistics of rainfall and
runoff depth, (a) time series of areal mean rainfall of Event 030916, (b) time series of discharge of
Event 030916, (c) time series of areal mean rainfall of Event 100820, and (d) time series of discharge of
Event 100820.



Water 2020, 12, 874 17 of 23
Water 2019, 11, x FOR PEER REVIEW 19 of 23 

 

  

Figure 12. Comparison of the NSE-values of four scenarios, G + I, W + I, G + Gm and XAJ, in the rising 
limb (a) and falling limb (b). The meanings of red line and plus are identical to Figure 5 and blue 
square is the average. The values of black dotted lines in (a) and (b) are both 0.7. 

The Xinanjiang model was adopted to assess the flood prediction capacity of the WRF-hydro 
model, and their performance difference is mainly caused by the two points: model structure and 
input-output data. On the one hand, the conceptual Xinanjiang model adopts the three-layer soil 
moisture model [63] to calculate the ET, which aims at water balance in hydrological simulation. The 
saturated-excess runoff module is another characteristic of this model [63]. As a semi-distributed 
model, it adopts the tension water capacity curve [63] to represent the spatial inhomogeneity of soil 
moisture. By contrast, the WRF-Hydro model simulates the ET with the Noah or Noah-MP LSM 
taking account of water and energy balance [48]. This model adopts the combined infiltration-excess 
and saturated-excess runoff module for runoff calculation. The orthogonal grids are used in the LSM 
and routing grids to represent the spatial distribution of hydrometeorological variables and 
parameters. On the other hand, the inputs of the Xinanjiang model only include precipitation and 
pan evaporation. Its outputs contain ET, the discharge at the outlet of the watershed and the areal 
mean soil moisture. It is not easy for the Xinanjiang model to absorb some useful meteorological data 
(e.g., radiation and wind speed) and to obtain the distributed simulation. However, the WRF-Hydro 
model requires substantial spatial inputs including the forcings, underlying surface state and 
corresponding parameters and produces spatial outputs including distributed streamflow, water and 
energy flux and hydrometeorological states. This model assimilates lots of effective information to 
achieve spatial hydrological simulation, although this simulation is sensitive to the quality of inputs. 
In addition, it is easy to fully couple with the WRF model for the operational hydrometeorological 
prediction. Therefore, the WRF-Hydro model has promising potential for flood forecasting in the 
Chenhe catchment. 

4. Conclusions 

Based on the observed and merged rainfalls, GLDAS, WRF outputs and ideal forcings, seven 
scenarios were designed (G + Gr, G + I, W + Wr, W + I, G + Gm, W + Wm and I + I) for driving the 
WRF-Hydro model to simulate floods of the Chenhe catchment. It is indicated that the WRF-Hydro 
model can yield better results when driven by the scenarios G + I, W + I or G + Gm than other scenarios 
using the WRF-Hydro model (i.e., G + Gr, W + Wr, W + Wm and I + I). 

It is not recommended to use directly the GLDAS- and WRF-derived rainfalls to simulate the 
floods of the Chenhe catchment. The flood simulations can be improved when using GLDAS- and 
WRF-merged rainfalls. The WRF-Hydro model tends to overestimate the ET and subsequently to 
underestimate the streamflow when using the ideal forcings (without rainfall). However, the model 
produces better ET simulations when using the forcings (without rainfall) from the GLDAS and WRF. 

Although the performance of the WRF-Hydro and Xinanjiang models is generally comparable, 
the WRF-Hydro model can produce spatially distributed outputs such as evaporation, streamflow 

Figure 12. Comparison of the NSE-values of four scenarios, G + I, W + I, G + Gm and XAJ, in the
rising limb (a) and falling limb (b). The meanings of red line and plus are identical to Figure 5 and blue
square is the average. The values of black dotted lines in (a) and (b) are both 0.7.

3.3.1. Comparison of the Scenarios Using the WRF-Hydro Model

Scenarios G + I, W + I and G + Gm perform well, indicated by smaller PB (0.009–0.063) and RMSE
(<0.2 mm/h) and narrower spreads than other scenarios using the WRF-Hydro model, similar to that
of scenario XAJ (Figure 10). These results indicate that scenarios G + I, W + I and G + Gm have good
and similar performances when regarding them as forcings to drive the WRF-Hydro model.

To analyze how different forcings (without rainfall) influence the streamflow pattern, we also
compared scenarios G + I, W + I and I + I (Figure 10). For scenario I + I, the RR and NSE are
moderate, while the 84.2% of PB-values are below 0 and the RMSE-spread is wider than corresponding
values of the G + I and W + I (Figure 10c,d). The underestimation of streamflow of scenario I + I
(PB = −0.291) is largely due to the overestimation of ET (PB = 6.497), further revealing that different
forcings (without rainfall) have a non-ignorable impact on streamflow reproduction.

We further compared scenarios G + Gr, W + Wr, G + Gm and W + Wm to understand the impact
of merged rainfall on the discharge simulation (Figure 10). Scenario G + Gr exhibits poor performance
with higher PB and RMSE (Table 9), implying that the underestimation of Gr (PB = −0.357) is likely
to be responsible for the discharge underestimation. Scenario W + Wr also yields a poor result and
overestimates streamflow possibly due to large positive error of Wr (PB = 0.353). However, not only
the flood volume but also correlation and shape of hydrograph are improved when Gr is replaced by
Gm and Wr by Wm (Figure 10b,d). The mean RMSEs of scenarios G + Gm and W + Wm are as low as
0.17 and 0.23 mm/h, respectively, while 0.41 and 0.74 mm/h for the G + Gr and W + Wr, respectively. As
a result, the merged rainfall lead to improved streamflow simulation with the mean RMSEs improved
by 58.5% and 68.9% for G + Gm and W + Wm, respectively.

Many noticeable outliers (i.e., the points outside of the 5th to 95th percentiles in box plots) are
observed for three primary reasons (Figure 10). Firstly, the whole distributions are excellent, and thus
some acceptable values are recognized as outliers such as the G + Gm (Figure 10b). Secondly, large
positive bias in WRF-derived rainfall causes outliers such as the W + Wr (Figure 10c). Thirdly, the
overestimation of ET in scenario I + I leads to negative bias in streamflow reproduction such as the
I + I (Figure 10d). Moreover, events with smaller peak flow (e.g., Event 040,901 with peak flow of
153 m3/s) always exhibit poor performance regardless of forcings, possibly because the duration of
spin-up period is too short to obtain suitable initial state.

It is emphasized that the local observation at rain gauges and global, spatially-distributed GLDAS
product and FNL data driving the WRF model are available in general SMCs or regions. To study
the feature of these data is significant for the hydrometeorological simulation using the WRF-Hydro
model to SMCs, especially for the regions with sparse observation. Scenarios G + I, G + Gm and W + I
are likely to yield good performances for other SMCs lacking observed forcings. Scenario W + Wm
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may be more suitable for these catchments when the WRF model uses appropriate parameterization
with high-quality input or when data assimilation technologies are used in WRF model.

3.3.2. Comparison of the WRF-Hydro and Xinanjiang Model

To evaluate the flood prediction capability of the WRF-Hydro model, we only compared the best
results of the model (i.e., scenarios G + I, W + I and G + Gm) with the result of the Xinanjiang model
(i.e., scenario XAJ). As shown in Figure 10a, the results in scenarios G + I, W + I and G + Gm have
a narrower spread than scenario XAJ in terms of the PB and RMSE (Table 9). The RR and NSE of
scenario XAJ are better than those of scenarios G + I, W + I and G + Gm (Table 9). It indicates that the
WRF-Hydro model has good skills to simulate the flood volume, while the Xinanjiang model performs
well in describing the flood hydrograph. Figure 11 shows the rainfall, runoff depth and hydrographs of
the two events, 20030916 and 20100820. After merging with observations, the total areal mean rainfall
of Gm is consistent with that of IDW product for the two cases (Figure 11a,b). The underestimation of
runoff depth is observed in scenarios G + I (PB = −0.141), W + I (PB = −0.176), G + Gm (PB = −0.140)
and XAJ (PB = −0.119) for event 20,030916 (Figure 11c,d). The scenarios G + I (PB = 0.019), W + I
(PB = 0.020) and G + Gm (PB = 0.014) perform better than scenario XAJ (PB = 0.110) in terms of runoff

depth for event 20100820.
The flood hydrographs of scenarios G + I, G + Gm and W + I indicate that the WRF-Hydro

model may be better at describing the rising limb of flood hydrographs. To further investigate this
phenomenon, the degree-of-fit of flood hydrograph in rising and falling limbs was calculated through
the NSE where the rising limb is from the start to the flood peak time and the rest is falling limb
(Figure 12). The WRF-Hydro model has wider NSE-distribution than the Xinanjiang model for rising
and falling limbs. The NSE of the rising limb in around half of the events (52.6%, 47.4% and 63.2% for
G + I, W + I and G + Gm, respectively) exceed 0.7 versus 47.4% of the Xinanjiang model (Figure 12a).
Our analysis confirms that the WRF-Hydro model performs well in simulating rising limb at least in
half of the events. Similar NSE-distribution is obtained for the falling limb, but corresponding NSEs
are closer to 1.0 for the two models (Figure 12b). The Xinanjiang model with NSE-values in 68.4% of
events greater than 0.7 has a narrower spread than that of the WRF-Hydro model. In fact, the low
NSEs of the two models often appear in events with small peak flow where the Xinanjiang model
outperforms the WRF-Hydro model. As a result, these two models exhibit similar performances for
the events with higher NSEs (i.e., NSE ≥ 0.7), while the WRF-Hydro model shows moderate results for
the events with lower NSEs (i.e., NSE < 0.7). It is possibly because the simulation of the WRF-Hydro
model is more sensitive to the quality of inputs than that of the Xinanjiang model.

The Xinanjiang model was adopted to assess the flood prediction capacity of the WRF-hydro
model, and their performance difference is mainly caused by the two points: model structure and
input-output data. On the one hand, the conceptual Xinanjiang model adopts the three-layer soil
moisture model [63] to calculate the ET, which aims at water balance in hydrological simulation. The
saturated-excess runoff module is another characteristic of this model [63]. As a semi-distributed model,
it adopts the tension water capacity curve [63] to represent the spatial inhomogeneity of soil moisture.
By contrast, the WRF-Hydro model simulates the ET with the Noah or Noah-MP LSM taking account of
water and energy balance [48]. This model adopts the combined infiltration-excess and saturated-excess
runoff module for runoff calculation. The orthogonal grids are used in the LSM and routing grids to
represent the spatial distribution of hydrometeorological variables and parameters. On the other hand,
the inputs of the Xinanjiang model only include precipitation and pan evaporation. Its outputs contain
ET, the discharge at the outlet of the watershed and the areal mean soil moisture. It is not easy for
the Xinanjiang model to absorb some useful meteorological data (e.g., radiation and wind speed) and
to obtain the distributed simulation. However, the WRF-Hydro model requires substantial spatial
inputs including the forcings, underlying surface state and corresponding parameters and produces
spatial outputs including distributed streamflow, water and energy flux and hydrometeorological
states. This model assimilates lots of effective information to achieve spatial hydrological simulation,
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although this simulation is sensitive to the quality of inputs. In addition, it is easy to fully couple with
the WRF model for the operational hydrometeorological prediction. Therefore, the WRF-Hydro model
has promising potential for flood forecasting in the Chenhe catchment.

4. Conclusions

Based on the observed and merged rainfalls, GLDAS, WRF outputs and ideal forcings, seven
scenarios were designed (G + Gr, G + I, W + Wr, W + I, G + Gm, W + Wm and I + I) for driving the
WRF-Hydro model to simulate floods of the Chenhe catchment. It is indicated that the WRF-Hydro
model can yield better results when driven by the scenarios G + I, W + I or G + Gm than other scenarios
using the WRF-Hydro model (i.e., G + Gr, W + Wr, W + Wm and I + I).

It is not recommended to use directly the GLDAS- and WRF-derived rainfalls to simulate the
floods of the Chenhe catchment. The flood simulations can be improved when using GLDAS- and
WRF-merged rainfalls. The WRF-Hydro model tends to overestimate the ET and subsequently to
underestimate the streamflow when using the ideal forcings (without rainfall). However, the model
produces better ET simulations when using the forcings (without rainfall) from the GLDAS and WRF.

Although the performance of the WRF-Hydro and Xinanjiang models is generally comparable, the
WRF-Hydro model can produce spatially distributed outputs such as evaporation, streamflow and soil
moisture. The WRF-Hydro model shows promising potential for operational flood forecasting of the
Chenhe catchment, and we plan to conduct more studies on the application of the WRF-Hydro model
to other SMCs with different hydroclimatic patterns to further explore its suitability. Additionally,
this model has the potential to extend the lead time of operational flood forecasting since it can be
fully coupled with the WRF model. This study facilitates the application of the WRF-Hydro model in
worldwide SMCs for hydrometeorological simulation, especially for the SMCs with sparse observation.
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