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Abstract: Based on the long series of gauge rainfall data from 1979 to 2015, the performance of
Multi-Source Weighted-Ensemble Precipitation (MSWEP) precipitation dataset in the Zhoushan
Archipelago and its surrounding sea area in Southeast China was evaluated from a variety of
perspectives, and then the Cressman scheme was used to merge MSWEP with surface gauge
measurements. It was found that at the spatial scale of 0.1◦ × 0.1◦, MSWEP correctly detected most of
the daily rainfall events in the study area. The surface precipitation was generally underestimated,
with a relative deviation no more than 10%, but there was a fairly high miss reporting on heavy
precipitation. The performance of MSWEP is also obviously characterized with seasonal fluctuation.
Compared with the gauge records interpolation results, the accuracy statistics of rainfall dataset
generated by merging MSWEP with gauge observations is improved to a certain degree. Especially its
comprehensive identification ability of the dry and wet state for daily precipitation has been obviously
raised. In addition, the merged data has the mixed characteristics of rain gauge observations and
MSWEP in spatial structure. This paper has deepened the understanding of the performance of
MSWEP in islands and sea areas, and also strengthened the understanding of the marginal effect of
merging gauge data with MSWEP, even other global precipitation datasets.
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1. Introduction

Precipitation is one of the most basic meteorological and hydrological elements. Under the
combined influenced by atmospheric motion and underlying surface, precipitation has complex spatial
variability. Acquisition of detailed precipitation spatial distribution is of great significance for a
series of applications including natural disaster prevention and control, water resources management
and regulation, infrastructure operation and maintenance, and ecological environment protection.
For a long time, rain gauge networks have been the main way to obtain the spatial distribution of
precipitation. Later, in order to make up for the deficiency of the rain gauge network in spatial coverage,
representativeness and timeliness, weather radar, meteorological satellite, atmospheric numerical
model, and other precipitation acquisition technologies were developed. The existing precipitation
acquisition methods are different in the principle of observation way, accuracy, spatial and time
resolution, and coverage, but they are theoretically complementary to some extent [1]. Therefore,
integration and merging of precipitation information from different sources and with different nature
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has become the frontier of quantitative precipitation estimation. At present, a series of rainfall merging
algorithms have been proposed, and they can be roughly summarized into three types, namely initial
field correction, interpolation with auxiliary information, and optimal matching [2]. On the basis
of these algorithms, literatures have extensively integrated ground rainfall gauge data with radar,
satellite, reanalysis and other non-traditional precipitation data, and developed several global or
regional precipitation merged datasets, the fairly famous ones including the Global Precipitation
Climatology Project (GPCP) [3], the Climate Prediction Center (CPC) Merged Analysis (CMAP) [4],
Tropical Rainfall Measuring Mission 3B42 (TRMM 3B42) [5], Global Satellite Mapping of Precipitation
(GSMaP) Moving Vector with Kalman-filter(GSMaP-MVK) [6], and Integrated Multi-satellite Retrievals
for GPM (IMERG) [7]. A lot of studies have been carried out on the accuracy assessment and
hydrological application of merged rainfall. Relevant literatures show that the marginal effect of
merging gauge measurements with other precipitation data depends on the quality of data source,
gauge density, geographical and climatic conditions, and other factors [2].

Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a global precipitation dataset recently
developed by Beck et al. [8,9], it merges the surface rain gauge and various satellite and reanalysis
precipitation information and adopts runoff and potential evapotranspiration data in some catchments
for the calibration. MSWEP has the spatial resolution of 0.1◦ × 0.1◦, and time resolution of 3 h, with a
data series length from 1979 to the present. Since its release, MSWEP has attracted extensive attention
in related scientific fields such as meteorology and hydrology. Beck et al. [8] evaluated the accuracy of
MSWEP in 9053 river catchments around the world by using both the precipitation measurements
from rain gauge network and hydrological simulation method. Through comparison with TMPA 3B42
V7 and other merging data, the advantages of MSWEP were demonstrated preliminarily. Beck et al. [9]
also used rain gauge-radar precipitation data within the United States to compare the performance
of 11 kinds of global or quasi-global precipitation data (including 1 purely gauge based data and 10
merged data) at daily scale, and found that MSWEP had the highest accuracy among all the data;
Alijanian et al. [10] obtained similar results in a comparative study in Iran. Nair and Indu [11] found
that MSWEP had a strong identification ability for daily precipitation in India, but they also found that
this data had deficiency in monitoring heavy or extreme precipitation. Awange et al. [12] pointed out
that MSWEP underestimated precipitation in northern and northwestern Australia and was unable to
reflect major extreme hydroclimatic events in the west, east, and south of Africa. Deng et al. [13] believed
that MSWEP performed differently both in time and space in China mainland, with overestimation
for weak precipitation and underestimation for heavy precipitation events, respectively. Xu et al. [14]
analyzed the applicability of MSWEP V2.1 to drought monitoring in China mainland, and pointed
out that MSWEP was superior to TMPA 3B42V7 and CMORPH BLD in areas where surface rainfall
measurements were lacking, but the performance of MSWEP was better in humid areas than in arid
and semi-arid areas.

In general, existing literatures have shown that MSWEP has a strong ability for discerning surface
precipitation, and its accuracy is often better than other global precipitation dataset. Thus, this dataset
undoubtedly has a strong potential in meteorological and hydrological researches and application.
However, in general, as a global rainfall dataset recently developed, the evaluation of MSWEP and its
combination with other rainfall dataset is not fully developed yet. Moreover, existing assessment and
verification of MSWEP and even other global precipitation datasets are mainly carried out in land area.
There is rare investigation for islands and sea areas where surface precipitation data are rather scarce or
even lacking. Furthermore, similar to other multi-source merged rainfall data, MSWEP have integrated
precipitation information from ten thousands of rain gauges, satellite, reanalysis and others worldwide,
but in many areas, the rain gauges used in the process of developing MSWEP is quite sparse or even
non-existent. Therefore, in specific areas, MSWEP and local ground rainfall data can be further merged
to improve the quality of precipitation spatial estimation and deepen the understanding of regional
precipitation distribution characteristics. For example, Woldemeskel et al. [15] pointed out that the
marginal effect of the merging of TRMM 3B42 data and rain gauge data in Australia was related to the
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rain gauge network density. Nerini et al. [16] used a variety of algorithms in Peru to combine gauge
rainfall with TRMM 3B42 on a daily time scale. Wang et al. [17] used generalized additive model to
merge gauge observation with MSWEP in the Three-Gorge Reservoir area of China, and pointed out
that MSWEP and gauge precipitation information were complementary with each other to some extent.
Motivated by the existing studies, this paper takes Zhoushan Archipelago and their surrounding sea
area in southeast China as the study area, to investigate the merging of ground rain gauge observations
with MSWEP. We have two main objectives in this paper. Firstly, to verify and evaluate the accuracy of
MSWEP in the Zhoushan Archipelago, and deepen the understanding of the accuracy characteristics
of MSWEP in the southeast coastal region of China. Secondly, to test and analyze the marginal
gains of MSWEP and local gauge data combination. Multi-source rainfall merging is fairly hot in
the field of quantitative precipitation estimation. However, its additional gain with respect to gauge
observation interpolation is not fully illustrated yet. We expect that based on long series of rainfall
records, this study will promote the rational application of global precipitation datasets including
MSWEP in areas where surface precipitation data are sparse and deepen the understanding of the
precipitation characteristics of the similar regions to provide scientific basis for strengthening water
resource management and rainwater utilization in the island areas. It should be pointed that the main
purpose of this paper is not to develop a new rainfall merging method or validate any sophisticated
method. Thus, we choose the Cressman scheme for rainfall spatial estimation. Although this method is
traditional and somewhat simple, in the study area it is more feasible than other sophisticated methods.
It is both adequate for rainfall merging and interpolation and thus provides convenience for analyze
the marginal effect of adding more information to rainfall spatial estimation.

The article is organized as follows. In Section 2, we briefly introduce the study area and the
rainfall datasets used. Then, in Section 3, the statistics for evaluating the performance of MSWEP
and the algorithm used to merge MSWEP and gauge rainfall data are stated. In the next section,
the differences among three rainfall datasets, namely the original MSWEP, the gauge interpolation data
and the dataset combining gauges rainfall and MSWEP are compared and illustrated at various time
scales. Finally, In Section 5, the marginal benefit of merging global rainfall with local gauge rainfall is
especially discussed and some conclusions are drawn.

2. Study Area and Data

2.1. Study Area

The Zhoushan Archipelago is located in the Pacific Ocean at the south side of the Yangtze
River estuary and the outer edge of Hangzhou Bay, between 121◦30’–123◦25’E and 29◦32’–31◦04’N
(see Figure 1), under the administration of Zhejiang Province and adjacent to Shanghai City. The total
area of the main islands of the Zhoushan Archipelago and their adjacent water area is 22,216 km2,
including a land area of 1371 km2. The Zhoushan Archipelago is the largest archipelago in China,
accounting for 20% of the total islands of this country. In this archipelago, fifty-eight islands are
with area over 1 km2, accounting for 96.9% of the total land area. Among these islands, the Central
Zhoushan Island is the largest island with an area of 502.65 km2, which is the fourth largest island
in China. Large islands are densely distributed in the southwest of the study area, and small islands
mainly scattered in the northeast.

Located in the subtropical marine monsoon climate region. Long winter and summer, short spring
and autumn, four distinct seasons, warm and moist, and abundant sunlight. Compared with inland
cities and counties with similar latitudes, it has the climatic characteristics of no intense heat in
summer, no severe winter, and small temperature difference between winter and summer. The average
temperature over the years is around 15.5–16.7 ◦C, the extreme maximum temperature is 39.1 ◦C
(6 August 1966), and the extreme minimum temperature is −7.9 ◦C (31 January 31 1981). The over-years
average rainfall is between 980.7 and 1355.2 mm, which is 70–500 mm lower than that of the continental
area at the same latitude. The over-years water-surface evaporate is 1208.7–1466.2 mm, which is
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100–300 mm higher than the later. These results in the annual runoff depth about 44% less than that in
continental areas of the same latitude. The precipitation is unevenly distributed throughout the year.
Affected by the plum rain and typhoons, the precipitation in June to September generally accounts for
about 45% that of the whole year. Affected by cold air in winter and low air pressure in spring, more
sea fog in spring and more typhoons in summer and autumn, 110 days of gale days above the average
annual level of 8. The winter is with the characters of less ice and snow, about 296 days of frost-free
period, rich sunlight.Water 2019, 11, x FOR PEER REVIEW 4 of 20 
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Figure 1. The location and island distribution of the study area.

The Zhoushan Archipelago is with low hilly terrain. The highest peak on the south islands is
544.4 m above the sea level, while the rest are mostly 200–400 m. As most of the islands are with
small catchments, it is difficult to effectively collect surface runoff. In addition, due to the shallow
soil cover, sparse vegetation, and hard rock, the groundwater utilization is rather difficult. In terms
of permanent population, the water resource per capita in this archipelago is only about half of the
country. Therefore, people there have to unitedly rely on local water source, water transferred from the
mainland and seawater desalination to meet the living and production water needs.

2.2. Rainfall Data

2.2.1. Rain Gauge Observations

Daily rainfall records of eight gauges from 1979 to 2015 were collected, and their locations and
basic information are shown in Table 1. Among them, Shengsi and Dinghai are weather stations
measuring rainfall and other metrological variables (with type denoted by “WS”), and the data of
Qushan and other five stations just observe rainfall (with type denoted by “RG”). Rainfall data
observed by all gauges were subject to strict quality control, and suspicious and erroneous data were
manually checked and corrected. Table 1 shows that the rainfall data from Shengsi and Dinghai are
continuous, but are missing within certain period for other gauges.



Water 2020, 12, 829 5 of 20

Table 1. Rain gauges location and basic information over the study area.

No. Name Type Data Collection
Periods

Longitude
(◦E)

Latitude
(◦N)

Annual Average
Precipitation

(mm)

Annual
Precipitation

Variation Range
(mm)

1 Shengsi WS 1979–2015 122◦27′E 30◦43′N 1135.6 681.1–1459.4

2 Qushan RG 1979–1984,
2007–2015 122◦20′E 30◦26′N 1042.0 621.3–1478.5

3 Daishan RG 1979–1984,
2007–2015 122◦11′E 30◦17′N 1131.1 639.1–1782.5

4 Dasha RG 1979–1984,
2007–2015 122◦01′E 30◦08′N 1194.7 668.2–1759.0

5 Dinghai WS 1975–2015 122◦05′E 30◦03′N 1581.7 925.1–2139.3

6 Jintang RG 1979–1984,
2007–2015 121◦52′E 30◦01′N 1220.2 674.7–1948.0

7 ShenjiamenRG 1979–1984,
2007–2015 122◦18′E 29◦57′N 1277.2 744.6–1686.5

8 Liuheng RG 1979–1984,
2007–2015 122◦07′E 29◦45′N 1275.6 729.4–1868.8

For the missing rainfall records in the six gauges, a linear regression relationship for the daily
precipitation between these gauges and Shengsi or Dinghai was established, and then the missing data
were interpolated. Figure 2 shows the example of the Shenjiamen station. The daily rainfall data from
1979 to 1984 and from 2007 to 2015 were used to establish a linear regression relationship between this
station and Dinghai or Shengsi. We could see that that Shenjiamen and Dinghai had a better correlation
than Shenjiamen and Shengsi. Then at Shejiamen, daily rainfall data recorded during 1985 to 2006
were interpolated using Shejiamen other than Shengsi, and finally the continuous daily rainfall data
from 1979 to 2015 were obtained. The interpolation method of rainfall data in other rain gauges is
similar to that of Shenjiamen.
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2.2.2. MSWEP Data

MSWEP-V2.1 data corresponding to the study area during 1979 to 2015 were downloaded from
the Internet (url: http://www.gloh2o.org/). The original data had spatial resolution of 0.1◦ × 0.1◦,
and time resolution of 3 h. In this paper, the 3-hour rainfall was accumulated to obtain the MSWEP
rainfall on a corresponding day, month, and other duration.

http://www.gloh2o.org/


Water 2020, 12, 829 6 of 20

3. Methodology

3.1. Precipitation Evaluation Indices

The accuracy of MSWEP at daily and monthly time scales was assessed. For the daily scale,
both categorical and quantitative statistics are used simultaneously, while for the monthly scale,
only quantitative statistics are used.

The categorical indices are used to describe the ability of MSWEP to identify the occurrence of
precipitation events are Probability of Detection (POD), Frequency of Hit (FH), and Heidke’Skill Score
(HSS). Among them, POD and FH are respectively used to describe the degree of missing and false
alarm of daily precipitation events. The closer they are near to 1, the lower degree of missing and false
alarm of precipitation events. HSS is a comprehensive index reflecting the identification ability of
precipitation events. If it is higher than zero, the identification ability of precipitation events is better
than random estimation, and its optimal value is 1. Formulas of the three categorical indices are as
follows:

POD =
n11

n11 + n01
(1)

FH =
n11

n11 + n10
(2)

HSS =
2(n11n00 − n10n01)

(n11 + n01)(n01 + n00) + (n11 + n10)(n10 + n00)
(3)

where, n11 represents the number of rain days both detected by the estimation and the reference (i.e.,
the gauge observation, the same for below); n10 represents the frequency of rain days by the estimation
but no rain by the reference; n01 represents the frequency of no rain days by the estimation but rainy by
the reference; and n00 represents the frequency of no rain days both by the estimation and the reference.
The threshold value of rain and no rain for daily precipitation event is 0.1 mm/d.

Quantitative statistics include Relative bias (RBIAS), Standardized Root Mean Square Error
(SRMSE), Root Mean Square Error (RMSE), Determination Coefficient (R2), and Correlation Coefficient
(CC). RBIAS describes the average deviation (relative value) of the estimation from the reference [18];
RMSE is used to measure the average error of the estimation and SRMSE reflects the relative dispersion
degree of error; R2 reflects the interpretation ability of the reference variance by the estimation; and CC
refers to the correlation between the estimation and the reference. Formulas calculating the five
quantitative statistics are as follows:

RBIAS =
1
n
×

∑n

i=1

((Si + ε) − (Gi + ε))

(Gi + ε)
(4)

RMSE =

√
1
n

∑n

i=1
(Si −Gi)

2 (5)

SRMSE = (

√
1
n

∑n

i=1
(Si −Gi)

2)/G (6)

R2 = 1−
∑n

i=1
(Si −Gi)

2/
∑n

i=1
(Gi −G)

2
(7)

CC =

n∑
i=1

(Si − S)(Gi −G)√
n∑

i=1
(Gi −G)

2
√

n∑
i=1

(Si − S)
2

(8)

In Equations (4)–(8): Gi and Si stand for the gauge measured and the estimated precipitation
respectively; G and S respectively represent the mean value of the gauge measured and estimated
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precipitation, and n represents the number of samples. ε = 0.01 is required in the event of Gi = 0;
ε = 0 is required in the event of Gi , 0 [18].

3.2. Rainfall Merging Algorithms

The Cressman scheme is adopted to merge surface gauge rainfall and MSWEP data. This method
is traditional and somewhat simple. However, it is a practical objective analysis method, widely used
in the field of climate diagnosis and analysis [19,20]. Rain gauges are sparse and irregular in space in
the study area. Thus, the Cressman scheme is more feasible for the study area than other sophisticated
methods such as geostatistics, Bayesian, and so on [21]. In addition, there is another advantage for
using this scheme. It is adequate for both rainfall merging and interpolation and thus provides much
convenience for analyze the marginal effect of adding MSWEP information to rainfall spatial estimation.

The Cressman method takes MSWEP data as the first initial field of precipitation, and then uses
the gauge observations to iteratively correct the initial field, until the error metric between the obtained
analysis field and the observation field no longer changes. For a spatial variable α, supposing the
corrected value at the grid point (i, j) is ∆αi j, ∆αi j is the weighted average of the difference between the
observed values and the analyzed values within a certain radius D, and its specific calculation formula
is following [22]:

∆αi j =

∑K
k=1 (W

2
i jk∆αk)∑K

k=1 Wi jk
(9)

where ∆αk is the difference between the observed value and analyzed value at the observation location
denoted by k; Wi jk is the weight ranging from 0.0–1.0; and K is the number of observations within the
influence radius D. The key of Cressman method is to determine the weight, and it is generally in the
form as follows:

Wi jk =


D2
−d2

i jk

D2+d2
i jk

, (di jk < D)

0, (di jk ≥ D)
(10)

where di jk is the distance between the grid point (i, j) and the kth observation point within the influence
radius [15].

There is a small number of rain gauges in the area of Zhoushan Archipelago, and they are unevenly
distributed in space. When the Cressman method is used for spatial estimation, if the influence radius D
is set too small, it is likely that measured data correction cannot be made for some locations. Conversely,
it may make the analysis value too smooth. Therefore, a dynamic influence radius method for the
Cressman scheme is adopted by Zhang et al. [23], and a larger influence radius is adopted in areas
with low gauge density and a smaller influence radius in areas with high gauge density, so as to ensure
that there are at least three gauges for each grid to be calibrated.

4. Results and Analysis

Using the Cressman scheme, at three different time scales of daily, monthly, and yearly, in the study
area precipitation dataset based on gauges and MSWEP rainfall combination (denoted by CMSWEP
for convenience) during 1979–2015 were obtained, with a spatial resolution of 0.1◦ × 0.1◦. In addition,
the gauge-interpolated precipitation (briefly expressed with GIP) with a spatial resolution of 0.1◦ × 0.1◦

was produced. Thus, there are totally three precipitation datasets with a spatial resolution of 0.1◦ × 0.1◦

in the Zhoushan Archipelago, namely MSWEP, GIP, and CMSWEP. Choosing the pointwise gauge
measurements as the benchmark, the three sets of precipitation data are evaluated and compared from
different aspects.
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4.1. Precipitation Performance at Different Time Scales

4.1.1. Accuracy of Daily Rainfall

Figure 3 shows the scatter plots between GIP, MSWEP, and CMSWEP and the benchmark rainfall
at the daily time scale during 1979–2015. In this Figure, the two accuracy indices, R2 and SRMSE,
are also presented. Table 2 presents the categorical accuracy and quantitative statistics.
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Table 2. Daily accuracy indices for the three rainfall datasets during 1979 to 2015.

Indices

Rainfall Datasets POD FH HSS RBIAS SRMSE RMSE (mm) R2 CC

GIP 0.97 0.80 0.82 8.12 1.049 3.49 0.862 0.929

MSWEP 0.84 0.79 0.70 10.15 1.435 4.77 0.743 0.864

CMSWEP 0.96 0.89 0.88 4.42 1.026 3.41 0.868 0.933

As can be seen from Table 2, most of the daily rainfall events that occurred during 1979–2015 were
successfully detected by the three kinds of datasets (with POD > 0.8 in all), also with a high FH above
0.79, which indicates a low degree of false alarm. Therefore, they have a strong identification ability on
the dry and wet status of daily rainfall. Among them, CMSWEP has the highest classification accuracy.
POD corresponding to CMSWEP are generally equal to GIP, but FH is significantly higher than the
later, so its HSS is also significantly improved compared with the later However, the comprehensive
ability of MSWEP to identify precipitation events is some low compared with the other two datasets.
Compared with GIP, the main problem with MSWEP is that there is a large degree of missed reporting.
For MSWEP, the R2 is over 0.74, while CC is over 0.86, indicating that this data had a well interpretation
ability for daily rainfall in the Zhoushan Archipelago, but its quantitative error is still remarkable,
with RBIAS close to 10.15 and the RMSE and SRMSE are the highest among the three kinds of data.
The surface daily precipitation was generally underestimated by MSWEP.

In general, at the daily time scale, the accuracy of MSWEP in Zhoushan Archipelago is lower than
GIP based on sparse and unevenly distributed rain gauges. However, after merging with the rain gauge
data, all the quantitative accuracy indices are improved to a certain degree. Overall, the performance
of CMSWEP is not only higher than MSWEP, but also higher than GIP.

4.1.2. Accuracy of Monthly Rainfall

Figure 4 is the scatter plot of GIP, MSWEP, and CMSWEP and the gauge measurements at the
monthly time scale. Table 3 shows the relevant quantitative accuracy indices. As can be seen from this
table, GIP and CMSWEP have small systematic deviations at the monthly scale, with RBIAS being
0.57 and 0.36, respectively. MSWEP shows relatively significant underestimation of monthly rainfall,
and its RBIAS value is about−0.19, lower to the results of the other two data, which is due to the
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fact that no monthly precipitation is zero. By comparing Figures 3 and 4, it can be seen that relative
to the daily scale, at the monthly scale the interpretation ability of the three rainfall datasets for the
benchmark has been significantly enhanced, with R2 exceeding 0.87. CMSWEP had the highest R2,
reaching 0.894, followed by GIP. The correlation of the three datasets with the benchmark has also
been significantly improved, with CC exceeding 0.9 in all, among which CMSWEP is the highest,
about 0.95. At the same time, compared with the daily scale, the SRMSE of the three kinds of data at
the monthly scale has significantly reduced, being 0.236, 0.263, and 0.227, respectively, and RMSE has
also decreased to 23.89 mm, 26.67 mm, and 22.93 mm, respectively. It can also be found that at the
monthly scale, all accuracy indices of CMSWEP are better than those of GIP and MSWEP. This indicates
that the blending of MSWEP data with gauge data enhances the interpretation ability for the monthly
surface rainfall.

Water 2019, 11, x FOR PEER REVIEW 9 of 20 

 

Table 2. Daily accuracy indices for the three rainfall datasets during 1979 to 2015. 

    Indices     
Rainfall Datasets POD FH HSS RBIAS SRMSE RMSE (mm) R2 CC 

GIP 0.97 0.80 0.82 8.12 1.049 3.49 0.862 0.929 
MSWEP 0.84 0.79 0.70 10.15 1.435 4.77 0.743 0.864 

CMSWEP 0.96 0.89 0.88 4.42 1.026 3.41 0.868 0.933 

4.1.2. Accuracy of Monthly Rainfall 

Figure 4 is the scatter plot of GIP, MSWEP, and CMSWEP and the gauge measurements at the 
monthly time scale. Table 3 shows the relevant quantitative accuracy indices. As can be seen from 
this table, GIP and CMSWEP have small systematic deviations at the monthly scale, with RBIAS being 
0.57 and 0.36, respectively. MSWEP shows relatively significant underestimation of monthly rainfall, 
and its RBIAS value is about−0.19, lower to the results of the other two data, which is due to the fact 
that no monthly precipitation is zero. By comparing Figure 3 and Figure 4, it can be seen that relative 
to the daily scale, at the monthly scale the interpretation ability of the three rainfall datasets for the 
benchmark has been significantly enhanced, with R2 exceeding 0.87. CMSWEP had the highest R2, 
reaching 0.894, followed by GIP. The correlation of the three datasets with the benchmark has also 
been significantly improved, with CC exceeding 0.9 in all, among which CMSWEP is the highest, 
about 0.95. At the same time, compared with the daily scale, the SRMSE of the three kinds of data at 
the monthly scale has significantly reduced, being 0.236, 0.263, and 0.227, respectively, and RMSE has 
also decreased to 23.89 mm, 26.67 mm, and 22.93 mm, respectively. It can also be found that at the 
monthly scale, all accuracy indices of CMSWEP are better than those of GIP and MSWEP. This 
indicates that the blending of MSWEP data with gauge data enhances the interpretation ability for 
the monthly surface rainfall. 

 

Figure 4. Scatter plots of the three kinds of monthly rainfall versus the benchmark rainfall. 

Table 3. Monthly accuracy indices for the three rainfall datasets during 1979 to 2015. 

  Indices    
Rainfall Datasets RBIAS RMSE (mm) SRMSE R2 CC 

GIP 0.57 23.89 0.236 0.879 0.944 
MSWEP −0.19 26.67 0.263 0.880 0.939 

CMSWEP 0.36 22.93 0.227 0.894 0.948 

4.1.3. Seasonal Changes of the Accuracy Statistics 

Figure 5 shows the daily accuracy indices fluctuation of GIP, MSWEP, and CMSWEP within a 
year in the study area. It can be known from this figure that, except for POD, the accuracy indices of 
the three dataset at the daily time scale all show significant seasonal fluctuation. In terms of RBIAS, 
the systematic error of MSWEP from June to September is lower than that of other periods of the year, 
but HSS, CC, R2, and SRMSE are all poor in this period, indicating that in this period the overall 

Figure 4. Scatter plots of the three kinds of monthly rainfall versus the benchmark rainfall.

Table 3. Monthly accuracy indices for the three rainfall datasets during 1979 to 2015.

Indices

Rainfall Datasets RBIAS RMSE (mm) SRMSE R2 CC

GIP 0.57 23.89 0.236 0.879 0.944

MSWEP −0.19 26.67 0.263 0.880 0.939

CMSWEP 0.36 22.93 0.227 0.894 0.948

4.1.3. Seasonal Changes of the Accuracy Statistics

Figure 5 shows the daily accuracy indices fluctuation of GIP, MSWEP, and CMSWEP within a
year in the study area. It can be known from this figure that, except for POD, the accuracy indices
of the three dataset at the daily time scale all show significant seasonal fluctuation. In terms of
RBIAS, the systematic error of MSWEP from June to September is lower than that of other periods of
the year, but HSS, CC, R2, and SRMSE are all poor in this period, indicating that in this period the
overall performance of MSWEP is relatively low. MSWEP significantly underestimates the benchmark
during January–March and October–December by as much as about 15%. The performance of GIP
and CMSWEP are both significantly better than MSWEP in each month of the year. The POD, HSS,
and RBIAS of GIP and CMSWEP have no obvious seasonal change in the year, but other indices from
June to October are poorer than other months.

Figure 6 shows the distribution of monthly accuracy indices within a year for the three rainfall
datasets. In terms of RBIAS, the systematic error of MSWEP from January–June is lower than other
months (RBIAS is the highest in November); and SRMSE is similar, the deviation from January to
June is significantly lower than July to December, and the deviation is the largest from July to October.
For MSWEP, CC, and R2 show no distinct change pattern. For GIP and CMSWEP, the seasonal change
of RBIAS is not remarkable. Except September, it differs little in other months; the trend of SRMSE
is basically the same as MSWEP’s, showing an inverted "U" shape. From July–November, SRMSE is
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significantly higher than other months for the two datasets. However, there is no fixed change rule for
other indices in each month of the year. Therefore, the seasonal characteristics of the three precipitation
datasets in terms of accuracy indices at the monthly scale are apparently different from those at the
daily scale.
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4.2. Comparison of Rainfall Spatial Distribution

4.2.1. Annual Rainfall

In addition to the statistics, the difference of three kinds of rainfall datasets and the influence
of rainfall merging on the spatial estimation results are further explained from the rainfall spatial
distribution over the Zhoushan Archipelago. Figure 7 shows the gridded multi-year averaged annual
precipitation corresponding to GIP, MSWEP, and CMSWEP with 0.1◦ × 0.1◦ spatial resolution. It can
be known from the figure that, both GIP and MSWEP reflect that the mean annual rainfall is higher in
the Central Zhoushan Island and its adjacent ocean in the south of the study area, but is lower in the
Shengsi Island and its surrounding ocean in the north. For these two datasets, the mean annual rainfall
decreases gradually from the southwest to the north on the whole. However, there are substantial
differences in spatial distribution pattern of annual rainfall between GIP and MSWEP. Firstly, in terms
of the range of annual rainfall amount at the grid scale, MSWEP underestimates the surface annual
rainfall to a certain degree, and the lowest and highest annual rainfall of all the grids are both lower than
those of GIP. Secondly, grids distribution with high annual mean rainfall is not completely consistent.
For GIP, the high mean annual rainfalls are mainly located in the vicinity of the Central Zhoushan
Island, while for MSWEP they are mainly distributed to the southwest of the Central Zhoushan
Island. Thirdly, for GIP, the annual rainfall spatial distribution is relatively smooth, while for MSWEP,
the annual rainfall distribution is relatively diverse and shows more detailed characteristics. CMSWEP
has the mixed features from GIP and MSWEP. For this dataset, in terms of the spatial distribution
pattern of annual rainfall, the original gauge data take a dominant role in the south of the study area,
i.e., the Zhoushan Island and its adjacent sea area with some high density of rain gauge, while in
the Shengsi Island and its surrounding sea area in the northeast with relatively sparse rain gauges,
MSWEP plays a more significant role. The range of annual mean rainfall of CMSWEP grids is close to
that of GIP, indicating that the systematic error of MSWEP has been effectively reduced by observations.Water 2019, 11, x FOR PEER REVIEW 12 of 20 
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Figure 7. Spatial distribution of mean annual rainfall during 1979 to 2015 with 0.1◦ × 0.1◦ resolution.

Table 4 further presents the mean annual precipitation and flood season precipitation corresponding
to the three rainfall datasets over the islands with a population no less than 10,000 (the locations of
each island are shown in Figure 1). It can be realized that the annual precipitation corresponding to
MSWEP is lower than that of GIP for all the inhabited islands, but the degree of underestimation is less
than 10%. However, CMSWEP is fairly close to the GIP.
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Table 4. Comparison of the mean annual precipitation and flood season precipitation over the main
inhabited islands among the three rainfall datasets from 1979 to 2015.

Island Land Area
(km2)

Population
(Person) Data Flood Season

Precipitation (mm)
Mean Annual

Precipitation (mm)

Zhoushan
Island

486.2 489,509
GIP 706.9 1278.5

MSWEP 660.0 1169.1
CMSWEP 705.6 1271.6

Daishan
Island

105.0 103,396
GIP 644.5 1179.7

MSWEP 606.1 1072.6
CMSWEP 641.8 1168.8

Liuheng
Island

93.5 58,432
GIP 728.0 1301.8

MSWEP 682.8 1189.9
CMSWEP 726.9 1296.0

Qushan
Island

59.8 50,408
GIP 593.3 1107.1

MSWEP 554.5 993.0
CMSWEP 584.5 1081.2

Jintang
Island

77.4 41,135
GIP 735.4 1324.5

MSWEP 675.2 1142.7
CMSWEP 731.9 1313.2

Siqiao
Island

22.5 31,619
GIP 568.0 1069.0

MSWEP 517.8 948.5
CMSWEP 562.4 1055.4

Zhujiajian
Island

61.8 26,512
GIP 709.1 1279.2

MSWEP 661.9 1160.2
CMSWEP 706.6 1262.3

Xiazhi
Island

17.0 18,372
GIP 718.5 1275.8

MSWEP 679.4 1190.3
CMSWEP 717.0 1274.5

Taohua
Island

40.7 16,574
GIP 714.3 1274.5

MSWEP 661.7 1160.4
CMSWEP 711.3 1269.7

Dayangshan
Island

4.9 11,303
GIP 594.1 1115.5

MSWEP 528.5 954.2
CMSWEP 576.1 1061.5

4.2.2. Flood Season Rainfall

Figure 8 shows the spatial distribution of multi-year mean flood season precipitation (during May
to September) corresponding to the three datasets in the study area. According to the Figure, GIP and
MSWEP both reflect that the flood season precipitation in the northeast sea area of the Zhoushan
Archipelago is significantly higher than that in other sub-areas, while the flood season precipitation in
the west area is relatively low, which is obviously different from the annual precipitation. The flood
season precipitation distribution corresponding to MSWEP obviously shows stronger spatial diversity
and details, while GIP is relatively monotone. This is related to the density of the rain gauges in the
study area and also the characteristics of Cressman method. When the gauge density is low and
the spatial distribution is uneven, this scheme is likely to produce an excessively smooth estimation
result when it is applied to spatial interpolation. Meanwhile, the minimum value of the gridded
flood season precipitation corresponding to MSWEP is less than GIP, while the maximum value is
slightly higher than the latter. The range of flood season precipitation of CMSWEP data is close to GIP.
Meanwhile, CMSWEP blends the spatial distribution characteristics of MSWEP and GIP. For the main
inhabited islands, the comparison of multi-year mean flood season precipitation during 1979–2015
among the three datasets is shown in Table 4. It can be seen that MSWEP underestimates the flood
season precipitation of all the islands by less than 10%, while CMSWEP is close to GIP.
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4.2.3. Accumulated Days with Daily Rainfall Exceeding 50 mm

Located in the southeast coastal region of China affected by the plum rain and typhoons,
the Zhoushan Archipelago is prone to high intensity precipitation events, which may produce
important impacts on the economy and society development. Therefore, this paper pays more attention
to the spatial distribution of the rainstorm days in this region obtained by different precipitation
datasets. Figure 9 is the 0.1◦ × 0.1◦ gridded accumulated rainstorm days (days with daily precipitation
over 50 mm) during 1979–2015 for the three precipitation datasets. It can be seen that the rainstorm days
for MSWEP is significantly lower than GIP and CMSWEP, indicating that MSWEP has underestimated
the heavy precipitation to a large extent, missing quite a number of rainstorm events. This agrees with
the finding by Deng et al. [17]. In addition, the spatial distribution of accumulated rainstorm days
between MSWEP and GIP is also significantly different. For GIP, the regions with high cumulative
rainstorm days are mainly distributed in Central Zhoushan Island and the adjacent sea area in the
south. However, MSWEP has two areas with high cumulative rainstorm days. For MSWEP, besides the
islands in the south and their surrounding sea area, the northeast sea area is also with high cumulative
rainstorm days. At the grid scale, the cumulative rainstorm days for CMSWEP ranges from 53 to
132 days, and its maximum value is close to GIP, but its minimum value is still significantly lower
than GIP. The cumulative rainstorm days of CMSWEP are with two distinct zones, reflecting high and
low value respectively. In the third map of Figure 9, the high value zone mainly corresponds to GIP,
while the low value zone reflects the influence of MSWEP.
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4.2.4. Maximum Rainfall of Different Duration

Further comparison was made on the ability of the three precipitation datasets to describe the
five kinds of characteristic precipitations, including 1-day, 3-day, 7-day, 15-day, and 30-day maximum
precipitation in the year (respectively denoted as Pmax1, Pmax3, Pmax7, Pmax15 and Pmax30).
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Figure 10 shows the spatial distribution of the multi-year mean of various maximum precipitation at
the grid scale during 1979–2015.
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It can be seen from Figure 10 that the maximum precipitation range for the three datasets is
different to some extent. The high value area of GIP is relatively concentrated, with the highest value
near the Zhoushan Island and the adjacent sea area in the south. Due to the underestimation of heavy
precipitation, for MSWEP the maximum precipitation is significantly lower than GIP on the whole.
Additionally, MSWEP data not only reflect the maximum precipitation center surrounding the Central
Zhoushan Island in the south, but also shows a second maximum precipitation center in the sea area
to the east of the Shengsi Island. Especially for Pmax7, the second center of MSWEP is even more
remarkable than the first one. CMSWEP has the characteristics of both GIP and MSWEP. For this
merged dataset, the lowest value of the various maximum precipitation is significantly higher than
MSWEP, while the highest value is relatively close to the latter.

4.3. Analysis of Daily Rainfall Process

At the same time, the multi-year mean daily rainfall processes corresponding to the three
precipitation datasets were compared. Figure 11 gives the specific situation of four rain gauges
including Shengsi, the other four gauges are not shown due to limited space, but the situation
is similar. It can be seen from the Figure that the multi-year mean daily rainfall process of GIP,
MSWEP, and CMSWEP, as well as measurements by the rain gauge are fairly similar, all reflecting
that precipitation is relatively concentrated from mid-June to mid-July and from mid-August to late
September in the year. The daily rainfall process corresponding to GIP and CMSWEP is fairly close to
the gauge measurements, while the difference between the gauge measurements and MSWEP is some
apparent, and the underestimation is obvious in some periods of the year.
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5. Discussion and Conclusions

Based on the surface rain gauge records in the Zhoushan Archipelago from 1979 to 2015,
the accuracy evaluation results of MSWEP and CMSWEP at different time scales are given from
different perspectives in the above sections. At the same time, the characteristics of MSWEP and
CMSWEP on the spatial distribution pattern of different precipitation elements have been analyzed.
This section will focus on two issues. One is to discuss the performance of MSWEP and other global
precipitation data in islands and sea areas; and the second is to discuss the marginal effect of merging
global precipitation data with local gauge measurements.

At present, the evaluation of global precipitation data is mostly implemented on land, but still there
are several explorations focused on the accuracy evaluation of TRMM, CMORPH, and other datasets
in islands and sea areas. Through the comparison of existing literatures and this paper, the accuracy
improvement of MSWEP compared with other global precipitation data and its potentiality in offshore
meteorological and hydrological monitoring can be further explained. Tian and Peters-Lidard [24]
once evaluated the global uncertainty of six kinds of precipitation data, such as TRMM3B42 and
CMORPH, and pointed out that the accuracy of these data was generally higher in the sea area
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than in the land area, but even so, the accuracy of these data in the coastal area of China was still
over 30%. Yong et al. [25] pointed out that at the daily time scale, the POD of four gauge adjusted
precipitation datasets including TRMM V7, GSMaP_Gauge, CMORPH-CRT, and PERSIANN-CDR
did not exceed 0.70 in Taiwan Island of China and Okinawa Islands of Japan, with the false alarm
ratio (FAR) at 0.36 and the RBIAS close to 20%. Considering that the climate characteristics of this
region are close to the Zhoushan Archipelago, this study has actually provided more relevant evidence
for performance comparison between MSWEP and other precipitation data. Among the available
global precipitation data, GSMaP_MVK performs relatively well in east Asia. However, according to
Setiawati and Miura [26], GSMaP_MVK underestimated rainy season precipitation in Kyushu Island
of Japan by 46.78%, as compared with HSS of only 0.67. Therefore, according to existing literatures,
MSWEP has obviously higher ability to identify precipitation events than TRMM 3B42 and other
precipitation datasets at the daily time scale, which fully demonstrated the advantages of MSWEP.
Of course, MSWEP still hasn’t completely overcome one of the obvious limitations of global rainfall
data, that is, the poor identification ability of heavy precipitation. Like other global precipitation data,
MSWEP has a high degree of miss reporting of heavy precipitation. Due to the influence of plum rain
and typhoon in the Zhoushan Archipelago and other coastal areas, heavy precipitation events are fairly
frequent, which should be fully noted when MSWEP and other global precipitation data are used.

At present, there are many studies on the global precipitation data, especially the merging of
satellite precipitation data with surface rain gauge data. Rainfall merging is not only a process of
integrating and matching different precipitation information, but also a process of balancing the errors.
Rainfall merging, while providing the precipitation analysis results, often provides the metric of
the uncertainty of the estimated results. Existing literatures involve not only the merging of pure
satellite precipitation data and rain gauge data [27,28], but also the re-merging of gauge adjusted global
precipitation with the local rain gauge data [15,17]. Global satellite precipitation data can make up
for the deficiency of spatial representation of the latter, while rain gauge data has high local accuracy.
Theoretically, the merging of the two can give full play to their respective advantages and obtain
better estimation results than any of the original data. Presently, a large number of literatures have
pointed out that the accuracy of global precipitation data is significantly improved after calibration
with surface rainfall data [2,15,27,29]. However, it is still necessary to discern and evaluate the gain
of rainfall merging choosing the rain gauge interpolation data as the benchmark. Only in this way
can the marginal effect of rainfall merging be fully illustrated. Researchers from Australia and other
countries have conducted some in-depth discussions on this issue. Li and Shao [29] proposed a
merging algorithm based on non-parametric estimation, to indicate that by merging TRMM 3B42
with rain gauge data, the accuracy of spatial precipitation estimation in Australia has been indeed
improved in a statistical sense compared with the interpolation results of gauge data using Ordinary
Kriging (OK). The investigation by Woldemeskel et al. [15] on this issue further made clear that the
improvement of precipitation accuracy was mainly demonstrated in areas with sparse rain gauges.
Renzullo et al. [30] discussed the marginal effect of merging the Australian rain gauge data with TRMM
3B42RT, and found that when the gauges were more than one in each 2500 km2 area, the merging of
TRMM 3B42RT with rain gauge data had no obvious effect and even probably reduced the estimation
accuracy. Rozante et al. [31] also had a similar conclusion in South America and pointed out that
only when the data of surface gauge network was sparse, the effect of merging rain gauge data with
TRMM 3B42RT was relatively obvious. Chappell et al. [32] studied the merging effect of TRMM
3B42RT data with rain gauge data in Australia, and stated that in terms of conventional statistics, the
combination of the two has no obvious positive effect and may even produce negative effect, but it
can effectively reduce the estimation variance. Therefore, in general, the marginal effect of merging
global precipitation data with surface rainfall data is affected by a series of factors, such as the type
of global precipitation data, the density of surface rain gauges and their spatial configuration, and is
also related to the geographic and climatic background. The merging of MSWEP data with rain
gauge data in the Zhoushan Archipelago has shown a certain degree of improvement at both daily
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and monthly time scales, as compared with the pure interpolation results of rain gauge data, but its
marginal effect is rather limited. The results of this paper are based on the long series data from 1979 to
2015, so it is undoubtedly more reliable. In addition, it is consistent with previous studies, and also
inherent with the original intention of developing the global precipitation datasets. These types of
datasets were originally oriented to the regions lacking in surface rainfall observation. At the same
time, considering that MSWEP data has high spatial resolution and relatively low error among the
existing global precipitation data, this paper is also of considerable reference significance for the
merging of other global precipitation data with gauge data. Of course, the authors also agree with
Chappell et al. [32] that if we only view the effects in light of the conventional statistics, rainfall merging
may not produce obvious effect, but it may have other benefits. For the Zhoushan Archipelago,
MSWEP data can demonstrate the information of the precipitation spatial structure not reflected by
sparse gauge observations, and the precipitation fields obtained by multi-source merging are of more
detailed features.

In general, based on the long series of surface rainfall data, this paper evaluated the performance
of MSWEP and its combination with surface rainfall gauge data in the Zhoushan Archipelago from a
variety of aspects. Our investigation deepened the understanding of the performance of MSWEP in
coastal regions, and also the understanding of the marginal effect of combining MSWEP with surface
precipitation data. Main conclusions could be drawn as follows:

MSWEP data can correctly identify most daily precipitation events in Zhoushan Archipelago during
1979–2015, so it has a strong ability to discern dry and wet states. MSWEP generally underestimates
precipitation in the Zhoushan Archipelago, but its relative deviation is less than 10%. Like other global
precipitation datasets, MSWEP has a high degree of miss reporting of heavy precipitation.

1. The precipitation data CMSWEP by merging MSWEP with surface rainfall data not only has
a significant improvement in accuracy compared with MSWEP, but also has a certain degree
of improvement compared with the gauge interpolation data GIP. At the daily time scale,
the advantage of CMSWEP over GIP is mainly shown in the comprehensive identification ability
of the dry and wet state of daily rainfall.

2. At the daily time scale, the accuracy indices of GIP, MSWEP, and CMSWEP have significant
seasonal changes except POD. GIP and CMSWEP are significantly better than MSWEP in terms of
accuracy indices in each month of the year. At the monthly scale, there are also certain seasonal
changes for the accuracy indices of the three datasets, but they are obviously different from those
at the daily scale.

3. For various precipitation elements including multi-year mean precipitation, multi-year mean
flood season precipitation, cumulative rainstorm days, and maximum precipitation, MSWEP
and CMSWEP can demonstrate the spatial distribution characteristics that sparse surface rainfall
data cannot describe. For various precipitation elements of MSWEP and GIP, the location of
the center with high value is not completely consistent. Meanwhile, the spatial distribution is
relatively smooth with GIP, while MSWEP shows more details. CMSWEP has spatial structure
characteristics of both GIP and MSWEP.

4. Although the spatial distribution characteristics of precipitation statistics such as annual
precipitation and extreme precipitation in Zhoushan Archipelago are displayed by ARCGIS in
this paper, the precipitation statistics indicators are not further processed. In order to describe the
precipitation characteristics of Zhoushan Archipelago in more detail, the authors will use copulas
non-parametric statistical method to conduct on the spatial distribution of the probability index
of regional rainfall height [33–36]. At the same time, the time resolution of MSWEP data is 3 h,
but the accuracy below the daily time scale of MSWEP data has not been evaluated in this paper.
In the future, the accuracy of MSWEP below the daily time scale will be further analyzed, so as to
explore the ability of MSWEP to identify short-duration rainfall and rainfall diurnal variation.
Despite of the high spatial resolution of MSWEP, the merging of the data with surface rain gauge
data is still faced with the problem of space scale transformation. Thus, in future the merging
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of different precipitation data will be realized on the basis of spatial downscaling of MSWEP,
and the effect of the data spatial resolution on estimation results will be analyzed. We will extend
this study from the Zhoushan Archipelago to other coastal or inland areas lacking in surface
rainfall observations.
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Abbreviations

The following abbreviations are used in this manuscript:

CC Correlation Coefficient
CMAP Climate Prediction Center (CPC) Merged Analysis
CMSWEP Combined MSWEP
CMORPH CPC MORPHing technique
CPC Climate Prediction Center
FH Frequency of Hit
GIP Gauge-Interpolated Precipitation
GPCP Global Precipitation Climatology Project
GPM Global Precipitation Measurement
GSMaP Global Satellite Mapping of Precipitation
GSMaP-MVK GSMaP Moving Vector with Kalman-filter
HSS Heidke’Skill Score
IMERG Integrated Multi-satellite Retrievals
MSWEP Multi-Source Weighted-Ensemble Precipitation

PERSIANN
Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks

PERSIANN-CDR PERSIANN-Climate Data Record
POD Probability of Detection
R2 Coefficient of Determination
RBIAS Relative Bias
SRMSE Standardized Root Mean Square Error
TRMM Tropical Rainfall Measuring Mission
TRMM 3B42 Tropical Rainfall Measuring Mission 3B42
TMPA 3B42V7 TRMM Multi-satellite Precipitation Analysis 3B42V7
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