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Abstract: Effective representation of precipitation inputs is one of the essential components in
hydrological model structures, especially when gauge measurements for the modelled catchment are
sparse. Assessment of the impact of precipitation pre-processing is often nontrivial as precipitation
data are very limited in the first place. In this paper, we demonstrate a study using a semi-distributed
hydrological model, the Soil and Water Assessment Tool (SWAT) to examine the impact of different
precipitation pre-processing methods on model calibration and the overall model performance with
regards to the operational use. A river catchment in the UK is modelled to test against the three
pre-processing methods: the Centroid Point Estimation Method (CPEM), the Grid Area Method
(GAM) and the Grid Point Method (GPM). Cross-calibration and validation are then carried out
by using the high-resolution Centre for Ecology & Hydrology–Gridded Estimate Areal Rainfall
(CEH-GEAR) dataset. The results show that the proposed methods GAM and GPM can improve
the model calibration significantly against the one calibrated with the existing CPEM method used
by the model; the performance differences in the validation among the calibrated models, however,
remain small and become irrelevant. The findings indicate that it is preferable to always make use of
high-quality rainfall data, when available, with a better pre-processing method, even with models that
are previously calibrated with low-quality rainfall inputs. It is also shown that such improvements
are affected by the size of catchment and become less significant for smaller catchments.

Keywords: Hydrological modelling; Precipitation pre-processing; Calibration; Cross-validation;
SWAT; Gridded Rainfall Dataset

1. Introduction

Precipitation is one of the vital forcing factors in hydrological modelling processes. The accuracy of
precipitation as the input and its representation have a direct impact on the overall model performance.
In the last few decades, many studies have been conducted with a focus on this, mainly due to the
drive of quantifying modelling uncertainties, where inputs such as precipitation must be considered,
for example [1,2].

Alongside the concerns of accuracy, the importance of spatial variability of rainfall has also been
highlighted, especially over large watersheds where it is crucial to gain insight of day-to-day spatial
variability of groundwater level, streamflow discharge and soil moisture content [2]. At smaller scales,
rainfall variability also has a considerable impact on peak flow estimation [3]. It was reported in [4]
that as the scale increases, the impact of rainfall distribution decreases and there is a shift from the
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spatial variability of rainfall to catchment response time distribution as the dominant factor governing
runoff generation.

The effect of various spatiotemporal resolutions of precipitation on simulated runoff has also been
widely investigated by, e.g., [5,6], which agreed on the necessity of adopting better rain representation
input in the modelling structure. However, most of these studies are focused on specific models
because precipitation pre-processing is often model dependant, although some common methods such
as the Thiessen polygon method are used by many different models.

Spatial variability in precipitation influences hydrological model outputs e.g. [7], the catchment
response [8] and the timing of peak runoff [9]. Schuurmans et al. [2] state that failing to consider
a satisfactorily spatial distribution of precipitation will result in errors in the values of the model
parameters that will be wrongly changed to compensate for errors in the rainfall input.

Hydrological model performance relative to the accuracy of spatial precipitation data has been
explored by users of the Soil and Water Assessment Tool (SWAT) [10] such as [11] who studied the
effect of rain gauge density on streamflow, sediment and nitrogen fluxes simulations in two small
watersheds in the United States and they found that the use of higher rain gauge densities could lead
to better simulations, especially for sediment fluxes. Jayakrishnan et al. [12] compared annual and
monthly river flows simulated by SWAT for four catchments in the U.S. using both weather radar
(Next Generation Weather Radar, NEXRAD) and rain gauges. They concluded that input of areal
rainfall measured by radar gave the best estimation, despite some inherent limitations, especially the
accuracy at daily time scale.

Researchers hold contrasting views on the most important inputs for model performance, with
some identifying density of precipitation data, either through gages or radar [11,12]. For instance, [13]
investigated the effect of the resolution of land use, soil type and rainfall data on simulating river flow in
three catchments in the U.S. by constructing 18 models of each catchment and combining three land use
categories, three soil types and two precipitation input scenarios. It was found that all models produced
comparable values of Nash–Sutcliffe efficiency indices. The Nash–Sutcliffe efficiency index (NSE) [14]
is a normalised statistic that determines the relative magnitude of the residual variance compared to
the measured data variance (i.e., it indicates how well the plot of observed versus simulated data fits
the 1:1 line). Their main findings were that a more refined representation of spatial data might not
necessarily result in improved SWAT river flow simulations in small catchments. This may as well be
attributed to other factors, such as the soil types and land use, which is possibly more dominant than
the rainfall.

A more comprehensive account is given by Starks and Moriasi [15], who compared streamflow
simulations from a SWAT model using four different resolutions of rainfall data in three experimental
catchments of different sizes. The number of rain gauges in three scenarios varied from 1 to 7. The rainfall
data obtained through weather radar, available at 4 km grids, were used in the fourth scenario. Their
study produced satisfactorily calibrations for all four cases, even though the scenarios with higher rain
gauge density and the radar-based rainfall showed relatively better river flow simulations.

A recent study by Masih et al. [1] used a SWAT model to compare its performance under standard
precipitation input and a modified areal precipitation input obtained using the Inverse Distance
and Elevation Weighting (IDEW) interpolation. This study found that the use of areal precipitation,
obtained through the interpolation improved simulated streamflow.

• It is worth noting that most of those studies are based upon model simulations at large temporal
scales, e.g., monthly or yearly, which has two significant implications:

• the contribution of better spatial representation from using either denser gauge networks or
remote sensing data might well be smoothed away; and

• daily precipitation has a certain stochastic nature, which differs from monthly rainfall [16,17], and
they may not fit the needs of day-to-day operational use.
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From a modeller’s viewpoint, it would be more intriguing to explore how the way of model
handling precipitation input can be improved across different scales. There is another challenging aspect
of conducting such an assessment in an existing modelling system like SWAT due to parameterisation.
A discussion of the benefits, as well as the drawbacks of model parameterisation, goes beyond the
scope of this paper, readers can refer to [18].

An immediate impact of model parameterisation, however, is that at times models can be
calibrated equally well, even though they are fed with input data (such as precipitation) that apparently
are of different quality. This so-called ‘compensation of parametrisation’ makes it challenging to
identify and possibly isolate the impact of various inputs by only considering model calibrations and
their comparisons.

In this paper, we present a study on the impact of different precipitation pre-processing methods
on the performance of a SWAT model set up for a medium-sized river catchment, the Dee catchment
in the UK. We make use of a most recent, high resolution, gridded rainfall dataset—the Centre for
Ecology & Hydrology (CEH) Gridded Estimates of Areal Rainfall [19] as a reference in addition to the
conventional gauged rainfall data.

The objectives of this study are:

• evaluate the impact on hydrological model performance from using various methods of rainfall
pre-processing above and further give recommendation where possible;

• to assess model parameterisation (via calibration) with different rainfall inputs on the overall
model performance; and

• to test the utility of the new Gridded Estimate Areal Rainfall (GEAR) dataset in the context of
calibrating hydrological models.

This paper is structured as follows: Section 2 introduces the study area and the datasets used in
the study, followed by the description of model setup with a focus on the three pre-processing methods
and the way of calibration and cross-validation. The results are discussed in detail in Section 3. Finally,
several key points are concluded after the results and discussion.

2. Materials and Methods

2.1. Study Area

The Dee River originates from the mountainous area of Snowdonia National Park in North Wales
in the United Kingdom. The mainstream of the river is measured 113 km long with a catchment area of
2215 km2, as shown in Figure 1. It flows eastward to the Wales–England border at the City of Chester
before discharging into the Irish Sea at Liverpool Bay.
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The annual precipitation over the basin shows a clear west-east declining trend with 1700 mm in
the western part quickly reducing to 685 mm in the east where flat, lowland dominates as revealed in
Figure 2. The temporal distribution of annual precipitation also demonstrates a stable seasonal pattern
with wet winters (178–578) mm in December, January and February (DJF) and ordinarily dry summers
(165–278 mm) in June, July and August (JJA). The Dee River originates from the mountainous area
of Snowdonia with elevation reaching above 800 m, delving into a large flat area to the east barely
above the sea level. For rainfall observations, there are 13 rain gauges available in the vicinity of the
Dee catchment.
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Figure 2. The annual precipitation distribution in the Dee catchment.

2.2. Data

This study employs the SWAT model set up by [20] to assess how the difference in rainfall
pre-processing technique might affect the model calibrations and its performance. The present study
follows, in general, with the standard procedure of building SWAT models in terms of data preparations,
namely: digital elevation model data (DEM), climatic data, soil type and vegetation data are taken
from public domain sources and prepared for the two catchments over the entire study period. Table 1
summarises the use of these data and their properties.

For rainfall inputs, we have chosen two sources of data to help the analysis. First, the daily point
rainfall measurements at the rain gauges (see Figure 1) are collected for the study period, i.e., 1992–2003.
This is precisely the way that most SWAT (and many other lumped hydrological modelling processes)
models follow. The second source of rainfall data are from the GEAR datasets (more details follow),
which, although are still based on the underlying rain gauge measurements, are further interpolated
into regular grids. In this sense, the GEAR sourced data can be seen to have already represented spatial
rainfall variability using certain interpolations.

River flow data are collected at six flow gauges, again to cover the study period. Model
performance is measured using the simulated river flow against the measured flow. Most data used are
available in the public domain except those requested from the water management authority subject to
an academic license. The summary of data are illustrated in Table 1.
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Table 1. Collected datasets.

Dataset Resolution Source

Digital Elevation Model, DEM 25 m Advanced Spaceborne Thermal Emission and
Reflection (ASTER), Global Digital Elevation
Model Version 2. National Aeronautics and
Space Administration (NASA).
https://doi.org/10.5067/ASTER/ASTGTM.002

Land Use Map 25 m Centre for Ecology and Hydrology (CEH).
https://doi.org/10.5285/a1f88807-4826-44bc-
994d-a902da5119c2

Soil Map 3.5 km Digital Soil Map of the World and Derived
Soil Properties. Food and Agriculture
Organisation (FAO). https:
//doi.org/10.1111/j.1475-2743.1997.tb00550.x

River Network 1:15,000 to
1:30,000

Open Rivers Ordnance Survey OS (Great
Britain, GB), Centre for digital expertise based
at the University of Edinburgh, EDINA maps.
https:
//www.ordnancesurvey.co.uk/business-and-
government/products/os-open-rivers.html

River Flow Data Daily (1992–2003),
6 Stations

National River Flow Archive, Centre for
Ecology and Hydrology (CEH).
https://nrfa.ceh.ac.uk/

Precipitation Daily (1992–2003) Met Office Integrated Data Archive System
(MIDAS), Land Surface Stations data. British
Atmospheric Data Centre (BADC).
https://artefacts.ceda.ac.uk/badc_datadocs/
ukmo-midas/ukmo-midas.html

CEH-GEAR Precipitation 1 km The Centre for Ecology and
Hydrology-Gridded Estimate Areal Rainfall
http://doi.org/10.5285/5dc179dc-f692-49ba-
9326-a6893a503f6e

Air Temperature Daily (1992–2003) Met Office Integrated Data Archive System
(MIDAS), Land Surface Stations data. British
Atmospheric Data Centre (BADC).
https://artefacts.ceda.ac.uk/badc_datadocs/
ukmo-midas/ukmo-midas.html

The Centre for Ecology and Hydrology–Gridded Estimates of Areal Rainfall (CEH-GEAR), is a
new precipitation dataset developed to provide reliable 1 km gridded estimates of daily and monthly
rainfall over the UK and 3,500 km2 of the catchment area in the Republic of Ireland from 1890 to
2012 [18]. The rainfall estimates are created from the Met Office historical weather observations for
the UK. The natural neighbour interpolation method [21], including a normalisation step based on
average annual rainfall (AAR), was employed to create the daily and monthly rainfall over the regular
1-km grids.

A schematic representation of the interpolation procedure used to derive the CEH-GEAR daily
and monthly 1 km grids is shown in Figure 3. The grids are generated using Natural Neighbour
Interpolation alongside a normalisation step based on AAR, which involves two steps:

• an initial estimate from daily gauges alone;
• multiplication by a correction grid to give consistency with monthly grids that have been created

from all available daily and monthly gauged data.

https://doi.org/10.5067/ASTER/ASTGTM.002
https://doi.org/10.5285/a1f88807-4826-44bc-994d-a902da5119c2
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https://www.ordnancesurvey.co.uk/business-and-government/products/os-open-rivers.html
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Readers can refer to [19] for the discussion of the derivation in details. It should be noted that
weather radar data are not used in the production of the current version of CEH-GEAR although such
merging would be able to improve the spatial representation of the interpolated field. This is in part
due to the shorter duration of the available radar rainfall estimates (around 30 years) compared to the
rain-gauge observations. Accordingly, CEH-GEAR data would have greater temporal consistency if it
is solely based on rain gauge observations [19].

2.3. Modelling River Flow Using SWAT

The Soil and Water Assessment Tool, SWAT [10] is a public domain hydrological model, which
has been tested in many applications worldwide. It is a physically-based continuous river basin scale
model and is designed to simulate the rainfall-runoff process under various spatial and temporal
scales. Moreover, this model is spatially quasi-distributed using hydrological response units (HRUs) to
describe the spatial distribution of soil characteristics, land use and topography within a catchment.

The calculations in SWAT are performed for each HRU and then scaled up to the sub-basin outlet
by the area of the HRU proportional to that of the sub-basin. This approach results in that the HRUs
lack spatial relations typically seen in a fully distributed model, but it yields a computationally efficient
calculation scheme allowing for rapid watershed simulation over long time periods [22]. The details of
the model structure, applications, as well as model set-up are widely available, e.g., in [23,24].

The division of the watershed enables the model to reflect differences in evapotranspiration for
different types of soil and crops. Runoff is calculated separately for each HRU and routed to obtain the
total runoff for the watershed. This increases the accuracy and provides a better physical representation
of the water balance [25].

When it comes to how precipitation amount is represented, the default setting of SWAT uses the
values from the gauge located closest to the centroid of each sub-basin to represent the areal value for
the sub-basin [1,15]. To consider the orographic effects on temperature and rainfall in mountainous
areas, SWAT makes use of the elevation bands method, which allows for up to 10 elevation bands
in each sub-basin that enables it to assess the differences in snow cover and snowmelt caused by
orographic variation in the rainfall and temperature. This method adjusts the regional precipitation by
weighing the elevation difference between the band of the rain gauge and the other bands.

Most applications of SWAT merely follow this approach as there is no explicit entry in the model
user interface to conveniently alter this setting. Evidently, in some cases, such treatment does not
represent well the spatial variation of the precipitation field, as it ignores the spatial heterogeneity.
One can appreciate the potential impact of such treatment even without experiment because:

• the nearest gauge value may not be able to accurately represent the value at the centroid; and
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• even if it can, the centroid value may not be able to represent the areal value of the sub-basin
in question.

However, even using such crude estimate of sub-basin precipitation, some applications of SWAT
are reported to have worked well. The reason lies in two folds: on the one hand, a denser gauge
network and/or less seasonal rainfall events can mitigate the poor spatial representation of the model;
on the other hand, model parameterisation can also ‘compensate’ [15]. This, in fact, inspires this study
as we hope to isolate the impacts of the pre-processing techniques from the two factors mentioned, by
applying cross-calibration and validation to separate model parameterisation.

2.4. Precipitation Pre-Processing Methods for the Gauge and the CEH-GEAR Data

The measured daily rainfall at 13 rain gauges in the Dee river basin have been collected from
BADC and the missing data gaps in gauge observations are filled by using the Inverse Distance
Weighting interpolation (IDW) method. The CEH-GEAR data (at 1 km spatial resolution) are taken
without any further data screening and gap-filling operations. We applied the following three methods
to pre-process the precipitation data before using them to represent (sub-) basin areal values in the
SWAT model:

• the centroid point estimate method (CPEM): this is the default method used by SWAT, which
estimates the areal precipitation of a sub-basin using the rainfall at the gauge closest to the
centroid of the sub-basin (see Figure 4a). Apparently, only one rain gauge is used in this case for
every sub-basin;

• the grid-area method (GAM): this method ‘cuts out’ the target sub-basin area from the GEAR grids
and takes the average of all values of the grids that either is entirely within the area or intersect
with it (Figure 4b);

• the grid-point method (GPM): this method again uses the GEAR dataset except that instead of
taking the average of the intersecting areas, it estimates the value at the centroid of the target
sub-basin by interpolating the values of GEAR grids nearby (within a 1-km search radius) using
the IDW method (see Figure 4c). The estimated centroid value is then used to represent the areal
precipitation over the target sub-basin as done in CPEM.
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The Inverse Distance Weighting interpolation (IDW) computes the rainfall values at un-sampled
points by using the weighted average of observed data at surrounding points. Thus, this can be
defined as a distance reverse function of each point from nearby points [26]. The values at un-sampled
points can be determined by using a linear combination of values at a known sampled point. The IDW
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method depends on the theory that the unknown value of a point is more affected by closer points
than by points further away. The weights are computed by:

λi =

1
|Di |

d∑ns
i=1

1
|Di |

d

, d > 0 (1)

where Di is the distance between the sampled and the un-sampled points. The d parameter is specified
as a geometric form for the weight while other specifications are possible.

The three proposed methods utilise both the gauge measurements (CPEM) and the CEH-GEAR
dataset (for GAM and GPM). It should be noted that the CEH-GEAR data are also derived from gauge
measurements that have been further gridded by applying the natural neighbour interpolation. To a
certain degree, the GAM method effectively resembles the common Thiessen method, which obtains
areal rainfall using the underlying gauge measurements averaged over the polygons. However, there
are still some subtle differences, which are:

• the Thiessen polygon method is the nearest neighbour interpolation whereas the GEAR data are
derived from using the natural neighbour interpolation;

• they may not use the same set of rain gauges, and more sophisticated approaches of errors
corrections have been applied to produce the GEAR dataset.

Nevertheless, in terms of accounting for the spatial heterogeneity, the GAM method should be the
best choice followed by GPM while the default method CPEM falls behind. Thus, we hypothesise
that correspondingly, models calibrated using the methods are expected to rank in the same order
regarding their performances.

2.5. Cross-Calibration and Validation of Models

We largely follow the standard approach to set up the SWAT model for the catchments. Rainfall
data from the 13 gauges are used to construct the CPEM time series from 1995 to 2003. The other
two-time series are produced from the CEH-GEAR dataset using the GAM and GPM methods
respectively, are also generated for the same period. A daily SWAT model fed with these three rainfall
time series is then calibrated over 1995–2000 and validated for the period of 2001–2003.

In all three cases, the SWAT model is calibrated and validated using the Sequential Uncertainty
Fitting algorithm-SUFI2 [27]. The goodness of fit is assessed by using both the Nash–Sutcliffe Efficiency
Index NSE [14] and the determination Coefficient R2 and the percent of bias (PBIAS) as defined by
Equations (2)–(4):

NSE = 1−

∑T
t=1(Qo,t −Qs,t)

2∑T
t=1

(
Qo,t −Qo

)2 (2)

R2 =


∑T

t=1

(
Qo,t −Qo

)(
Qs,t −Qs

)
∑T

t=1

[(
Qo,t −Qo

)2
]0.5 ∑T

t=1

[(
Qs,t −Qs

)2
]0.5


2

(3)

PBIAS =

∑T
t=1(Qs,t −Qo,t)∑T

t=1 Qo,t

× 100% (4)

where Qo,t and Qs,t are observed and the simulated river flows at time t respectively. Historical flow
records of the selected flow gauges (6 river gauge stations from the Dee River catchment are used to
measure the performance of the model, see Table 2).
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Table 2. The river gauge stations utilised in the calibration and validation of the hydrological models
(Source: National River Flow Archive, https://nrfa.ceh.ac.uk/data/).

Station Name Latitude Longitude General Description

Manley Hall 52.966 −2.972 A symmetrical compound Crump weir.
Ironbridge 53.134 −2.873 The station utilises Ultra-Sonic to derive flow.

Suspension Bridge 53.187 −2.884 Ultra-Sonic flow gauge.
Pont-y-Capel 53.079 −2.994 A symmetrical compound crump weir.
Bowling Bank 53.027 −2.903 Simple Crump profile weir.

Brynkinalt Weir 52.928 −3.050 Compound broad-crested weir.

A cross-calibration and validation approach is used to isolate the impact of model parameterisation
concerning different precipitation pre-processing schema. This means that there are three (3) calibrated
models for each catchment, i.e., models that are calibrated using the three pre-processed rainfall time
series based on CPEM, GAM and GPM methods. These three models are then validated using three
different rainfall time series as well. Therefore, in the end, there are nine (9) simulations assessed
during the validation stage. Figure 5 reveals the flowchart of the modelling process of the selected
study area.
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3. Results

As previously mentioned, the CEH-GEAR dataset is derived from rain gauge observations with an
extra quality control measure before being interpolated onto the regular grids. It is therefore expected
to see a good agreement between the gauge observed precipitation values and the values from the grid
of the GEAR dataset that is at (nearly) the same location of the gauges.

Daily rainfall from the grids closest to the 13 gauges are extracted from the GEAR dataset and then
compared with the time series of the 13 gauges. As expected, the time series are perfectly matched at
the 13 locations as seen in Table 3 and Figure 6. The small deviation is likely due to the vigorous quality
control measures applied to the GEAR datasets as well as the block averaging of the interpolated values.

Table 3. Statistical comparison of precipitation of the observed and the CEH-GEAR dataset at rain
gauges for a period of 1995–2003 over the Dee River basin.

Station No. Station Name R2 RMSE (mm) NSE

1 Hawarden Bridge 0.98 0.51 0.98
2 Colomendy Centre 1.00 0.38 1.00
3 Bala Lake 1.00 0.59 0.99
4 Llangerwyn: Tan-Y-Llwyn 0.99 0.52 0.99
5 Llanuwchllyn 1.00 0.23 1.00
6 Tryweryn Dam No 2 1.00 0.42 1.00
7 Vivod 1.00 0.16 1.00
8 Cefn Mawr 0.99 0.63 0.98
9 Chester W WKS 0.99 0.47 0.99
10 Eddisbury Fruit farm 0.99 0.45 0.99
11 Mouldsworth P STA 0.99 0.30 0.99
12 Tiresford 0.79 0.51 0.98
13 Alwen Reservoir 0.99 0.49 0.99

It is more useful to examine how different are the areal rainfall generated from both the gauge
data and the GEAR data using the three pre-processing methods above. When it comes to the settings
of SWAT, the Dee river catchments are delineated into 57 sub-basins. The six-month moving averages
of the areal rainfall over the selected sub-basins in the Dee catchments are shown in Figure 7. The time
series of GAM and GPM are very close (nearly identical) to each other for all the selected sub-basins.

The CPEM time series, however, is remarkably different from the other two for most sub-basins.
Since both the CPEM and the GPM methods use the value at the centroid of the sub-basins to represent
the areal rainfall, such comparison in Figure 6 indicates that the CPEM method (which borrows the
nearby gauge value) may cause a significant deviation to the representation. It also shows that the
spatial variation is not as significant at smaller scales of sub-basins as both the GAM and the GPM
methods produce very close results.

The cross-sub-basin distributions give contrasting pictures as seen in Figure 8. The CPEM methods
produce a less varying distribution as some of the sub-basins share the same gauge. The GAM and
GPM methods can reveal more details in the distribution. As to the range of the annual averages shown
in Figure 8, the one from CPEM shows a range of 676–1324 mm/year and GAM 665–1749 mm/year
663–1692 mm/year for GPM respectively.
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4. Discussion

To measure the impacts of precipitation pre-processing on model calibrations, we calibrated the
SWAT models for the Dee catchment using the three pre-processing techniques CPEM, GAM and GPM
respectively. For the Dee catchment, six river gauge stations are chosen to test the performance of the
three calibrations by comparing the observed flow and the model simulated one. Further, one of the six
stations, Brynkinalt Weir, is singled out to test the bias of the simulation. The performance of the three
calibrated SWAT models for the Dee catchment is shown in Table 4. Clearly, both the calibrations that
are driven by the GAM and GPM datasets, outperform the one using the CPEM dataset (the original
setting of SWAT). The improvements are not significant in the sub-basins where the CPEM-driven
model already does well, but they are more remarkable in sub-basins where it does not, e.g., the
Bowling bank and the Brynkinalt Weir stations. Regarding the bias, a significant improvement can be
seen for the Brynkinalt Weir sub-basins (Table 5).

Table 4. Calibration results of three simulations of the daily Soil and Water Assessment Tool (SWAT)
model for the Dee river basin for the period of 1995–2000. The numbers shown in the brackets are the
sizes in Km2 of the sub-catchments represented by the station.

Station Name
CPEM GAM GPM

NSE R2 NSE R2 NSE R2

Manley Hall (11.6) 0.93 0.94 0.94 0.95 0.94 0.95
Iron bridge (1.1) 0.82 0.82 0.82 0.82 0.82 0.83

Suspension bridge (25.1) 0.78 0.80 0.78 0.80 0.79 0.80
Pont-y-Capel (8.6) 0.74 0.75 0.80 0.82 0.78 0.82

Bowling Bank (17.0) 0.62 0.63 0.70 0.71 0.68 0.71
Brynkinalt Weir (116.0) 0.54 0.62 0.66 0.70 0.65 0.69

Table 5. The percent of bias (PBIAS) indices of the SWAT model calibrations at the Brynkinalt
Weir station.

Station Calibration with CPEM Calibration with GAM Calibration with GPM

Brynkinalt Weir 29.00 10.90 8.60

The PBIAS index is further examined in Table 6, which includes all nine combinations of
cross-validation results. Interestingly, the validations using the GPM rainfall series give better results
regardless of how the models were calibrated. For the other two indices NSE and R2, out of the nine
combinations of calibration-validation concerning the three different rainfall pre-processing methods
(CPEM, GAM and GPM), GAM-GAM, GAM-GPM, GPM-GAM are able to achieve better results
as shown in Figures 9 and 10. From the perspective of practical use, it is more interesting to look
at how models that are consistently calibrated and validated by the same dataset behave. In this
respect, we can see that the CPEM-CPEM setting (the original SWAT settings) remains as the worst; the
GPM-GPM combination is the best in the PBIAS measurements for the selected sub-basin, and overall
the GAM-GAM combination does well across all sub-basins.

Table 6. Percent of bias of three simulations of the daily SWAT model for Brynkinalt Weir station of
Dee river basin for a period of 2001–2003.

Calibrated Models Validation using CPEM Validation using GAM Validation using GPM

CPEM-Calibrated 23.50 7.90 3.91
GAM-Calibrated 24.20 8.70 4.83
GPM-Calibrated 24.10 8.70 4.80
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Figure 10. Determination coefficient of cross-validated results of three simulations of the daily SWAT
model of the Dee river basin for the period of 2001–2003.

The bias in model simulations can be related to the ill-parametrised model settings, but substantial
bias such as the one shown in Table 6 for the sub-basin of Brynkinalt Weir is likely due to the
misrepresentation of rainfall inputs. Figure 11 shows the comparison of the simulated monthly
river flows from the three SWAT models against the observed one at Brynkinalt Weir station for the
entire period of 1995–2003. In general, all three simulations underestimate the river flow and the
most considerable bias is observed from the CPEM-driven simulation; however, both the GAM- and
GPM-driven simulations can recover and get much closer after the spinning-up period of around
36 months.
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A closer examination on the nine calibration-validation combinations over the validation period
only (2001–2003) is revealed in Figure 12. In this case, the cumulative simulated flows are compared
against the observed one. Several remarkable features are clearly present, including:

• those models calibrated using GAM and GPM data produce nearly identical results in the
cross-validation when using the same precipitation data;

• those driven by the GPM data in the validation perform best, irrespective of however they are
calibrated; and those driven by GAM are in the second group next to the GPM-driven one;

• the CEPM data have the worst yet very close performances regardless of how the models
are calibrated;

• it is very surprising to see that the model calibrated using the CPEM time series but validated using
the GPM one achieves the best result, even though the difference from the other two (GAM-GPM
and GPM-GPM) is rather small.
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The contents of Figure 12 effectively reconfirm what has been revealed in Figures 9 and 10 by
comparing the overall performance of the nine simulations. It is shown that as far as the validation is
concerned, the difference caused by various choices of models is small and hence the ‘stable’ calibrations.
However, the choice of feeding models with differently pre-processed rainfall inputs (datasets) does
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make significant improvements. In this case, the CEH-GEAR based GAM and GPM are a better choice
than the rain gauge based CEPM method.

Table 7 lists the selected SWAT model parameters that are shown to be sensitive during the
calibration of the selected sub-basin in Figure 4. Since the model has been subjected to three calibrations
using CPEM-, GAM- and GPM-processed rainfall data, respectively, there are three sets of parameters
after the calibrations. The ‘compensation’ effect can thus be indicated by the differences among the
three set of parameter values, which are presented in Table 8 in terms of sensitivity values.

Table 7. Selected SWAT parameters with its typical range for the Dee river model calibration.

Parameters Description Typical Range

CN2 SCS runoff curve number 35–98
SOL_AWC Available water capacity of the soil layer 0–1
ESCO Soil evaporation compensation factor 0–1

GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur (mm) 0–5000

GW_REVAP Groundwater "revap" coefficient 0.02–0.2

REVAPMN Threshold depth of water in the shallow aquifer for "revap" to occur
(mm) 0–500

SOL_K Saturated hydraulic conductivity (mm/hr) 0–2000
CH_S2 The average slope of the main channel −0.001–10
CH_N2 Manning’s “n” value for the main channel −0.01–0.3
GW_DELAY Groundwater delay (days) 1–450
ALPHA_BF Baseflow alpha factor (days) 0–1
SOL_BD Moist bulk density 0.9–2.5

Table 8. The sensitivity of the calibrated parameters of SWAT model of the three simulations of the
selected sub-basin in Figure 4.

Parameters
CPEM GAM GPM

T-stat P-value T-stat P-value T-stat P-value

GW_REVAP 0.084 0.933 0.097 0.923 0.077 0.939
SOL_AWC(..) 0.219 0.827 −0.706 0.480 −0.603 0.547

SOL_K(..) −0.651 0.515 0.867 0.386 0.938 0.349
CH_S2 −0.858 0.391 −1.179 0.239 −1.215 0.225
CH_N2 1.590 0.112 1.626 0.105 −1.475 0.141

GWQMN −2.121 0.034 −1.645 0.101 1.590 0.113
GW_DELAY −2.382 0.018 −1.648 0.100 1.628 0.104
ALPHA_BF 2.443 0.015 1.755 0.080 −1.830 0.068
REVAPMN 2.794 0.005 2.399 0.017 2.296 0.022

ESCO −4.844 0.000 −7.402 0.000 −7.692 0.000
SOL_BD(..) 10.270 0.000 8.428 0.000 8.107 0.000

CN2 −118.127 0.000 −121.659 0.000 −122.852 0.000

It is worth noting, in Table 8, a clear variation of parameter sensitivity is found when switching
the preprocessing methods from CPEM to GAM or GPM. In general, those parameters associated
with surface runoff process, e.g., the available water capacity of the soil layer (SOL_AWC), Saturated
hydraulic conductivity, mm/hr (SOL_K), the average slope of the main channel (CH_S2), become more
sensitive (decreased p-values); in compassion, those related more to groundwater process are appearing
less sensitive but also with less changes of p-values. This may be because the precipitation inputs
become more correlated and hence leading to a better representation of the runoff process representation.

5. Conclusions

In this study, we investigated how various rainfall pre-processing methods could impact
hydrological model performance. Thanks to the latest high-resolution and high-quality, gridded rainfall
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dataset, it was possible to measure such impact on calibration and validation of a semi-distributed
model SWAT. The accompanying so-called ‘compensation’ due to model parameterisation was also
studied by comparing the three distinctive models calibrated with different rainfall pre-processing
methods: the centroid point estimate method (CPEM), the grid area method (GAM) and the grid point
method (GPM). The models were further cross-validated over different periods to isolate the changes
in performances due to model calibration (parameterisation) and the input rainfall data from different
pre-processing methods. Several important points can be concluded in the following categories:

(1) The quality of the CEH-GEAR dataset and the GAM/GPM processing method. It has been
shown the GEH-GEAR data are consistent with the gauge measurements with R2 greater than 0.98 for
all sub-catchments; thus, can work as a reliable source for model calibration and validation. Based
upon this dataset, both GAM and the GPM methods are theoretically better than the default CPEM
used by SWAT, as they either take the average of the grid values or use the centroid grid value within
the catchment, compared with the CPEM method using values of the gauge, which may sit outside and
even farther from the catchment in question.

(2) Impact on model calibration. Both the GAM and GPM methods can improve model calibration
by a considerable margin against the default setting, especially for those sub-catchments less well
calibrated, e.g., with low NSE. One of such examples is the Brynkinalt Weir sub-catchment, which obtains
NSE values of 0.54 from CPEM, 0.66 from GAM and 0.65 from GPM, respectively. The improvements
are not as large in the smaller catchment where the rainfall distribution representativeness issue is
less dominant. A remarkable finding is that the difference among the models calibrated using the
three distinctive methods, in terms of parameterisation, are not as significant as we initially expected.
The variation in calibrated model parameters among the models is small, although there are changes to
the sensitivities of some parameters, e.g., those parameters associated with the surface runoff process
become more sensitive when using GAM or GPM.

(3) Impact on cross-validation and practical implication. Six sub-catchments with nine
combinations of calibration-validation using three different pre-processing methods are tested.
Nash–Sutcliffe index and R2 are employed to measure the performance of the simulations at the six
sub-catchments. Besides, simulated monthly flow and its cumulative at the Brynkinalt Weir station
are checked against the observations. As expected, those models calibrated and validated using the
same better pre-processing methods, e.g., GAM or GPM score the best. However, it is remarkable to
find that a less-well-calibrated model due to the use of an inferior pre-processing method, such as
CPEM, can do equally well when fed with better-pre-processed data, such as GAM or GPM during
validation. In other words, it is the quality of the rainfall input data that dominates the cross-validation
performance instead of how a model is calibrated. An accompanying implication is that in practice, a
model previously calibrated with low-quality rainfall data can still use high-quality rainfall inputs
when they become available at later times without having to be re-calibrated, which is often limited by
the length of data.

(4) Impact of catchment size. The largest sub-catchment (Brynkinalt Weir, 116.0 Km2) is found
to gain the most improvement compared with other sub-catchments with sizes around 10–20 Km2

(Table 4). The improvements due to the new input data/new pre-processing method become less
significant when the catchment size gets smaller. Clearly, further detailed investigation with more
catchments studied is needed. However, this can as well be explained by the less spatial variation of
rainfall over smaller catchments than larger ones.

It should be noted that this study is based on a semi-distributed model, which still treats the
rainfall inputs in a relatively lumped way, at least at the sub-basin scale. The interactions among the
rainfall inputs, sub-basin parameterisation and the whole catchment response do require further studies
that hopefully can identify the ‘sensitive’ areas where more sophisticated rainfall measurements and
pre-processing can help significantly. Nevertheless, our study shows the value of high-quality datasets,
such as the CEH-GEAR in hydrological modelling, and a practical approach to improving the SWAT
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simulation by adopting pre-processing methods, such as GAM and GPM, even with conventional rain
gauge measurements, as they are not dependent on the CEH-GEAR data.
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