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Abstract: This research aims to assess the impact of climate change on water balance components in
irrigated paddy cultivation. The APEX-Paddy model, which is the modified version of the APEX
(Agricultural Policy/Environmental eXtender) model for paddy ecosystems, was used to evaluate
the paddy water balance components considering future climate scenarios. The bias-corrected
future projections of climate data from 29 GCMs (General Circulation Models) were applied to the
APEX-Paddy model simulation. The study area (Jeonju station) forecasts generally show increasing
patterns in rainfall, maximum temperature, and minimum temperature with a rate of up to 23%, 27%,
and 45%, respectively. The hydrological simulations suggest over-proportional runoff-rainfall and
under-proportional percolation and deep-percolation-rainfall relationships for the modeled climate
scenarios. Climate change scenarios showed that the evapotranspiration amount was estimated
to decrease compared to the baseline period (1976-2005). The evaporation was likely to increase
by 0.12%, 2.21%, and 7.81% during the 2010s, 2040s, and 2070s, respectively under Representative
Concentration Pathway (RCP)8.5, due to the increase in temperature. The change in evaporation was
more pronounced in RCP8.5 than the RCP4.5 scenario. The transpiration is expected to reduce by
2.30% and 12.62% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively, due to
increased CO, concentration. The irrigation water demand is generally expected to increase over time
in the future under both climate scenarios. Compared to the baseline, the most significant change is
expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found by
0.36% in 2010s under RCP4.5. The increment of irrigation does not show a significant difference; the
rate of increase in the irrigation was found to be greater RCP8.5 than RCP4.5 except in the 2070s. The

Water 2020, 12, 852; doi:10.3390/w12030852 www.mdpi.com/journal/water


http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-6640-8082
https://orcid.org/0000-0003-4782-5854
https://orcid.org/0000-0003-3494-5371
https://orcid.org/0000-0002-1369-1002
https://orcid.org/0000-0002-6847-2472
https://orcid.org/0000-0002-0021-9227
https://orcid.org/0000-0003-0587-6629
https://orcid.org/0000-0002-7337-8165
http://dx.doi.org/10.3390/w12030852
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/12/3/852?type=check_update&version=3

Water 2020, 12, 852 2 of 20

findings of this study can play a significant role as the basis for evaluating the vulnerability of rice
production concerning water management against climate change.

Keywords: water balance; paddy field; APEX-Paddy model; climate change; irrigation water demand

1. Introduction

Human activities since the industrial revolution have led to increased CO, emissions from the
atmosphere causing anthropogenic climate change. Global mean temperature increase is expected to
rise up to 4 °C in the 21st century [1] and will have a dramatic impact on water resource quality and
worldwide water demand. In addition to global warming, future climate factors such as precipitation,
solar radiation, and wind velocity will also change. The change of climate will likely affect the
hydrological cycle, such as evapotranspiration, runoff, percolation, deep percolation, and irrigation
demand. Increased intensities of precipitation will lead to higher rates of surface runoff [2], while a rise
in temperature will cause higher evapotranspiration and, in turn, further enhance the irrigation water
demand [3]. As climate change is a global phenomenon, there are considerable regional differences
in the impacts. Projections show that the future climate will vary significantly by region. Therefore,
the effects of climate change on the water balance needs to be quantified from regional to local (basin)
scales to cope with future challenges of water management.

Global Circulation Models (GCMs) are the best source for generating future climate change
scenarios. However, most of the global climate models are typically run on coarse horizontal scales
(usually 100-300 km). Therefore, the GCM outputs are characteristically incapable of assessing the
climate change impact of any regional or local scale. The forecasts of climate variables need to be
downscaled from the GCM resolution to obtain local climate change information at the desired scale,
using either dynamical or statistical methods (IPCC, 2001) [4,5]. Dynamic downscaling of climate data
is more representative of fine physical processes than statistical downscaling data, but high-priced
computing resources are needed compared to statistical downscaling [6-8].

Conversely, there is always uncertainty in climate change research due to the presence of a number
of climate models and scenarios. Since uncertainties usually emerge from a mixture of climate models,
downscaling methods and hydrological models [9], taking into account the uncertainties associated
with all of the above sources, will have a significant impact on the simulation results and hence on
the modeling output [10]. One way to tackle this ambiguity is to include multiple climate models
and efficiently measured emission scenarios using a statistical approach which is well accepted in
the scientific community and commonly used in downscaling climate projections [11]. Hence, the
outputs of a larger number of GCMs are therefore better at reflecting the systemic uncertainty in
climate models [12]. The Coupled Model Intercomparison Projects (CMIPs) of the World Climate
Research Program (WCRP) have made outputs of the general circulation model (GCM) accessible,
phase-wise. This is designed in phases to promote changes to the climate model; however, these items
have played an important role in measuring climate variability. Sperber et al. [13] have shown that
the CMIP5 models are more capable of capturing certain aspects of the Asian monsoon environment.
According to the results of the cited studies, the temperature would rise, and rainfall distribution
would be different under climate change. Given the above evidence, predicting future changes in the
hydrological cycle by using climate data from the new sets of CIMP5 GCM projections on a regional
scale is of supreme importance.

In South Korea, agricultural water withdrawals account for approximately 47% of total water use
in the country (Ministry of Construction and Transportation, Republic of Korea [14]. Most agricultural
water use is for paddy rice irrigation. Moreover, over 80% of total paddy fields (777,000 ha) have been
irrigated; thus, irrigation water in paddy fields is the main problem in terms of agricultural water
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management. Science climate change will change the patterns of temperature and rainfall, it will
further impact directly on the water balance because of the crop water needs [15]. As the requirement
for irrigation water depends on the balance between rain and evapotranspiration (ET), the demand
for irrigation is highly sensitive to global climate change [16] and is very sensitive to changes in
precipitation, atmospheric CO, concentration, and temperature [17]. Jee et al. [18] evaluated the effect
of global climate change on agricultural water requirements in South Korea’s Nakdong River basin
under scenarios A1B, A2, and B1 from the Special Emission Scenarios Study (SRES). They found that
demand for agricultural water increased at nearly every period, with the exception of 2011-2040,
due to climate change. Chung et al. [19] found that, under a climate change scenario, the use of
rice-consuming water throughout the growing period was expected to increase considerably within
the 2050s and 2080s. After transplantation in the study areas, it could increase from the baseline value
of 534 mm by 2.2, 5.1, and 7.2% over the 2020s, 2050s, and 2080s, respectively. It is therefore necessary
to understand the impact of climate change on the change of available rainfall, evapotranspiration,
and irrigation water requirements, simultaneously, during South Korean paddy cultivation.

The impacts of climate change on the water balance cannot be measured precisely because of the
complicated interaction mechanisms between climate influences, the water cycle and the processes of
vegetation [20]. In this case, hydrological modeling is seen as an important approach to understanding
the powers of the hydrological cycle and exposes its mechanism for reacting to climate change [21-23].
Over the year, several mathematical models were developed to simulate water balance, and nutrients
fate in flooded rice cultivation in particular, such as Chemicals, Runoff, and Erosion from Agricultural
Management Systems in Paddy fields (CREAMS-PADDY) [24], Groundwater Loading Effects of
Agricultural Management Systems in paddy fields (GLEAMS-PADDY) [25], and the Hydrological
Simulation Program-FORTRAN model in Paddy fields (HSPF-Paddy) [26] was developed for field
scale simulation. However, these models are not used for the impact of climate change, considering
the increasing CO; concentration, to simulate water balance in paddy cultivation. In addition to
forcing climate, increasing concentrations of atmospheric CO, influence the water balance through
changes in transpiration, plant structure, and distribution. Leipprand and Gerten [27] quantified
CO; effects on evapotranspiration, soil moisture and runoff under conditions of possible global and
regional natural vegetation using a climate-forced biosphere model (1961-1990) and found that CO,
effects add substantial variability to hydrological processes at both levels. Therefore, it is essential to
consider increasing CO, concentration to estimate climate change effects on water balance components
in irrigated paddy environment.

Recently, the Rural Development Academy (RDA), South Korea, along with Texas A&M
University, revised the original Agricultural Policy/Environmental eXtender (APEX) model to enable
the incorporation of paddy management practices into water balance component simulation, taking
into consideration CO; concentration. Choi et al. [28] have applied the APEX-Paddy model to
estimate crop yield and evapotranspiration in paddy cultivation using the future climate provided
by Korean Metrological Administration (KMA) provided climate change scenarios and found that
evapotranspiration will be reduced in the future. Conversely, APEX-Paddy has also shown to simulate
increasing trends in future evapotranspiration rates by using climate data from the downscaled 9
GCMs in another study by Choi et al. [29]. This inconsistency may have been due to the lack of realistic
climate information. Nevertheless, the use of the APEX-Paddy model, which is the prime motivation
for this research, has not yet been used in a comprehensive study of the impact of climate change on
paddy water balance.

Therefore, taking into account the above facts, the overall objective of this research is to quantify the
impacts of future climate change on the water balance of paddy cultivation. We used the APEX-Paddy
model for the Ikasn region of South Korea in combination with downscaled and bias-corrected CMIP5
GCM outputs of various climatic parameters. This study will help local water managers, farmers,
researchers and policy makers understand the potential impacts of climate change and establish
adaptation strategies for local agricultural water management.
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2. Materials and Methods

2.1. Study Area and Experiment Field Management

The experiment was conducted at the Seoul National University research field (35.9016°N,
127.0331°E), located near Ikasn city of the Jeonbuk province in South Korea, as shown in Figure 1. The
predominant soils at the Iksan experimental site are Jeonbug series. The series Jeonbug is a poorly
drained silty loam soil series built on the fluvio-marine plain. The upper layer of the soil’s physical
properties (~20 cm) contains 11.1% sand, 71.1% silt, and 17.8% clay. The daily metrological records of
this study were retrieved from the Jeonju metrological station. Total rainfall in the area during the
cropping season (May to October) ranged from 707.1 mm to 1860 mm in 1976-2005, and the average
annual rainfall of 30 years was around 1300 mm, whereas the average maximum and minimum
temperatures were around 27 °C and 17 °C, respectively. Seasonally, the monsoon, a rainy season in
Korea between July and August, is highly influenced by precipitation at the study sites. Approximately
52% of the annual rainfall occurs in this region during this time, and part of the increasing rice season
includes the monsoon period.
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Figure 1. Geographical location of the study area. Schematic map of experimental plots located near
Ikasn city of the Jeonbuk province, South Korea. Map showing the location of Jeonju weather station.

A “Saenuri’ Japonica rice variety is seeded and grown in nursery beds for 25-30 days and then
transplanted after 1.5-2 leaves appear. Transplantation is the most common rice cultivation process,
and is carried out in paddy fields between mid-May and mid-June. The land preparation (i.e., puddling)
and transplantation process occurs between May and August, during which water demand reaches
its peak. Normally the rice is harvested in October. The rice is usually harvested in October. Paddy
fields are adequately irrigated in paddy cultivation to ensure ponding of the soil. Korea’s paddy fields
are surrounded by earth berm of around 10-30 cm in height and filled with water 3-10 cm in depth
for most of the growing season to control weeds and to maximize rice yield [30]. Artificial surface
drainage of 1 to 2 weeks in the midseason is a common practice in Korea to improve air supply to the
rice root zone and increase the number of tillers used to lodge robust rice stalk tolerance [31]. Apart
from mid-summer drainage, irrigation water is applied as a continuous flooding condition between
most tillering stages and initiation stages of panicles.
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The experimental paddy fields were 35 m wide, and 110 m long in size, and paddy water level,
outflow and water quality were investigated during the growing season of 2013 to 2015. The standing
water level reached a depth of max. 7 cm. At the time of transplantation, however, the depth was set
at 4 cm. Irrigation water was artificially applied when for a specific period the water level reached
below the ponding depth assigned. Specified management activities dates, including transplantation,
fertilizer and water management are provided in Table 1. A weir was also installed at the paddy
field drainage outlet to measure the drainage water amount. The outlet weir was also used to control
the ponding depth inside the paddy field. An ultrasonic water level gauge was used to measure
paddy ponding depth. The water samples of paddy fields were collected at regular intervals of 15
days. However, rainfall-runoff samples were collected when a major storm occurred. Continuous
monitoring of irrigation and surface discharge water at the paddy field was performed for model
calibration and validation at the Iksan site from June to September 2013, and from May to September
2014 and 2015, respectively.

Table 1. Farming activities at the experimental paddy fields.

Operation 2013 2014 2015
Start irrigation 8 June 20 May 17 May
Fertilizer application 11 June 25 May 20 May
(N =126 kg, P =57 kg) (N =126 kg, P = 57 kg) (N =126 kg, P = 57 kg)
Tillage operation 12 June 25 May 20 May
Transplanting 13 June 29 May 28 May
Irrigation ponding 14 June 30 May 28 May
Mid-term dry period 7-21 July 11-19 July 26 June-30 July
Harvesting 21 October 15 October 15 October

2.2. Model Selection and Setup

APEX is a watershed model for simulating the effect of agricultural management on water quality,
nutrient cycling and carbon dynamics in soil-plant systems running on a day-to-day basis [32,33]. APEX
defines land areas with unique soil property, vegetation or land use, and the land slope as subareas.
Thus, a watershed is delineated into a series of sub-areas linked hydrologically by a stream network.

The APEX-Paddy model was developed because the APEX model is not designed to simulate
ponded rice paddy field conditions. The APEX-Paddy model is a revised version of the APEX model
which is physically based on field scale to more accurately simulate water balance components such
as surface discharge, irrigation, percolation, deep percolation, etc., from paddy fields under ponded
conditions [34]. In this study, the APEX-Paddy model was applied to estimate the water balance
components from rice paddy fields.

Soil characteristics are essential factors when modeling discharge from a basin. In this study, the
hydrologic soil group ‘B” was selected since paddy fields were terraced. In APEX, a user may either
create a new weather station or use one of the default stations defined by the program [35]. As APEX
works on a daily time step, Jeonju weather station data were used to prepare a Daily Weather File
(.DLY). Six parameters were used in the weather data file: precipitation, maximum and minimum
temperature, solar radiation, relative humidity and wind speed for the period 1976-2015, which were
used for the calibration and validation of the model.

APEX provides five different options for estimating potential evaporation such as Hargreaves,
Penman, Priestley-Taylor, Penman-Monteith, and Baier-Robertson. Penman and Penman-Monteith are
the most data intensive methods requiring solar radiation, air temperature, wind speed and relative
humidity as inputs. A few GCMs, however, are limited to providing certain parameters, such as solar
radiation, wind speed and relative humidity. In this study, therefore, the Hargreaves and Samani
equation [36] were used for future estimation of possible evapotranspiration (PET). Hargreaves is a
temperature-based model and uses temperature and extraterrestrial radiation to estimate daily PET. It
is obvious that the Hargreaves method provides the best estimate of PET when data are not available
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on relative humidity, and wind speed [37]. When a sub-area is configured to simulate the management
of paddy rice, APEX-Paddy moves from the Soil Conservation Service Curve Number SCS-CN [38]
system to a weir discharge mechanism to regulate the paddy water balance. APEX-Paddy switches
back to default sub-area modules to model upland non-ponding land processes, such as the SCS-CN
system for runoff estimation, during off-seasons or when paddy field management does not introduce
water ponding.

The CO, data was collected from the United Nations Food and Agriculture Organization (FAO)
input database built model known as the FAO-AquaCrop 5.0 model, previously used by Choi et al. [28].
The carbon dioxide concentration input of the model is represented by the RCP scenario of the 5th
Intergovernmental Panel on Climate Change (IPCC) report. Average values of CO, concentration for
each period applied to the APEX-Paddy model are shown in Table 2.

Table 2. The CO, data was obtained from the input database of the FAO-AquaCrop 5.0 model.

Period
m Historical (1976-2005) (ppm) 2010 (ppm)  2040s (ppm)  2070s (ppm)
Scenario

RCP4.5 363.09 424.88 497.47 532.43
RCP8.5 363.09 435.65 578.07 807.17

2.3. Model Calibration and Validation

As calibrating a model with a greater number of parameters is a difficult task, a sensitivity analysis
was done to reduce the calibration effort. The parameter selection for sensitivity analysis was made
based on the characteristics of the study area as well as the literature review.

For model calibration and sensitivity analysis the APEX-auto Calibration and UncerTainty
Estimator (APEX-CUTE) programs (4.1 edition, Texas A&M AgriLife Research, Temple, TX, USA,
https:/epicapex.tamu.edu/apex/) were used. APEX-CUTE offers a sensitivity analysis using the Morris
method [39]. The sensitivity analysis was conducted to determine the rate of change in model outputs
based on the degree of change to the value of a sensitive parameter. This step is essential to identifying
and defining parameters that influenced the model outputs most. APEX-CUTE uses a Dynamically
Dimensioned Search (DDS) algorithm for model calibration [40]. The DDS algorithm drives the model
by sequentially applying candidate values as input data until the objective function maximum value is
derived, and then calculating the model’s actual statistics. To generate another candidate value that is
added to the model, random changes are made to the optimized value. APEX-CUTE is programmed
to replicate the above cycle as many times as the predetermined objective function is evaluated. The
calibration process involved editing parameter values, running the model, and assessing the results.
Continued changes in parameter values depended on the over or under-prediction of the model results.
If the final fit is deemed adequate, the model is considered calibrated.

The model was evaluated based on the statistical relationship between the simulated and observed
surface discharge outputs. It is recommended that both graphical techniques and quantitative statistics
be used in model evaluation [41]. Three different evaluation statistics were used to quantify this
study, including coefficient of determination (R?), Nash-Sutcliffe Efficiency (NSE), and Percent Bias
(PBIAS). One of the most commonly used criteria in model performance is the R? correlation coefficient
(Equation (1)), which is used to determine the goodness of fit [41]. Values for R? (bound by 0 and 1)
that are closer to 1 indicate a better fit, with an amount of 1 indicating a perfect match for comparing
predicted values to observed data. The NSE suggests that field data means should be used for more
accurate results, rather than the simulated values, where the derived value ranges from 0 to 1.0. The
similar the values and field data that are represented, the closer the derived value is to 1.0 [42]. The NSE
calculation was carried out using Equation (2). PBIAS measures key performance trends by estimating
the number of residuals, the difference between real and predicted data points by standardizing
the amount of data observed [41]. The optimal value for PBIAS is 0, with low-magnitude values
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showing precise simulation of the model [41]. Positive and negative values, respectively, represent
under-estimation of model and bias in overestimation. Calculation of PBIAS was performed using
Equation (3).

Rz:[ LE-H-7) r o
VI(-%)L(y-9)
Z@—XV}
NSE=1-|——— 2
[Z(y—?f ?
[ X(y-x)
PMAS_[—EEB—]XNO (3)

In the equation, x and y are the predicted and observed values, x and y are the means of x’s
and y’s.

Moriasi et al. [41] have proposed evaluation criteria focused on the watershed model’s output
importance. If daily, weekly, or annual R? > 0.60, NSE > 0.50, and PBIAS =+ 15% for surface discharge,
they suggest that model performance can be considered “satisfactory.” In this analysis the model
simulation outcome was evaluated on the basis of these criteria. The process of calibration was
described in detail in the previous study [43].

2.4. Water Balance Model of Irrigated Paddy Field

APEX-Paddy provides a set of new subroutines to simulate water ponding, discharge control,
and paddy management [34]. Figure 2 shows the factors affecting water balance in the paddy fields.
Irrigation should supply the deficiency of water that paddy growth needs. The rise of the capillary
from groundwater is overlooked in this study. Further, given the practices of rice cultivation followed
in South Korea, the bunds are generally restricted before puddling which does not allow for the
puddled layer to spread below the bund. In addition, field topography is almost flat so cross flow
(lateral flow/loss of seepage) through the bunds is not considered.
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Figure 2. Paddy water budget in Agricultural Policy/Environmental eXtender (APEX)-Paddy model.

The time allowed for this study was 24 h. At the end of the day (24 h), paddy field ponding
depth was the sum of the previous day’s paddy field water level and precipitation minus daily
evapotranspiration and infiltration (percolation and Deep percolation). If paddy field water levels
were lower than the irrigation trigger depth (IT), the model was constructed to irrigate by the difference



Water 2020, 12, 852 8 of 20

between the irrigation target depth (TD) and the current paddy field water level as shown in Figure 2.
If the paddy field level was higher than the height of the water, then a drainage or surface discharge
(O) occurred.

The APEX-Paddy model calculates the daily water budget in the following equations:

PD; = PD;_; + RF; @)

IR = TD - PDy,PD; = TD — ET; = Py, if PDy < IT

PD;:PDt—Ot—ETt—Pt, lfPDt>H (5)
24 _1\3/2
Or=7, (1.83819(%) )
h=1 I (6)
PD;j, = PD; - }.0
it
PD; = PD; —ET;—P;, if IT<PD;y <H (7)

where t is the simulation time (day), PD is the ponding depth (mm), PD’ is the ponding depth after
surface discharge, evapotranspiration and runoff loss (mm), RF is the rainfall (mm), IR is the irrigation
(mm), TD is the irrigation target depth (mm), ET is the evapotranspiration (mm), P is percolation (mm),
IT = irrigation trigger depth (mm), O is the overflow or surface discharge (mm), H is the outlet weir
height, and b is outlet weir width (m).

2.5. Future Climate Change Scenarios

A Representative Concentration Pathway (RCP) is a trajectory adopted by the IPCC to concentrate
greenhouse gas (not emissions). In 2014 the IPCC Fifth Assessment Report (AR5) used four methods
for climate modeling and analysis. The strategies represent different climate scenarios which are all
considered feasible, depending on the volume of greenhouse gases (GHG) emitted over the coming
years. The RCPs, originally RCP2.6, RCP4.5, RCP6, and RCP8.5, are numbered to the year 2100
after a possible range of radiative forcing values. RCP4.5 is a long-term, global greenhouse gas
emission scenario, short-lived process, and land-use-land cover stabilizing radiative forcing at 4.5
W/m? (approximately 650 ppm CO,-equivalent) in the year 2100 without ever reaching that value,
while the RCP8.5 combines assumptions approximately high population and relatively slow income
growth with modest rates of technological change and energy intensity improvements, leading in the
long term to high energy demand and GHG emissions in absence of climate change policies [1]. In this
case, the greenhouse gas emissions and concentrations increase considerably over time, resulting in a
radiative forcing of 8.5 W/m? (greater than 1370 ppm CO,-equivalent) at the end of the century [1].

The CMIP5 offers a standard set of GCM model simulations based on common procedures [44].
The climate change scenarios were acquired from outputs of 29 CMIP5 GCMs under two 4.5 and 8.5
RCP scenarios, which were used in this study to determine the impact of climate change on water
balance in irrigated paddy cultivation. Table 3 provides summary information on the GCMs used in
this study. The results of the GCM vary greatly in the spatial resolution and include inherent biases
that need to be adjusted before the climate change impact assessment procedure. In this study, daily
data were downscaled from 1976 to 2100 and bias-corrected against the observation data from Jeonju
weather station by using a simple quantile mapping (SQM) method [45]. The SQM technique performs
independent improvements by observation points and climate variables through an empirical quantile
mapping approach. The SQM followed the three-step process: (1) extracting the GCM grid data
corresponding to the target station, (2) assessing the biases of the retrospective simulations and (3)
correcting the potential predictions by bias. In other words, every GCM has extracted a single grid
that covers the target station. The biases of retrospective simulation outputs for the selected grid
were calculated as opposed to observations. The discrepancies between the simulated functions of
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cumulative distributions (CDFs) and that observed for the retrospective duration were quantified and
then extended for a given percentile to future simulations (Equation (8)):

X;, (t) = Xp (t) + F(_)]is(Fp.sim(Xp (t))) - Fr_;im(Fp.sim<Xp (t))) (8)

where x),(t) and x,(t) denote the bias-corrected and raw future projections on day t, and F(6) and
F71(0) are a CDF of the daily data 6 and its inverse, respectively. The subscripts p.sim, r.sim, and obs
indicate the future projection, retrospective simulation, and observed daily data, respectively.

Table 3. Summary of Coupled Model Intercomparison Projects (CMIP)5 climate models used in

this study.
Model Name Modeling Center Resolution (Lon X Lat)
bcc-csm1-1 . . . L . . 2.81° x 2.79°
becocsml-1m Beijing Climate Center, China Meteorological Administration, China 113° % 1.12°
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.81° x 2.79°
CCSM4 National Center for Atmospheric Research, USA 1.25° x 0.94°
CESM1-BGC National Science Foundation, Department of Energy, National Center for 1.25° % 0.94°
CESM1-CAMb5 Atmospheric Research, USA 2 X0
CMCC-CM . . . e 0.75° x 0.75°
CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 1.88° % 1.86°
CNRM-CM5 Centre National de Recherches Meteorologlques/.Cen.tr.e Europeen de Recherche 1.41° X 1.40°
et Formation Avancees en Calcul Scientifique, France
Commonwealth Scientific and Industrial Research Organisation in collaboration o o
CSIRO-Mk3-6-0 with the Queensland Climate Change Centre of Excellence, Australia 1.88% x 1.86
FGOALS-g2 Institute of Atmospheric Phy51cs, ChhlneseI Acadgmy of Sciences; and CESS, 2.81° x 3.05°
Tsinghua University, China
FGOALS-s2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.81° x 1.66°
GFDL-CM3
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.50° x 2.00°
GFDL-ESM2M
HadGEM2-AO National Institute of Met.eo.rologmal Research/Korea Meteorological 1.88° x 1.25°
Administration, South Korea
HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by 1.88° % 1.25°
HadGEM2-ES Instituto Nacional de Pesquisas Espaciais), UK 687 XL
inmcm4 Institute of Numerical Mathematics, Russia 2°x1.5°
IPSL-CM5A-LR 3.75° x 1.89°
IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 2.50° x 1.27°
IPSL-CM5B-LR 3.75° x 1.89°
Atmosphere and Ocean Research Institute (The University of Tokyo), National
MIROC5 Institute for Environmental Studies, and Japan Agency for Marine-Earth Science 1.41° x 1.40°
and Technology, Japan
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean R R
Research Institute (The University of Tokyo), and the National Institute for 281°x279
MIROC-ESM-CHEM Environmental Studies, Japan
MPI-ESM-LR . 3 R R
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M), Germany 1.88° x 1.86
MRI-CGCM3 Meteorological Research Institute, Japan 1.13° x 1.12°
NorESM1-M Norwegian Climate Centre, Norway 2.50° x 1.89°

Using the non-parametric empirical equation, the sum of daily observation and raw GCMs data
are temporary measurements. According to Gudmundsson et al. [46], as compared with the parametric
approach, the nonparametric approaches showed better success in minimizing systemic bias. This
is because non-parametric approaches use the real distribution of observed and simulated results,
without requiring a distribution function of probability.

Climatological projections are determined by the estimated 30 year (climatological) climate change
over the 2010s (beginning of the century), 2040s (mid-century), and 2070s (end-of-century) as opposed
to the 19762005 baseline.

2.6. Changes Rates

The rates of changes were calculated by considering four (04) different periods. The first period is
the baseline period (Historical, 1976-2005). The three other periods are the projected periods (2010-2039
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(2010s), 20402069 (2040s), and 20702099 (2040s)). For each period, the mean was calculated and then
the rate of changes was calculated using Equation (9).

Xp—Xo

Change rate = %X 100 9)
where Xp is the mean value over the considered projected period, and Xo is the mean value over the
historical period.

3. Results and Discussion

3.1. Model Calibration and Validation

The APEX-Paddy model was calibrated using the daily surface discharge data obtained from
the paddy fields with conventional management during the cropping period of 2013 and 2014. The
statistical measures of the R?, NSE, and PBIAS downscale dynamical for the quantitative test of the
model performance. The results of model performance are displayed in Table 4. The hydrology
sub-module performed well with the statistics of 0.78, 0.65, and 5.41% for R2, NSE, and PBIAS,
respectively, for the calibration period. The hydrological yield simulation model proved to be strong
enough for the long-term application according to Moriasi et al.’s [41] decision criteria. The detailed
calibrated results are found in the previous study [43].

Table 4. Performance statistics for the calibrated APEX-Paddy model, including the coefficient of
determination (R2), Nash Sutcliffe model efficiency equation (NSE), and Percent Bias (PBIAS).

" ion Peri Validation Peri
Variable Statistical Index Calibration Period alidation Period
2013 2014 Entire Period 2015
R2 0.81 0.71 0.78 0.67
Q NSE 0.87 0.40 0.65 0.74
PBIAS (%) -8.04 15 5.41 6.12%

The calibrated APEX-Paddy model was validated using the daily surface discharge data obtained
during the cropping season of 2015 from the paddy fields under traditional management. The R?, NSE,
and PBIAS statistical tests were used to quantitatively assess the model results. Figure 3 displays the
yield of the simulated surface discharge against the values observed for the validation periods.

Calibration period Validation period
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Figure 3. Predicted paddy field discharges are calibrated for the growing season in 2013-2014 and then
validated for the year 2015 at the Iksan experiment site.

The hydrology sub-module performed excellently with the statistics of 0.67, 0.74, and 6.12% for
R?, NSE, and PBIAS, respectively as shown in Figure 3. The predicted values follow the performance
evaluation requirements suggested by Moriasi et al. [41] for the model.
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3.2. Evaluations for Retrospective Simulations of GCMs

Comparison with observed data, including precipitation, maximum and minimum temperature,
was used to assess the reproducibility of outputs from 29 CMIP5 GCMs for the period from 1976 to
2005. The statistical characteristics of each GCM model were compared with an observed median to
analyze each model’s output before (raw) and after bias-correction, and the findings are reported in
Figure 4. The bias-corrected GCM results tended to accurately capture the observed trends of annual
precipitation, mean maximum, and minimum temperature, whereas the raw GCM outputs showed
significant biases from the observed values.
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Figure 4. Comparison of raw (left) and bias-corrected (right) reproducibility with observed data for
Jeonju stations in terms of the annual precipitation, mean maximum temp. (June-September), and
mean minimum temp. (June-September).

In particular, the annual precipitation and maximum temperature of the raw GCM outputs tended
to be underestimated systematically, while minimum temperature tended to be overestimated. Most of
the errors were removed after bias-correction; only fractions of errors that originated from the temporal
pattern of rainfall and temperature have remained.

3.3. Test of the Automatic Irrigation System

The APEX-Paddy model can also simulate irrigation amounts for different management practices
using an automatic irrigation option. For automated irrigation simulation, the target and minimum
ponding depth need to be provided through the APEX-Paddy management file.

The applicability was during the 2013 and 2014 cropping season of an automated irrigation method
used to simulate irrigation amounts for traditional management practices. The comparison of observed
and model-simulated annual irrigation amount is shown in Figure 5. The overall performance of the
auto irrigation simulation was reasonably good in estimating the irrigation amount. Results show
that the PBIAS value (+) in 2013 (8.42%) was less than in 2014 (13.3%), of which average would fit
into a satisfactory level. Therefore, the conventional management practice with 2013 can be used for
long-time simulations under climate change scenarios.
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Figure 5. Comparison of observed and simuated irrigation amount for 2013 and 2014 applying the
auto-irrigation option of APEX-Paddy model.

3.4. GCM Skills in Reproducing Surface Discharge

Reproducibility of evapotranspiration, surface discharge, and irrigation was evaluated through
model outputs calculated from bias-corrected GCMs projected climate data, which were compared
with the observed model values calculated from the weather station data from 1976 to 2005. The
average evapotranspiration, surface discharge and irrigation from 29 GCMs for the same period were
considered as historical outputs over 30 years. Overall, the statistical index (PBIAS) of the model
showed reasonable consistency between the simulations from bias-corrected GCMs projected climate
data and observed station data.

Table 5 presents the simulated results of evapotranspiration, surface discharge, and irrigation
in the comparison between the GCMs outputs and the weather station data. It was found that the
simulation of evapotranspiration and surface discharge from GCMs outputs tended to be lower than
the observed one, while irrigation presented a higher value. Overall, PBIAS statistics were reasonably
small enough to fit into the satisfactory level, as suggested by Moriasi et al. [41].

Table 5. Comparison of surface discharge calculated from observed climate data and bias-corrected
General Circulation Models (GCMs) data for 1976-2005. Values in parentheses refer to the standard
deviation of the results over the GCMs.

Water Balance Components Evapotranspiration Surface Discharge Irrigation
MME of GCMs 517.60(x 4.49) 375.44 (+ 18.1) 633.57 (+ 30.08)
Observed 533.84 382.25 613.25
PBIAS (%) 3.04 1.78 3.31

3.5. Future Change in Precipitation, Maximum and Minimum Temperature

Total precipitation, and maximum and minimum temperature of the cropping period (June to
September) over the GCMs were evaluated in the 2010s, 2040s, and 2070s, compared to the baseline
period (1976-2005) under the RCP4.5 and RCP8.5 scenarios (Figure 6). The projected percentage change
in precipitation, and maximum and minimum temperature tended to increase in the future over the
experimental areas, as shown in Table 6.
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Figure 6. Percentage (%) change of total precipitation, mean maximum temperature and minimum
temperature during the cropping period (June-September) in Jeonju metrological station for the 2010s
(2nd column), 2040s (3rd column), 2070s (4rd column) considering RCP4.5 (left side) and (2) RCP 8.5
(right side) scenarios relative to the historical period (1st column) considered as baseline (1976-2005).

Table 6. The multimodal ensemble (MME) means of historical agroclimatic and water balance
parameters, and climate change period and percent change in comparison to the historical period
in parenthesis.

Parameters RCP4.5 RCP8.5
Historical 2010s 2040s 2070s Historical 2010s 2040s 2070s
S 934.56 968.69 986.12 916.42 981.91 1059.58
Precipitation (mm) 86146 "¢ 4o (1p44)  (1a47)  SOM40 g3y (1398  (23.00)
° 33.31 31.53 32.12 36.61 32.34 34.16
Tmax (°C) 28.89 (15.32) (9.15) (11.22) 2889 (26.73) (11.95) (18.24)
A 21.21 22.54 23.17 21.30 23.01 24.80
Tmin (°C) 1981 708) 1377 697y 98 qo10)  (1990)  (44.69)
Evapotranspiration 483.18 476.85 463.87 447.11 483.18 528.02 513.71 500.58
(mm) : (-131)  (-4.00)  (-7.46) : (2.01) (-0.75)  (-3.29)
. 234.94 237.97 239.99 236.79 241.73 254.96
Evaporation (mm) 236.50 (~0.66) (0.62) (1.48) 236.50 (0.12) (2.21) (7.81)
Transpiration 281.11 291.54 285.20 274.64 281.11 291.22 271.98 245.62
(mm) : (3.71) (1.46) (~2.30) : (3.60) (-325)  (-12.62)
Surface discharge 275.45 419.1 442 .83 460.10 275.45 399.24 463.61 518.04
(mm) : (11.63) (17.95) (22.55) : (6.34) (23.48) (37.98)
. 202.70 187.93 184.12 194.46 181.48 188.95
Percolation (mm) 208.79 (~2.92) (~9.99) (-1182) 208.79 (~6.87) (~13.08) (=9.50)
Deep percolation 18.35 17.68 16.58 16.02 1835 17.15 16.17 15.28
(mm) ‘ (—3.66) (-9.67)  (-12.70) : (-6.54)  (-11.86)  (-16.72)
Irrigation (mm) 616.36 618.55 627.68 633.57 616.36 625.27 636.16 632.22

(0.36) (1.84) (2.79) (1.45) (3.21) (2.57)
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According to Table 6, the precipitation, and maximum and minimum temperature are expected
to increase by 8.49%,15.72%, and 7.08%, respectively under RCP4.5, while 6.38%, 26.73% and 10.10%
increase under RCP8.5, respectively, as compared to the baseline period during beginning of the
century (the 2010s). An increase of 12.44% in precipitation, 9.15% in maximum temperature, and
13.77% in minimum temperature were also projected by the middle of the century (the 2040s) under
RCP4.5, compared to the baseline period. However, the most significant increases in rainfall, and
maximum and minimum temperature of 13.98%, 11.95%, and 19.90%, respectively, were projected for
during the middle of the century (the 2040s) under RCP8.5. Precipitation was also expected to increase
by 14.47% and 23.00% by the end of the century (the 2070s) under RCP4.5 and RCP8.5, respectively.
The maximum and minimum temperatures were projected to increase by 11.22% and 18.24%, and
16.97% and 44.69% under respective RCP4.5 and RCP8.5 climate scenarios.

Opverall, the dominant feature detected was the widespread precipitation, maximum, and minimum
temperature increase in the 21st century in the Jeonju station area. This result agreed with the previous
study by Li and Kim et al. [47], which reported the gradual increases of 70.9 to 233.8 mm and 1.7
to 5.7 °C in annual precipitation and temperature, respectively, for two periods (2019-2059) and
(2060-2099) under RCP 4.5 and RCP 8.5 climate change scenarios

3.6. Future Change in Evapotranspiration, Transpiration, and Evaporation

The evapotranspiration (ET), transpiration, and evaporation of the cropping period (June to
September) over the GCMs were evaluated for the 2010s, 2040s, and 2070s, compared to the historical
period (1976-2005) under the RCP4.5 and RCP8.5 scenarios (Figure 7). The projected percentage
change in averaged evapotranspiration and transpiration tended to decrease in the future over the
experimental areas, compared to the baseline period (historical, 1976-2005), while the evaporation
showed a trend of increase.
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Figure 7. Percentage (%) change of evapotranspiration, transpiration and evaporation during the
cropping period (June-September) in Jeonju metrological station area for the 2010s (2nd column), 2040s
(8rd column), 2070s (4rd column) considering RCP4.5 (left side) and (2) RCP 8.5 (right side) scenarios
relative to the historical period (1st column) considered as baseline (1976-2005).
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The transpiration amount is expected to increase by 3.71% under RCP4.5, while a 3.60% increase
under RCP8.5 is shown, as compared to the baseline period during the beginning of the century (the
2010s). According to Table 6, an increase of 1.46% in transpiration also projected for the middle of the
century (the 2040s) under RCP4.5 scenarios, compared to the baseline period, while a 3.25% decrease
was projected under RCP8.5. It was also expected to be decreased by 2.30% and 12.62% by the end
of the century (the 2070s) under RCP4.5 and RCP8.5, respectively. In the RCP4.5 scenario, a slight
decrease in evaporation by 0.66% during the 2010s was shown. However, an increase of evaporation
by 0.62% and 1.48% was found during the 2040s and 2070s, respectively. In the RCP8.5 scenario, the
change in evaporation was more pronounced than in the RCP4.5 scenario. The increase of evaporation
was likely to increase by 0.12%, 2.21%, and 7.81% compared to the base period during the 2010s, 2040s,
and 2070s, respectively, under RCP8.5 scenarios. In particular, the evapotranspiration amount was
estimated to decrease by 7.46% in the RCP4.5 scenario and 3.29% in the RCP8.5 scenario by the 2070s
compared to the baseline. However, only an increased amount was found during the 2010s under
RCP8.5, namely, by 2.01%.

Evapotranspiration (ET) is caused by a combination of factors associated with increasing CO,
concentrations, including warmer temperatures and reduced conductivity of bulk canopies. Anincrease
in air temperature allows for the saturation deficit to rise, leading to higher evaporative demand in the
air and higher ET levels. Nevertheless, increasing concentrations of CO, in the atmosphere are likely
to lead to some reduction in stomatal conductance, which will minimize transpiration levels for the
canopy. Because of the effects of increasing temperature, the stomatal closure under elevated CO; has
a quantitatively greater effect in decreasing transpiration levels than increasing transpiration rates.
The ET values reflect the amount of water lost, and must therefore be supplemented by irrigation
and/or rainfall.

3.7. Future Change in Surface Discharge

The impacts of future climate change on surface discharge were evaluated using the APEX-Paddy
model. A total of 29 bias-corrected CMIP5 GCM models outputs of RCP4.5 and RCP8.5 climate
scenarios were applied to the surface discharge evaluation, and future projection results were arranged
for the baseline period (historical, 1976-2005) and the three periods (the 2010s, 2040s, and 2070s)
(Figure 8). The surface discharge generally expected to increase over time in the future under both
climate scenarios.
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Figure 8. Percentage (%) change of surface discharge during the cropping period (June-September) in
the Jeonju metrological station area for the 2010s (2nd column), 2040s (3rd column), 2070s (4rd column)
considering RCP4.5 (left side) and (2) RCP 8.5 (right side) scenarios relative to the historical period
(1st column) considered as baseline (1976-2005).

According to Figure 8, an increase in surface discharge is simulated in all projections for different
time steps. Surface discharge varied the most from 318.44 to 616.50 and from 304.81 to 829.35 mm
during the 2070s for respective RCP4.5 and RCP8.5 scenarios over the GCMs. Compared to the baseline;
the most significant change is expected to increase in the 2070s by 37.98% under RCP8.5, while the
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lowest increase was found by 6.34% in 2010s under RCP8.5 as shown in Table 6. The increasing rate is
comparatively higher in RCP8.5 than RCP4.5 in all-time steps except in the 2010s. It makes sense, as
there is a strong positive relationship between surface discharge and precipitation amount.

3.8. Future Change in Percolation and Deep Percolation

The impacts of future climate change on percolation and deep percolation were evaluated using
the APEX-Paddy model. The future projection results were arranged for the baseline period (historical,
1976-2005) and the three periods (the 2010s, 2040s, and 2070s) under RCP8.5 and RCP4.5 (Figure 9).
Overall, the projection shows a decrease in both percolation and deep percolation for all stages
compared to the baseline period in both climate scenarios.
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Figure 9. Percentage (%) change of percolation, and deep percolation during the cropping period
(June-September) in the Jeonju metrological station area for the 2010s (2nd column), 2040s (3rd column),
2070s (4rd column) considering RCP4.5 (left side) and (2) RCP 8.5 (right side) scenarios relative to the
historical period (1st column) considered as baseline (1976-2005).

The percolation varied the most, with a range of 150.25 to 234.01 mm, and 108.21 to 261.66 mm
during the 2070s for respective RCP4.5 and RCP8.5 scenarios over the GCMs. Compared to the baseline,
the most significant change expected is a decrease in the 2040s by 13.08% under RCP8.5, while the
lowest increase found was 2.92% in 2010s under RCP4.5. The decreasing rate is comparatively higher
in RCP8.5 than RCP4.5 in all stages (Table 6).

Furthermore, the deep percolation varied the most, with a range of 11.33 to 19.11 mm, and 10.83
to 20.07 mm during the 2070s for respective RCP4.5 and RCP8.5 scenarios over the GCMs. Compared
to the baseline, the most significant change expected is a decline under RCP8.5 by 16.72% in the 2070s,
while the lowest rise was observed under RCP4.5 by 3.66% in the 2010s (Table 6). The decreasing rate
is comparatively higher in RCP8.5 than RCP4.5 in all stages. The relation between rainfall changes
and the effect on percolation and deep percolation shows the opposite behavior. However, the highest
decrease of percolation was shown for the 2040s under RCP8.5, which is higher than the 2070s (Figure 9).
The percolation is not reflected in the precipitation amount compared to the 2040s and 2070s under
RCP8.5. It may have happened due to the change in precipitation pattern due to climate change.

3.9. Future Change in Irrigation

The impacts of climate change on the irrigation water demand were evaluated using the
APEX-Paddy model. A total of 29 bias-corrected CMIP5 GCMs outputs of RCP4.5 and RCP8.5
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climate scenarios were applied to the irrigation water demand evaluation, and future projection results
were arranged for the baseline period (historical, 1976-2005) and the three periods (the 2010s, 2040s,
and 2070s) (Figure 10). The irrigation water demand was generally expected to increase over time
in the future under both climate scenarios. Irrigation water demand varied the most from 543.98 to
687.21 mm and from 520.37 to 704.60 mm during the 2070s for respective RCP4.5 and RCP8.5 scenarios
over the GCMs.
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Figure 10. Percentage (%) change of irrigation during the cropping period (June-September) in the
Jeonju metrological station area for the 2010s (2nd column), 2040s (3rd column), 2070s (4rd column)
considering RCP4.5 (left side) and (2) RCP 8.5 (right side) scenarios relative to the historical period
(1st column) considered as baseline (1976-2005).

Relative to the baseline, the most significant change expected under RCP8.5 is an increase of 3.21%
in the 2040s, whereas the lowest increase is 0.36% under RCP4.5 in the 2010s (Table 6). The increment
of irrigation does not show a significant difference; the rate of increase in the irrigation was found to be
greater RCP8.5 than RCP4.5 except in the 2070s. In the 2070s, irrigation water demand is expected
to increase by 2.79%, respectively, under RCP4.5, while there is a 2.57% increase under RCP8.5, as
compared to the baseline period.

Although the increment of irrigation does not show a significant difference, it is expected to
decrease due to the decreasing trend of evapotranspiration. However, it is not reflected in the current
study. It may happen due to the changes in the precipitation pattern as well as effective rainfall due
to the effect of climate change. Rainfall was shown to increase overall, while effective rainfall varied
according to the ponding depth of the paddy field as it was affected by rainfall intensity or the number
of rainy days. However, the APEX-Paddy model is limited in its simulation of effective rainfall.

The results of this study are consistent with Choi [48], where he measured the impacts of climate
change on paddy field irrigation water requirements in South Korea using the APEX-Paddy model,
which is expected to increase by up to 2.7 per cent in the during 2070s compared to the base period
(1976-2005), but is not significantly increased.

4. Conclusions

This study examined the characteristics of the rainfall, temperature, and carbon dioxide responses
of the APEX-Paddy model, so as to evaluate the effects of climate change on the water balance
components of paddy cultivation. In the study area, the growing season’s (June-September) rainfall,
and maximum and minimum temperatures for future scenarios were projected to increase by 6.38-23%,
9.15-16.97% and 7.08-44.69%, respectively. For the scenarios modeled, the hydrological simulations
indicate over-proportional runoff-rainfall and under-proportional percolation and deep percolation
rainfall relationships. Overall, the evapotranspiration (ET) amount is estimated to decrease by 7.46%
in the RCP4.5 scenario and 3.29% in the RCP8.5 by the 2070s compared to the baseline. An increase
in air temperature causes the saturation deficit to rise, leading to higher evaporative demand in the
air, resulting in high ET levels. However, increasing concentrations of atmospheric CO, are likely to
contribute to a decrease in stomatal conductance, which will minimize transpiration levels for canopy.
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Due to the effect of rising temperature, the stomatal closure under elevated CO; has a quantitatively
greater effect in reducing transpiration levels than increasing transpiration rate. ET values indicate the
amount of water lost, and must therefore be supplemented by irrigation and/or rainfall. However, in
the present study, the irrigation water demand was generally likely to increase over time in the future
under both climate scenarios. Compared to the baseline, the major change in irrigation water demand
is expected to increase in the 2040s by 3.21% under RCP8.5, while the lowest increase was found to
be 0.36% in 2010s under RCP4.5. Although the increment of irrigation does not show a significant
difference, it is expected to decrease due to the future decreasing trend of evapotranspiration. However,
it is not reflected in this study. Despite the fact that the rainfall will be increased in the future, the
effective rainfall may vary according to the ponding depth of the paddy field as it will be affected by
rainfall intensity or the rainfall days as well as rainfall patterns. According to the previous study by
Chung at el. [41], most of the increased rainfall falls after the peak demand period of rice cultivation
in the future resulted in increased irrigation demand in South Korea. Therefore, it is most needed
to calculate effective rainfall in the modeling approach to justify this study’s results. However, the
APEX-Paddy model application is limited to effective rainfall measurement.

The APEX-Paddy model is expected to be used as a tool for water management plans considering
climate change and for vulnerability assessment of rice productivity. This study has forecast changes
in the demands of agricultural water from climate change and has provided an index to quantitatively
reflect the water vulnerability of paddy rice. In addition, it has given policy baseline data and adaptive
solutions for agricultural water resources. Nonetheless, climate change projections include some
degree of uncertainty depending on the downscaling techniques or spatial resolution used [49,50].
Therefore, sensitivity analysis may produce different results.

This study refers directly to the Iksan area in South Korea, but indirectly to comparable regions
due to the advantages mentioned above in methodological terms. As a follow-up, APEX-Paddy will
continue to be used to demonstrate the feasibility of implementing best management practices (BMPs)
for sustainable water management in paddy fields at Korea’s national scale, and the results will be
incorporated into agricultural policy development.
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