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Abstract: The dynamics of riverine solutes’ contents and sources reflect geological, ecological, and
climatic information of the draining basin. This study investigated the influence of climatic variability
on solute dynamics by the high-frequency hydrogeochemical monitory in the Liujiang River draining
karst terrain of Guangxi Province, SW (Southwestern) China. In the study river, the content-discharge
(C-Q) patterns of riverine solutes indicate that the majority of riverine solutes show similar dilution
and near chemostatic behaviors responding to increasing discharge, especially geogenic solutes
(such as weathering products from carbonate, silicate, and sulfide oxidation), whereas exogenous
solutes (such as atmospheric input to riverine sulfate) and biological solutes (such as soil CO2) show
higher contents with increasing discharge. Besides, the biological carbon is the main driver of the
chemostatic behaviors of total dissolved inorganic carbon (DIC). The forward model results show
that carbonate weathering dominates the water chemistry, and the weathering rates are intensified
during high flow period due to additional inputs of weathering agents, i.e., the biologic carbonic
acid from dissolution of soil CO2, indicated by δ13CDIC. In addition, there exists the strong capacity
of CO2 consumption that is heavily dependent on climatic variables such as precipitation and air
temperature in this study river. Our study highlights the impact of climatic variability on solutes
dynamics and chemical weathering and thus must be better addressed in C models under future
climate change scenarios.

Keywords: solute–discharge relationship; stable isotopes; chemical weathering; CO2 consumption;
climatic variability
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1. Introduction

CO2 consumption during rock chemical weathering by reaction with carbonic and other strong
acids (such as sulfuric and nitric acids) are part of the important biogeochemical cycle of carbon and
therefore act on regulating the climate on Earth, even on shorter timescales [1–3]. Numerous studies
have focused on chemical weathering and CO2 consumption in carbonate-dominated catchments to
understand local and even global carbon cycles [3,4]. Current estimation of global CO2 consumption
by rock weathering varies from 0.1 to 0.44 Gt C a−1 [4,5]. These estimates have some uncertainty,
largely due to the spatial variations (such as lithology, soil development, vegetation, precipitation,
temperature, anthropogenic activity, etc.), which are inevitable on the continent [6]. Concerning the
spatial variations in weathering flux and global CO2 consumption flux, for example, a long-term
monitoring system called the Hydrological Benchmark Network (HBN) was established by the United
States Geological Survey (USGS) to assess and quantify the human influence on 59 study sites across
the U.S. [7]. Subsequently, a temporal rather than a spatial approach may be possible to obtain a
stronger correlation between weathering flux and climate.

Solutes’ C-Q relationships in various catchments have been explored in the past decades [2,8–17]
and can represent the integration of hydrological and biogeochemical responses of catchments for
understanding riverine solute source, transport, and reaction [17]. The slope (b) of a power-law
function [14] and the ratio of the C-Q coefficient of variation (CVC/CVQ) [18] have been proposed
to evaluate the C-Q patterns to identify functional linkages between catchment hydrology and
biogeochemistry. When b =−1 represents decreasing solute content with increasing discharge [14],
this would support dilution behaviors where the solute mass does not increase proportionally to
the increasing discharge, whereas positive b indicates increasing solute content with increasing
discharge [19] and supports flushing behaviors. A solute is typically characterized as source-limited if it
dilutes, whereas it is defined as transport-limited if it shows flushing behavior [20]. Thompson et al. [18]
emphasized the importance of CVC/CVQ, which is to facilitate a more nuanced interpretation of C-Q
relationships, particularly when b ≈ 0. Because it is related to the “chemostatic” behavior [14] or
the “biogeochemical stationarity” [21], this implies that solute content shows a negligible variability.
Based on quantitative metrics that were reported by Musolff et al. [19], chemostatic behavior yielded
as -0.2 < b < 0.2 and CVC/CVQ < 0.5. In contrast, chemodynamic behavior (b ≈ 0, CVC/CVQ > 1) is a
discharge-independent status, indicating dissolved solute content is not controlled by Q.

This study contributes to this line of research to investigate a high-frequency sampling survey in
the Liujiang River catchment draining through the carbonate-dominated area, which features a warm
subtropical climate. We focused on temporal research to (1) explore the behaviors of riverine solutes in
a hydrological year by means of C-Q relations; (2) understand the hydrological and the biogeochemical
responses of chemical weathering, CO2 consumption, dissolved carbon, and sulfur dynamics in a
typical karst river; (3) trace water, riverine sulfate, and dissolved inorganic carbon (DIC) sources and
estimate their contributions constrained by stable isotopic tracers in the study catchment area under
various climatic conditions.

2. Materials and Methods

2.1. Study Area

The Liujiang River is a first-order tributary of the Xijiang River consisting of Pearl catchment in
southern China (Figure 1). It originates from the village Lang in Guizhou Province and flows through
Guizhou, Guangxi and Hunan Provinces, with 72% of its drainage area in the Guangxi Province; the
drainage area is 58,270 km2. The main channel length is 1121 km. It is a mountainous watershed with
high mountains in the north and a high elevation in the northwest, whereas, in the southern and the
southeast areas, the elevations are relatively low. There are six land use types, with average coverage
ratios as follows: forestland (64.9%) > cropland (18.7%) > grassland (18.1%) > urban land (14.5%) >

water (0.8%) > unused land (0.02%). The Liujiang River catchment is exposed by a subtropical humid
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under monsoonal climate with a mean annual precipitation of 1800 mm. It is in the center of the
storm zone of the Guangxi Province with frequent storms, and 59 disastrous flooding events have
been recorded in the past 400 years since 1488 [22]. There are no significant reservoirs to influence
flood discharge in the study catchment. Lithologically, the Precambrian metamorphic rocks and
the quaternary fluvial sediments are distributed in the whole Xijiang River catchment (Figure 1).
Specifically, carbonate rocks (limestone and dolomite) and coal-bearing formations generally enriched
in sulfides are widely distributed in the upper-middle reaches. Schist, gneiss and granite are exposed
in the middle-lower reaches. Shale and red sandstone are distributed in the source area and are
fragmentarily intercalated in the middle catchment area. Minor evaporites are scattered in the Xijiang
River catchment, but a salt-bearing stratum has not been found in this area [1,23,24]. Karst topography
is well-developed in the study catchment.
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Figure 1. Map showing sampling location, geological background, digital elevation model (DEM), and
land use types of the Liujiang River catchment.

2.2. Sampling and Analysis

The sampling site was located at the outlet of the Liujiang River (Figure 1), approximately 29 km
away from the mainstream of the Xijiang River. River water samples for chemical and isotopic analyses
were collected monthly from October 2013 to September 2014 (Table S1). Additional samples were
collected in the high flow season, covering hydrological variations in this period. Water samples were
collected from a boat in the middle of the river. Alkalinity was determined using 0.02 M HCl titration
within 24 hours. Samples were filtered through 0.45 µM cellulose-acetate membrane paper and then
were further separated into two parts; one for anions (Cl−, SO4

2− and NO3
−) determined by ionic

chromatography with a precision of 5% and the other for major cations (K+, Na+, Ca2+ and Mg2+) and
Si, which were acidified to pH ≤ 2 with ultra-purified HNO3 and then determined by inductively
coupled plasma-optical emission spectrometry (ICP-OES) with precisions better than 3%.

For the δ13CDIC analyses, based on the method of Li et al. [25], 15 ml aliquots of water samples
were injected into vacuum glass bottles pre-filled with 2 ml 85% phosphoric acid and a magnetic stirrer
bar. The samples were heated at 50 °C to extract CO2 in a vacuum line and transferred cryogenically
into tubes. The values of δ13CDIC were measured by Finnigan MAT 252 mass spectrometer and
were expressed in as permil deviation with reference to a standard (VPDB), with a precision of
0.1%�. The measurement of δ13CDIC was conducted in the State Key Laboratory of Environmental
Geochemistry, the Institute of Geochemistry, Chinese Academy of Science. Riverine sulfate was
precipitated as BaSO4 through adding excess BaCl2 solution after the water was acidified using HCl
for isotopic measurements of sulfate. Then, the precipitate was filtered, washed, and dried. The values
of δ34SSO4 and δ18OSO4 were determined using elemental analysis-isotope ratio mass spectrometry
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(EA-IRMS) and reported using δ notation relative to the Vienna Canyon Diablo Troilite (V-CDT) with
precision better than 0.2%� and the Vienna Standard Mean Ocean Water (V-SMOW) in permil with
precision better than 0.5%�, respectively. The measurement of S and O isotopes of riverine sulfate
was carried out at the Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences. Daily water discharge data (m3/s) were obtained online from the Ministry of
Water Resources (http://www.hydroinfo.gov.cn/).

3. Results

3.1. Hydrochemistry

Liujiang River water is mildly alkaline, with pH value ranging from 7.5 to 8.1. Electrical
conductivity (EC) value varies from 148 to 229 µS/cm, with an average of 191. Total dissolved solid
(TDS = Ca2+ + Mg2+ +Na+ + K+ HCO3

− + SO4
2− + Cl− + NO3

− + SiO2, mg/L) of river varies from
128 mg/L to 224 mg/L, with a mean value of 163 mg/L for the study river, which is higher than the
world average value of 97 mg/L [16]. The total cationic charge (TZ+ = K+ + Na+ + Ca2+ + Mg2+) and
the total dissolved anionic charge (TZ− = HCO3

− + Cl− + NO3
− + SO4

2−) are well balanced within
all NICB (Normalized Ionic Charge Balance) (NICB = (TZ+

− TZ−) × 100%/(TZ+ + TZ−)) below 5%.
Similar to the rivers of Beipan and Nanpan in the upper reaches of the Xijiang River [1], Ca2+ and Mg2+

are dominant cations, while HCO3
− and SO4

2- are the dominant anions, indicating that those waters
are of karstic type. The mean contents of major cations are as follows: Ca2+ (806 µmol/L) > Mg2+

(185 µmol/L) > Na+ (111 µmol/L) > K+ (28 µmol/L). The mean contents of major anions are as follows:
HCO3

− (1612 µmol/L) > SO4
2− (125 µmol/L) > Cl− (110 µmol/L) > NO3

− (83 µmol/L). Contents of Cl−,
NO3

−, K+, and Na+ are relatively low.

3.2. δ34SSO4, δ18OSO4, and δ13CDIC Values

In the study river, the isotopic compositions of riverine sulfate show a narrow range for δ34SSO4

value from −0.5%� in the high flow season to −0.1%� in the low flow season, with a mean value of
−0.4%�; for δ18OSO4, the corresponding range is 3.9%�–10.1%� with a mean value 6.8%�, showing
a distinct temporal variation. More depleted δ18OSO4 values are observed in the high flow season
relative to those in the low flow season for the study river. The S and O isotopic compositions of sulfate
in this study are in agreement with previous studies [26].

In order to calculate the partial pressure of CO2 (pCO2), we used the temperature dependence
of thermodynamic constants [27]. The pCO2 ranges from 846 µatm in the high flow season to 3999
µatm in the low flow season with a mean value of 1612 µatm in river water, two to eleven times
higher than that of the atmosphere (349 µatm). The δ13CDIC values range from −16.2%� in the low
flow season to −8.0%� in the high flow season, with an average value of −12.9%�, also showing a clear
temporal change.

4. Discussion

4.1. Solute Content-Discharge (C-Q) Relationship

In this study river, the slopes (b) are negative, and CVC/CVQ < 0.5 for weathering products such as
Ca2+, Mg2+, HCO3

−, Na+, K+, SO4
2−, and Cl− signal an inverse relationship between solute content

and discharge and indicate dilution, which is common for geogenic solutes, as shown in Figures 2 and 3.
Geogenic solutes from carbonate weathering (such as Ca2+, Mg2+, and HCO3

−) show near chemostatic
behavior, which can be attributed to the fast kinetics of carbonate weathering processes [12,28]. Na+

exhibits the strongest dilution pattern among all weathering solutes, with a more negative b and lower
CVC/CVQ values. Na+ is mainly sourced from silicate weathering, implying that silicate weathering
is more sensitive to various hydrologic conditions relative to carbonate weathering (indicated by
Ca2+). Except silicate-sourced weathering, K+ is generally considered to be controlled by soil in water

http://www.hydroinfo.gov.cn/
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flow with cation exchange [29]. Hence, K+ can be considered a biological solute, especially during
most storms with large amounts of soil water inputs [17]. As with K+, SO4

2− and Cl− present similar
dilution and chemostatic behaviors, which can be attributed to the geogenic and the exogenous sources.
Exogenous sources are closely associated with soil water as well as atmospheric and anthropogenic
inputs to these ions. Previous studies in this area demonstrated that sulfuric acid is also an important
agent of rock weathering by using 87Sr/86Sr and δ13C [1,24]. The quantitative analysis of the sulfate
source of this investigated river is discussed below. NO3

− contents are the most variable relative
to discharge, implying that exogenous anthropoge nic-printed sources (such as chemical fertilizer,
soil organic nitrogen, manure, sewage waste, and atmospheric input) and relevant biogeochemical
processes (assimilation, nitrification, denitrification) counteract the dilution effects. However, Si shows
strong responses to increasing discharge, which could indicate that, as a result of weathering, Si can
accumulate in the weathered zone. Thus, during intensive rainfall, it can be washed out from this zone
into surface water [30–32]. Moreover, biologically associated solutes such as DOC (dissolved organic
carbon), TOC (total organic carbon), NH4

+, and PO4
3− often yield positive slopes and show flushing

behaviors [17,33], suggesting that the content variability of these biological solutes is minor relative
to discharge. It was reported that contents of biological solutes are often linked to anthropogenic
sources, influencing these solute flushing behaviors in forested and agricultural catchments, especially
in extreme climate events [17,34]. Our results from plots of b versus CVC/CVQ < 0.5 are consistent with
the general interpretation of biogeochemical source presented in the previous study catchment [12,17].
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4.2. Response of Sulfur Source to Hydrological Variations

Riverine sulfate is generally derived from atmospheric precipitation, sulfide oxidation, evaporite
dissolution, and anthropogenic inputs (such as coal mining and combustion). The chemical composition
of river water is insufficient to distinguish dissolved SO4

2− from geologic and exogenous sources, but
the combined values of δ34SSO4 and δ18OSO4 could potentially provide useful constraints to identify
the sulfur sources [3,35,36].

Isotopic signatures of sulfur and oxygen− are well preserved during the congruent dissolution
of evaporites, yielding results of δ34SSO4 varying from 13%� to 15%� and δ18OSO4 from 14.5%� to
32.5%� [37,38]. The δ34SSO4 values exceed 20%� along with high contents of Ca2+ and SO4

2- in the
shallow groundwater of the North Chinese Plain, which are associated with the evaporites (such as
gypsum) dissolution [39]. The oxidative weathering of sulfide, which provides riverine sulfate, usually
produces a more negative δ34SSO4 value; meanwhile, typical δ18OSO4 values of reduced sulfur oxidation
vary from −5%� to 4%� [40], which is consistent with the values of δ34SSO4 and δ18OSO4 in the studied
river water samples. In the Wujiang River, the oxidation of sulfides (averaging 73%) contributes most of
the riverine sulfate [3]. Additionally, Turchyn et al. [35] reported that the headwaters of the Marsyandi
River exhibit light δ34SSO4 and δ18OSO4, which can be attributed to the anoxic weathering of pyrite
via Fe3+. Southern China is also one of the regions that is most affected by acid rain contributed by
high sulfur-content coal combustion. Li et al. [41] proved that the source of dissolved riverine SO4

2−

in the Jialing River is likely to be due to high S content coal combustion and oxidation of sulfides
during the weathering of coal-containing strata. The δ34SSO4 values of rainwater in Guiyang City are
reported to have an average of 4.6 ± 5.0%� [42]. The δ18OSO4 values of atmospheric precipitation are
reported to be from 7%� to 17%� [40]. The δ18OSO4 of the Liujiang River averages 6.8%�, which shows
the dominant contribution of atmospheric input to sulfate in the river water. As indicated by diagrams
of δ34SSO4 versus δ18OSO4 in the Liujiang River (Figure 4), riverine sulfate is mainly sourced from three
major sources, including atmospheric precipitation, sulfide oxidation, and evaporites. Although a
potential contribution from anthropogenic input can affect the sulfur levels [43], previous related works
demonstrated that anthropogenic input only contributes a small fraction in the chemical weathering
processes in the study area [23,24,44]; hence, the anthropogenic input to riverine sulfate can be ignored.
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According to the discussion above regarding the sulfur sources in the Liujiang River, for the
δ34SSO4 of the river water, a balanced equation could be calculated based on the following equation:

δ34S SO4 riv = Fat × δ34S SO4 at + Fsul × δ34S SO4 sul + Fgyp × δ34S SO4 gyp (1)

Fat + Fsul + Fgyp = 1 (2)

where Fat, Fsul, and Fgyp are the corresponding relative contributions of SO4
2- from atmospheric

precipitation, oxidation of sulfide, and gypsum input. The end-members can be assigned as follows:
δ34SSO4 at = 1.4%�, δ34SSO4 sul = −13%�, and δ34SSO4 gyp = 25.7%�. Specific analysis can be found in
related studies [46]. The fractions of SO4

2- contributed by the three end-members to the Liujiang River
were estimated by using the IsoSource (v1.3, http://www.epa.gov/wed/pages/models) program with an
increase of 1.0% and a mass balance tolerance of 0.5%. From Figure 5, it can be seen that atmospheric
precipitation (averaging 52%) and the oxidation of sulfide (averaging 35%) are the major sources of
SO4

2− in the study river, followed by gypsum (averaging 13%). The values of Fsul and Fgyp contribute
to riverine sulfate and show negative relationships with increasing discharge, indicating that these
geological sulfate sources exhibit strong dilution behavior with respect to discharge change, while
the Fat values show positive relationships with discharge changes. Such variations in hydrological
connectivity can be attributed to the geogenic sulfate-rich groundwater predominant in the low flow
season and greater contributions from an exogenous source, such as low content of atmospheric
precipitation and soil water in the high flow season, which are the main drivers of the chemostatic
behavior of total riverine sulfate responding to increasing discharge [17]. Therefore, these results
suggest that the specific dual isotopic characteristics of riverine sulfate not only reflect the mixing
of compositionally distinct end-members but play an important role in better understanding the
hydrological variability of riverine sulfate sources in the studied watershed across multiple events
and years.

http://www.epa.gov/wed/pages/models
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4.3. Chemical Weathering and CO2 Consumption Are Affected by Climate Variability

Along with the comparison of similar geological backgrounds (predominantly carbonates) from
world rivers, good relationships are observed between Ca2+/Na+ vs. HCO3

−/Na+ (Figure 6a) during
a hydrological year in the study river. All river waters fall on a line showing the mixing between
carbonate and silicate end-members. River water samples contain more carbonate signature in the
high flow conditions than those in the low flow conditions, which can be attributed to, as previously
discussed, the stronger chemostatic behavior of carbonates weathering (indicated by Ca2+) than
silicates weathering (indicated by Na+). As Figure 6b shows, the water chemistry of the studied river is
attributed to carbonate weathering involving not carbonic acid but sulfuric acid, which can be mainly
sourced from atmospheric precipitation and sulfide oxidation, as analyzed above (see Section 4.2).
For the investigated river, it is worth noting that Ca2+/Na+, HCO3

−/Na+, and SO4
2−/Na+ molar ratios

of river water samples are also positively correlated with temperature, suggesting that, in addition to
discharge, the temperature may be another variable that is usually and highly correlated with chemical
weathering, implying that there may be a negative feedback between climate conditions and chemical
weathering that could help in regulating atmospheric CO2 [2,28,47].

Based on the mass budget equations, a forward model is employed to quantify the relative
contribution of different sources to the dissolved ions in the river [4,24], which were reported in the
related studies [45]. In total, the dissolved ions are dominated by carbonate weathering, accounting for
a 61% average for the investigated river, which is followed by the average contribution of atmospheric
precipitation (17%), anthropogenic input (8%), sulfide oxidation (7%), gypsums (4%), and silicate
weathering (2%) in the Liujiang River (Figure 7). For anthropogenic input, the contribution percentage
generally varies from 6% to 11%. There is an increasing proportional contribution from atmospheric
precipitation responding to increasing discharge, suggesting the dilution effect. The proportion from
sulfide oxidation and gypsums responding to discharge changes is constant with the behavior of
their sulfate geogenic sources in the study river (see above Section 4.2). The proportion from the
contribution of carbonate weathering not only shows a chemostatic behavior in respect of discharge
changes but varies with a similar tendency as the water temperature change. These can be attributed to,
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under high temperature and discharge conditions, hydrological flushing of subsurface materials that
could further induce the water–rock interaction [28], thus leading to the high intensity of carbonate
weathering by reacting with soil CO2 and plant biological processes in the warm-wet environment [25].
Hence, relative to silicate weathering, carbonate weathering shows a stronger chemostatic behavior
to respond with increasing discharge, while silicate weathering has more sensitivity to respond with
increasing discharge, which is in agreement with the observations reported in climatic-impacted world
rivers [9,12,28,48].Water 2020, 12, x FOR PEER REVIEW 9 of 15 
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The CO2 consumption fluxes of silicate weathering (FCO2sil) and carbonate weathering (FCO2carb)
are deducted from the sulfuric acid consumed by silicate and carbonate weathering, respectively.
The total CO2 consumption flux (FCO2 = FCO2sil + FCO2carb) in the Liujiang River ranges from
7.7 kg/day/km2 to 237.8 kg/day/km2, averaging 95.4 kg/day/km2, which is slightly higher than the
values from Xu and Liu [24]. Meanwhile, both discharge and temperature are positively correlated with
chemical weathering, as indicated in Figure 8. In the low flow season, when discharge is < 2000 m3/s
while temperature covers a wide range of change (8.5–29.5 °C), FCO2 is more sensitive to variations in
temperature than discharge; on the other hand, in the high flow season with high temperature, the
discharge is likely to be a dominant driver in transporting the chemical weathering materials and
stimulating the chemical weathering intensity by enhancing the available water–rock reaction surface
area [2]. The observed positive relation between CO2 consumption and climatic conditions in the study
river is consistent with the Loch Vale River [2], the Xijiang River [12], and other relative studies that
used a spatial approach to investigate impacts on CO2 consumption flux by chemical weathering [4,5].
The results from this study have important implications in light of regulations for CO2 in the air; if
discharge and temperature increase in response to climate change, CO2 consumption flux by chemical
weathering may respond similarly, providing a negative feedback on greenhouse CO2 content.
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4.4. Riverine Carbon Dynamic in Hydrological Variation

Dissolved inorganic carbon represents the largest fraction of the annual fluvial carbon flux to
ocean, more than 80% in the Xijiang River [12]. Riverine DIC is mainly sourced from soil CO2,
carbonate dissolution, and atmospheric CO2. Due to the high pCO2 in the study river, the contribution
of atmospheric CO2 is not considered. Soil CO2, in situ biodegradation, and photosynthesis are the
primary drivers of the pCO2 in river water [25,49,50]. Due to the relatively low DOC content and the
few aquatic plants in the study catchment, the contributions of biodegradation and photosynthesis to
pCO2 could be ignored. Thus, soil CO2 should be a dominant control on pCO2 content. As shown in
Figure 9a, the pCO2 contents yield a power-law dilution effect and chemostatic behavior in responding
to discharge variation. The dilution signals for pCO2 contents could result from contributions of
high-content soil CO2 in the low flow conditions that become increasingly exhausted in the high flow
conditions, while the chemostatic behavior for pCO2 contents with respect to increasing discharge
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should be attributed to exogenous soil CO2 discharged into river water, especially in extreme climatic
events such as storms, when the exogenous soil CO2 counteracts the dilution effects [12,25].Water 2020, 12, x FOR PEER REVIEW 12 of 15 
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The soil CO2 decreases δ13CDIC values in the study river, as indicated in Figure 9b, with δ13CDIC

values showing a similar behavior to pCO2 contents responding to hydrological variations. Therefore,
δ13CDIC can be used to constrain the riverine DIC sources. The major vegetation in the study catchment
is C3 plants with a mean δ13CDIC value of −27%� [1]. After considering isotopic fractionation 4.4%� [51],
the δ13CDIC of soil water should be −22.6%�. Carbonate carbon has a mean value of 0%�. Therefore,
the proportions of two DIC sources are calculated as follows:

δ13CDIC riv = FCO2× δ13CCO2 + (1-FCO2 ) × δ13CCarb (3)

where FCO2 is the proportion of soil CO2, and δ13CDIC riv, δ13CCO2 , and δ13CCarb are δ13C values of river,
soil CO2, and carbonate dissolution, respectively. Based on the mixing model, 29%–65% (averaging
43%) of the DIC is sourced from carbonate dissolution, while 35%-71% (averaging 57%) of the DIC is
from soil CO2. As presented in Figure 9c,d, the contributions of carbonate dissolution to riverine DIC
show chemostatic behavior responding to increasing discharge, while the contribution of soil CO2

presents a linear relationship with increasing discharge, implying that soil CO2 is a dominant driver
of the chemostatic behavior of total riverine DIC with increasing discharge, which is in agreement
with previous studies [25]. Therefore, under high temperature and discharge conditions, rainwater
infiltrates into the soil and flushes excessive biological solutes, including soil CO2 into the river, leading
to increasing the amounts of soil CO2 to total DIC in the high flow season compared to those in the low
flow season.

Our calculation indicates that fluvial DIC content and its carbon isotope primarily reflect the
mixing of compositionally distinct riverine DIC sources and biogeochemical processes in response to



Water 2020, 12, 862 12 of 15

hydrological changes. These results are important, as they clearly show that physical and biological
processes affect the DIC pool with respect to hydrological variations, and the δ13CDIC can be used
to constrain carbon evolution. The riverine dissolved carbon dynamic in response to hydrological
variations can be considered a positive feedback in the geological and the biological carbon cycle and
a negative feedback in the acidification of ocean by the absorption of atmospheric CO2. Therefore,
investigations of long-term carbon dynamics within a single catchment and across multiple catchments
incorporating data from multiple storm events over many years should be campaigned.

5. Conclusions

According to a high-frequency variation in riverine solutes contents and multiple sable isotopic
tracers (carbon and sulfur isotopes), this study investigated chemical weathering, CO2 consumption,
and riverine solute sources and their contributions impacted by climatic variabilities in the typical
monsoonal river. The variability of solute content is generally much smaller than that of climatic
variability, which would support a similar chemostatic behavior. The main reason can be attributed
to carbonates dissolution and biological processes. In this study catchment, carbonate weathering
controls the major solute source and shows strong chemostatic behavior owing to the rapid dissolution
characteristics. On the other hand, along with high temperature, primary production is increased in
the high flow season, leading to the influx of δ13C-depleted soil CO2 being the main driver controlling
the riverine DIC dynamics. Moreover, the positive correlations between CO2 consumption fluxes and
discharge and temperature provide a negative feedback on the greenhouse CO2 in the atmosphere.
Quantifying the strength of the feedback between CO2 consumption fluxes and climate change in a
range of catchments needs to be addressed in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/3/862/s1,
Table S1: The hydrochemistry and stable isotopes for the Liujiang River.
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