
water

Article

Nonlinear Autoregressive Neural Networks to Predict
Hydraulic Fracturing Fluid Leakage into
Shallow Groundwater

Reza Taherdangkoo 1,* , Alexandru Tatomir 1,2, Mohammad Taherdangkoo 3, Pengxiang Qiu 1

and Martin Sauter 1

1 Department of Applied Geology, Geosciences Center, University of Göttingen, Goldschmidtstr. 3,
D-37077 Göttingen, Germany; alexandru.tatomir@geo.uni-goettingen.de (A.T.); pqiu@gwdg.de (P.Q.);
martin.sauter@geo.uni-goettingen.de (M.S.)

2 Department of Earth Sciences, Uppsala University, Villavägen 16, S-75236 Uppsala, Sweden
3 Department of Artificial Intelligence, Tehran Business School, Golestan St, No. 93, Tehran 3 85433, Iran;

mtaherdangkoo@yahoo.com
* Correspondence: reza.taherdangkoo@geo.uni-goettingen.de

Received: 31 January 2020; Accepted: 14 March 2020; Published: 17 March 2020
����������
�������

Abstract: Hydraulic fracturing of horizontal wells is an essential technology for the exploitation of
unconventional resources, but led to environmental concerns. Fracturing fluid upward migration from
deep gas reservoirs along abandoned wells may pose contamination threats to shallow groundwater.
This study describes the novel application of a nonlinear autoregressive (NAR) neural network to
estimate fracturing fluid flow rate to shallow aquifers in the presence of an abandoned well. The NAR
network is trained using the Levenberg–Marquardt (LM) and Bayesian Regularization (BR) algorithms
and the results were compared to identify the optimal network architecture. For NAR-LM model,
the coefficient of determination (R2) between measured and predicted values is 0.923 and the mean
squared error (MSE) is 4.2 × 10−4, and the values of R2 = 0.944 and MSE = 2.4 × 10−4 were obtained for
the NAR-BR model. The results indicate the robustness and compatibility of NAR-LM and NAR-BR
models in predicting fracturing fluid flow rate to shallow aquifers. This study shows that NAR neural
networks can be useful and hold considerable potential for assessing the groundwater impacts of
unconventional gas development.

Keywords: NAR neural networks; hydraulic fracturing; groundwater contamination; fracturing
fluid; abandoned well; North German Basin

1. Introduction

Hydraulic fracturing (HF) is a commonly applied technology for extraction and production from
unconventional hydrocarbon resources. Hydraulically fractured horizontal wells are the dominant
type of newly drilled oil and natural gas wells [1]. The potential impacts of the technology on drinking
water resources have gained substantial attention in the water–energy nexus and have been described
and discussed for some time [2–4]. Of particular interest are the potential impact of fracturing fluids on
groundwater quality because they are difficult to assess, due to limited available data and the complex
nature of multiphase flow and transport processes in the subsurface [5,6].

Migration of formation fluid and brine from a shale gas reservoir to overlying strata could occur
through natural or anthropogenic permeable pathways, such as faults, fractures, and bedding planes
and leaky abandoned wells, in the vicinity of fracturing operations [7–13]. Abandoned wells could be
affected by frac hits, i.e., the interaction between hydraulic fractures and wells, and the steep pressure
gradient associated with the operation [14]. The frac hit to an abandoned well may facilitate upward
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fluid migration, depending on the cement/wellbore integrity [15]. The preferential flow pathways along
oil and gas abandoned wells are associated with poor well construction, cement degradation, casing
failure, and formation damage around the wellbore. The formation of preferential flow pathways, the
increase of cement effective permeability, and the wellbore proximity to hydraulic fracturing operations
enhance the risk of upward fluid flow to shallow groundwater [13,15–17].

The presence of low-permeability overburden rocks [4,18], production from the horizontal
well [11,13,17], fracturing fluid imbibition into the shale reservoir [19,20], and mixing or other dilution
processes during the transport [17,21] limit the vertical extent of fracturing fluid, thus reducing the
contamination threat to shallow groundwater. Osborn et al. [22] analyzed water samples from water
wells in aquifers overlying northeastern Pennsylvania (active HF region) and New York (HF is currently
not allowed). The authors found no relationship between contamination of groundwater samples and
fracturing fluid or deep brine. However, a number of modeling studies suggest that a small amount
of fracturing fluid could reach the aquifer under special conditions, i.e., the presence of connective
permeable pathways, such as faults and leaky abandoned wells [7,13,17,23].

To properly assess the groundwater contamination potential from unintended migration along
abandoned wells over a long period, detailed databases on water quality and wellbore integrity
are needed [5,17,24]. Data-driven models are particularly useful in this area because surface and
groundwater-quality data are sparse, particularly at the regional scale, and computational sources
are limited.

Artificial neural networks (ANNs) constitute well recognized data-driven models in the field
of hydrogeology [25–27] and many studies have shown that ANN models have good forecasting
performance compared to some of the traditional approaches [28]. Despite an exponential increase in
the application of artificial intelligence methods within the hydrogeology research community over
the past decade, they have not been applied in investigating the environmental impact of hydraulic
fracturing. ANNs have gained popularity in the field of water quality prediction and forecasting due
to (i) the use of non-physics based algorithm, (ii) the dealing with nonlinear relationships properly,
and (iii) the experience of users that can be incorporated easily into the model structure [29,30].
The nonlinear autoregressive (NAR) network is a recurrent, dynamic neural network that is well suited
for the prediction of time series, where there is only one series involved [31]. The NAR model extracts
generic principles from the past values of the time series to predict its future values [31,32]. In general,
successful application of NAR models primarily depends on (i) size, quality and universal validity
of input data, and (ii) the proper model development and assessment. It has been shown that NAR
networks converge much faster and generalize better in comparison with the conventional ANNs [33].
The development and application of NAR models in the context of hydraulic fracturing need expertise
from both computational and hydrogeological fields.

We present a NAR network to predict flow rates of fracturing fluid to a shallow aquifer in the
presence of an abandoned well. We trained the NAR network with the Levenberg–Marquardt and
Bayesian Regularization algorithms. The results show that the NAR network is able to accurately
model fracturing fluid flow rate to the aquifer. This innovative research is the first study that employs
a NAR neural network for evaluating groundwater contamination from shale gas development.

2. Materials and Methods

2.1. Conceptual Model for Fracturing Fluid Migration along an Abandoned Well

The dataset considered here includes flow rates of fracturing fluid to the aquifer overlying the
Posidonia shale formation in the North German Basin, taken from Taherdangkoo et al. [17]. They
studied the influence of various phases of fracturing operations on the migration of fracturing fluid
from the shale into the shallow aquifer along an abandoned well. The conceptual model is shown in
Figure 1. The three-dimensional model domain has 1700 m of depth, 2500 m of length, and 1200 m of
width. The domain consists of 15 layers, representing the shale, overburden layers, and two aquifers.



Water 2020, 12, 841 3 of 14

The top of the model is set to the atmospheric pressure. The lateral sides are set to constant-head
boundary conditions, and the base of the model is set a no-flow boundary condition [17].

Hydraulic fracturing is usually conducted in multiple stages, but the model considers only one
perforation location at the first segment of the horizontal well from which, fracturing fluid is injected
into the reservoir. The model assumes a fully developed hydraulic fracture, having a strike of N 45 ◦E,
and a dip of 45◦ towards the southwest, within the reservoir prior to the leakage. As illustrated in
Figure 1, the perforation location is connected to the hydraulic fracture, thus fracturing fluid is directly
injected into the fracture. The abandoned well hits the middle of the fracture plane and extends from
the shale to the aquifers. The abandoned well and the entire fractured/degraded formation parallel
to the wellbore casing are considered as a planer fracture with a rectangular cross section, having an
effective permeability higher than surrounding sediments.

The model assumes single-phase flow of non-compressible fluids, consisting of two components,
i.e., brine and a tracer. Fracturing fluid is considered as a pseudo-component (i.e., a conservative tracer)
dissolved in the aqueous phase. In order to realistically assess the upward migration of fluids over the
lifetime of a typical horizontal well, each simulation consists of six stages, namely, fracturing fluid
injection, well shut-in, first production, second production, and abandonment. Firstly, a total volume
of 11,356 m3 of fracturing fluid [13] is injected into the domain during 2.5 days. Then, a 5-day shut-in
period takes place. Afterwards, the production periods are modeled with outflow rates of 16 and
3.2 m3/day for an interrupted period of 2 and 13 years, respectively [13]. In the abandonment stage,
the production is stopped. The fluid flow along the abandoned well and at the overburden aquifer
interface is monitored. Note that we used data reported in Brownlow et al. [13], which are based on
available industry data for the Eagle Ford Shale play in south Texas.
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Figure 1. The conceptual model used for simulations in Taherdangkoo et al. [17].

2.2. Data Preparation and Analysis

Taherdangkoo et al. [17] conducted an extensive sensitivity analysis on the most influential
parameters to examine the extent of fracturing fluid migration from the shale into the overlying aquifers
along an abandoned well. They presented their results in terms of fracturing fluid flow rates to the
aquifer over 30 years. The parameters studied include fracturing fluid injection rate, shale permeability,
shale porosity, overburden thickness, overburden permeability, salinity, effective abandoned well
permeability, and its distance to hydraulic fractures. The parameter values used in the base-case model
and sensitivity analysis are shown in Table 1. As an example, fracturing fluid flow rate to the aquifer
for the base-case model is displayed in Figure 2 [17]. We used fluid flow rates obtained from the
sensitivity analysis to build the input dataset, which includes 31-time steps of 24 elements (i.e., model
runs). In total, the input dataset contains 744 data records of fracturing fluid flow rate to the aquifer.

Following the ratio of 60:20:20, the input dataset (i.e., fracturing fluid flow rate data) was randomly
divided into training, validating, and testing sets. A sample of 446 data was specified for the training
phase, 149 data for the validation phase, and the remaining 149 data were used to analyze the
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reliability and robustness of the NAR network models. The pre-processing step was performed to
prepare the data for the training phase, to achieve more consistent and better results. In general, the
Levenberg–Marquardt and Bayesian Regularization algorithms work best if the network inputs and
feedbacks are in the range of −1 to 1 [25]. Thus, by applying a normalization function, input and
feedback values were scaled in the interval (−1,1) and back-transformed in the testing phase.

Table 1. Parameters used in base-case model and sensitivity analysis simulations [17].

Parameter Unit Base-Case Value Min. Max. Source

Shale permeability m2 1 × 10−19 1 × 10−21 1 × 10−18 [12,13,34]
Shale porosity 0.01 0.01 0.05 [7,34–36]

Overburden permeability m2 Depth-dependent 1 × 10−17 1 × 10−15 [7,37,38]
Overburden thickness m 1600 900 2900 [7,39,40]

Salinity gradient g/lm 0.15 0.1 0.2 [41,42]
Fracturing fluid volume m3 11,365 11,000 15,000 [8,11,13]

Abandoned well permeability m2 1 × 10−12 1 × 10−17 1 × 10−12 [43–50]
Distance of fracture plane to well m 0 0 15
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2.3. NAR Model

The prediction of the incidence of fracturing fluid flow to shallow groundwater is a nonlinear
problem. The nonlinear autoregressive (NAR) neural network represents a powerful class of models
that has favorable qualities for recognizing time series patterns and nonlinear characteristics. The NAR
network is a recurrent dynamic network with feedback connections enclosing layers of the network;
thus, the current output depends on the values of past output [51]. The NAR network can be applied
to effectively forecasting time series and can be written as follows [32,52,53]:

ŷ = f (y(t− 1) + y(t− 2) + · · ·+ y(t− d)) + ε(t) (1)

where f is an unknown nonlinear function that can be approximated by the feedforward neural
networks during the training process; ŷ is the predicted value of the data series of y at a discrete time
step t, d represents past values of the series, and ε(t) is the approximation error of the series y at time t.
The NAR network is described in Figure 3.

The development of the optimal architecture for the NAR model requires determination of time
delays, the number of hidden nodes, the activation function, and an efficient training algorithm.
The optimum number of time delays and hidden nodes were obtained through a trial-and-error
procedure [32]. The activation function was selected based on Maier and Dandy [54]. Finally,
Levenberg–Marquardt and Bayesian Regularization algorithms were applied to train the model.
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2.4. Training Algorithms

2.4.1. Levenberg–Marquardt

The Levenberg–Marquardt (LM) algorithm is a back propagation-type algorithm and it has been
widely used for training the NAR network because of the fast convergence speed [55,56]. The LM
is an effective modification of the Gauss–Newton method that finds the function (either linear or
nonlinear) minima over a space of parameters and optimizes the solution [57]. The LM algorithm uses
an approximation of the Hessian matrix, given by [58]:

∆w =
[
JT(w)J(w) + λI

]−1
JT(w)e(w) (2)

in which w represents the weight, J is the Jacobian matrix, JT is the transpose matrix of J, and JTJ is the
Hessian matrix. I represents the learning matrix, and λ and e are the learning coefficient and vector of
network errors, respectively. The parameter λ is automatically updated based on the error at each
iteration to secure the convergence. We used a random value of λ to initiate the iteration process for
optimizing weights with the LM algorithm.

2.4.2. Bayesian Regularization

Bayesian Regularization (BR), introduced by MacKay [59], is a mathematical technique for
converting nonlinear systems into “well posed” problems [60]. The BR network reduces the potential
for overfitting in the training phase while eliminating the need for the validation phase. Thus, BR is
especially suitable for small datasets because more data are available for the training [60,61]. The BR
automatically sets the best performance function to accomplish an efficient generalization on the basis
of Bayesian inference. The determination of the optimal regularization parameters depends upon
the computation of the Hessian matrix at the minimum point [62,63]. In this work, a Gauss–Newton
approximation of the Hessian matrix is applied to optimize regularization [62].

2.5. Network Architecture

The NAR network employed is a feed forward neural network with three layers, namely input,
hidden and output layers (Figure 3). Sigmoid function, a continuous non-linear function, is the
most commonly used activation function for neural network design with back propagation training.
The activation functions in hidden and output layers are logistic sigmoid and linear, respectively.
A trial-and-error procedure is carried out to determine the number of nodes in the hidden layer
and value of time delays in order to generate accurate model responses. The Levenberg–Marquardt
and Bayesian Regularization algorithms were employed for training of the NAR network and their
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performance were evaluated under the same network structure. The necessary steps to implement the
network is illustrated in Figure 4.

The NAR neural network is trained in a series–parallel configuration. In the training phase, the
true output is available and it was used as the input to the network. During the testing phase, the
calculated output was fed back to the network to estimate the next value of the output in a parallel
configuration. In this study, the initial weights in the network are assigned randomly and they were
adjusted at each iteration (i.e., epoch) to reduce the error. The procedure continued until the network
output met the stopping criteria.
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2.6. Performance Evaluation

The prediction performance of the models was evaluated by two well-known statistical criteria,
namely the coefficient of determination (R2) and mean squared errors (MSE). R2 is a linear regression
used to analyze the best fit between the measured values and model’s predicted values, given by:

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1

(
yi − yi

)2 (3)

in which y and ŷ represent the measured and predicted values, respectively, y stands for the average
of measured values, and n equals the number of values. The MSE calculates the average squared
difference between the measured and predicted values, given by the following equation:

MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (4)

3. Results and Discussion

This study considers the failure scenario of upward migration of fracturing fluid from the shale
formation into a shallow aquifer along an abandoned well. We employed a NAR network model
to predict the incident of fracturing fluid in the aquifer. The NAR network has one input, i.e., the
fracturing fluid flow rate into the aquifer, and it generates one output that is the prediction of flow rate
at a certain time ahead. We used the logistic sigmoid and linear activation functions at the hidden and
output layers respectively because the modeling problem presented here is a function approximation
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problem. The error analysis showed that the network with three nodes in the hidden layer and two
time delays provide the best performance.

Figure 5 shows the results of the error autocorrelation function of the fracturing fluid flow rate.
This function describes the relationship between the prediction errors and time, and it was used to
determine the value of time delays in the NAR network. To obtain a perfect training fit, there should be
only one nonzero value over the entire function. As shown for the current network structure (node = 3
and delay = 2), error autocorrelations were approximately in the 95% confidence interval zone, except
for the ones at zero lag, thus NAR-LM and NAR-BR models are adequate. The calculated MSE and R2

for the training phase (Table 2) show that both models reached the best fitting performances in terms of
evaluation criteria. For instance, R2 values of higher than 0.99 indicated a strong correlation between
the measured values and fitting values. According to Figure 5 and Table 2, we conclude that a sample
of 446 data is adequate to train the NAR models.
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Table 2. Evaluation of the NAR-LM and NAR-BR models’ performances.

Statistical Parameter NAR-LM NAR-BR

Training Validation Testing Training Testing
R2 0.998 0.996 0.923 0.996 0.944

MSE 1.07 × 10−5 1.2 × 10−5 4.2 × 10−4 1.3 × 10−5 2.4 × 10−4

An open-loop architecture (series–parallel configuration) is more useful for training the NAR
network, while a closed-loop architecture (parallel configuration) is suitable for multiple-step-ahead
predictions [31]. We used a transfer function to convert the network into the closed-loop after
finishing the open-loop training. The prediction ability of the models in terms of evaluation indices is
summarized in Table 2. Note that the NAR-BR model does not require a validation phase. The testing
results were similar to those of training: for example, R2 values higher than 0.9 for the testing phase
indicated the satisfactory performance of both developed models. For further comparison of evaluation
indices, MSE of NAR-LM and NAR-BAR were 4.2 × 10−4 and 2.4 × 10−4 respectively, which proved
the strong ability of the developed models in predicting the nonlinear behavior of fracturing fluid flow
to the aquifer. The results suggest that NAR-BR model has a slightly better prediction performance
compared with that of the NAR-LM model in terms of larger R2 and smaller MSE.

The scatter diagrams of the measured and predicted flow rate values by NAR-LM and NAR-BR
networks are illustrated in Figures 6 and 7, respectively. We also plotted a 45-degree reference line.
The measured and predicted data should lie close to the reference line to demonstrate a very good
model fit. For the training phase, this can be seen in Figures 6a and 7a, indicating that both models fit
equally well statistically. Figures 6b and 7b displayed acceptable fit, which indicates good predictive
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abilities of both models for new datasets. Although the predicted values of the NAR-LM model fit
better to the reference line, R2 value of the NAR-BR model is slightly higher.

The performance plots of the NAR-LM and NAR-BR models are shown in Figure 8. This figure
illustrates the relationship between the testing, training, and validation phases in predicting fluid
flow rates into the aquifer, in terms of MSE versus number of epochs. The black circle in Figure 8a
shows the performance of the NAR-LM model, which performed the best during the validation
process. The black circle in Figure 8b shows the performance of the NAR-BR model, which was the
best one during the testing phase. As illustrated in Figure 8, the best performance for the validation
phase is 1.2 × 10−5 at epoch 9 for the NAR-LM model, while the NAR-BR model experiences the best
performance (MSE = 1.3 × 10−5) for the training phase at epoch 16.
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Figure 9 illustrates the visualized comparison results of fracturing fluid flow rate predictions for
the training, validation, and testing phases. Note that the response line in this figure is the fracturing
fluid flow rate to the aquifer, which is also presented in Figure 2. It was observed that the predicted
fluid flow rate values followed the measured pattern. The differences between predicted and measured
values are small (± 7 × 10−3 m3/year) for the entire time period, indicating that the NAR-LM and
NAR-BR models were able to efficiently predict fracturing fluid flow rate to the aquifer over the
simulation period. Comparing the response lines and error plots of this figure further indicated the
superior performance of the NAR-BR model.

The arrival time of fracturing fluid to shallow groundwater highly depends on the geological
and hydrogeological characteristics of the formations between the aquifer and hydrocarbon reservoirs.
Evaluating the frequency and impact of fracturing fluid leaks requires extended periods of water-quality
monitoring, particularly in cases where overburden layers are not highly fractured and preferential
flow paths (e.g., faults and leaky abandoned wells) are not in the vicinity of the operation. Efforts are
underway to identify the relationship between oil and gas operations and groundwater contamination
in many regions. NAR models could be used for quick and inexpensive but effective assessment of the
potential impacts of hydraulic fracturing in the absence of adequate field or modeling data. The results
demonstrate that the NAR network trained with LM and BR algorithms could efficiently identify time
series patterns in existing fracturing fluid flow rate data to accurately predict the unseen values.

Interdisciplinary research has become necessary to break new grounds in the science of fluid
migration from hydrocarbon formations to groundwater. Our results further highlight the need
for strengthening the interdisciplinary collaborations to link petrophysical, geomechanical and
hydrogeological information to develop data-driven models to better evaluate the impact of contaminant
leakage to groundwater systems, which may occur by vertical flow migration along pre-existing
permeable pathways. Data-driven models have a high potential to recognize the contamination
problems, in particular when dealing with high data uncertainty, and missing and sparse information.
For instance, data-driven models can be helpful for assessing regional trends of incidents of groundwater
contamination, as the availability of consistent data is limited at the regional scale. Additional research
is essential to build the confidence in the applicability of the methodology and assessing the risks of
hydraulic fracturing.
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4. Conclusions

We presented a novel application of a NAR neural network to predict fracturing fluid flow rate
into a shallow aquifer following hydraulic fracturing. The dataset used for the network development
was taken from Taherdangkoo et al. [17] and included 744 records of fracturing fluid flow rate into the
aquifer, resulting from the upward migration along an abandoned well. Based on the literature review
on the performance of training algorithms, the Levenberg–Marquardt and Bayesian Regularization
algorithms were selected to train the NAR model. The network structure with three nodes in the
hidden layer and two time delays provided the optimal performance.

The results indicated the high accuracy and reliability of NAR-LM and NAR-BR models in
the prediction of fracturing fluid flow rate to the aquifer, particularly when using a limited dataset.
Both NAR models provides excellent results in terms of goodness-of-fit and independence test.
The advantage and power of the proposed models are the fast, cheap and effective approach of
calculation in comparison with traditional modeling approaches. By comparing the modeling results,
we demonstrated that the predictive performance of the NAR-BR model is slightly better than the
NAR-LM model.

There are a few incidents where fracturing fluid and methane were reported to contaminate the
aquifer. The NAR models can serve as an additional tool to analyze the incidents of groundwater
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contamination, especially regional trends of occurrence. In summary, the NAR models trained with LM
and BR algorithms showed to have considerable potential in assisting the development of water-quality
monitoring programs in the oil and gas regions.
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