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Abstract: Probabilistic flood forecasting, which provides uncertain information in the forecasting
of floods, is practical and informative for implementing flood-mitigation countermeasures. This
study adopted various machine learning methods, including support vector regression (SVR), a
fuzzy inference model (FIM), and the k-nearest neighbors (k-NN) method, to establish a probabilistic
forecasting model. The probabilistic forecasting method is a combination of a deterministic forecast
produced using SVR and a probability distribution of forecast errors determined by the FIM and
k-NN method. This study proposed an FIM with a modified defuzzification scheme to transform
the FIM’s output into a probability distribution, and k-NN was employed to refine the probability
distribution. The probabilistic forecasting model was applied to forecast flash floods with lead times
of 1–3 hours in Yilan River, Taiwan. Validation results revealed the deterministic forecasting to be
accurate, and the probabilistic forecasting was promising in view of a forecasted hydrograph and
quantitative assessment concerning the confidence level.

Keywords: flood; probabilistic forecasting; support vector regression; fuzzy inference;
k-nearest neighbors

1. Introduction

A real-time flood forecasting model is an essential nonstructural component in a flood warning
system. It can provide timely forecasting information to authorities and the public with sufficient
time for preparation and useful information for implementing flood-mitigation countermeasures.
Flood forecasting is often performed deterministically [1], which means that a single estimate of flood
discharge or stage is predicted. However, a deterministic forecast can leave users with an illusion of
certainty, which can lead them to take inadequate measures [2]. Therefore, a probabilistic forecast that
specifies a probability distribution pertaining to the predictand is more practical and has thus gained
attention in flood forecasting [1].

Many methods are used to perform probabilistic flood forecasting. For example, the Bayesian
forecasting system that integrates prior and posterior information using Bayes’ theorem has been
adopted [3–6]. Furthermore, multimodel ensemble methods have been used, which produce several
forecasts based on different models [7–9]. Moreover, researchers have adopted generalized likelihood
uncertainty estimation, which is based on the idea that many different parameters may yield equally
satisfactory estimates [10–15]. The present study adopted a method that combines deterministic
forecasts and the probability distribution of forecast errors to produce probabilistic forecasts [1]. Such
a method was adopted because forecast-error data can quantify the total uncertainty of forecasting.
Montanari and Brath [16], Tamea et al. [17], and Weerts et al. [18] have used similar methods based
on processing past forecast-error data to produce probability distributions for future forecasts. On
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the basis of the combined method in this study, various machine learning methods were applied to
achieve probabilistic forecasting.

Numerous machine learning methods have been widely applied in hydrologic forecasting. A classic
approach is to apply artificial neural networks to tasks such as radar rainfall estimation [19,20], flood
forecasting [21,22], and reservoir inflow prediction [23,24]. A machine learning method that has recently
become popular is the support vector machine (SVM) approach, which is capable of regression and
classification. The SVM has been used for flood forecasting [25–27], daily rainfall downscaling [28,29],
mining informative hydrologic data [30,31], and typhoon rainfall forecasting [32,33]. Moreover, various
fuzzy models based on fuzzy set theory have been adopted in hydrologic forecasting; for example,
rainfall forecasting [34,35], river level forecasting [36,37], and flood discharge forecasting [38–40].
The nonparametric k-nearest neighbors (k-NN) method is a simple and useful algorithm for data
selection, classification, and regression. The k-NN method has been widely applied in hydrology,
such as in short-term rainfall prediction [41], reservoir inflow forecasting [42], climate change scenario
simulation [43], and hydrologic data generation [44].

This study applied multiple machine learning methods to achieve probabilistic flood-stage
forecasting. The SVM was used to develop a deterministic forecasting model to forecast deterministic
flood stages. Furthermore, this study proposed a fuzzy inference model (FIM) with a modified
defuzzification scheme to deduce the probability distribution of forecast errors. In addition, the k-NN
method was applied to smooth the derived probability distribution. Combining deterministic
flood-stage forecasting and the probability distribution of forecast errors yielded probabilistic
flood-stage forecasts. The probabilistic forecasting model was applied to forecast flood stages
in Taiwan’s Yilan River. Validation results regarding actual flash flood events proved the capability of
the proposed model in view of the forecasted hydrograph and a quantitative assessment concerning
the confidence level.

This remainder of this paper is organized as follows. Section 2 provides a brief introduction to the
probabilistic forecasting method and machine learning methods employed in this study. Section 3
describes the development and forecasting of the SVR deterministic forecasting model as well as the
study area and flood events. Section 4 presents the use of the FIM and k-NN method to derive the
probability distribution of forecast errors and the results of probabilistic forecasting. Finally, Section 5
presents the study’s conclusions.

2. Probabilistic Forecasting and Machine Learning Methods

2.1. Probabilistic Forecasting Method

This study applied the probabilistic forecasting method based on the methodology proposed
by Chen and Yu [1], but modified it using the k-NN method to refine the probability distribution.
A probabilistic forecast was obtained by combining deterministic forecasting with the probability
distribution of forecast errors. A concise description of the method is presented as follows, and the
detailed methodology can be found in Chen and Yu [1].

The forecast error (E) is defined as the difference between the deterministic forecast (F) and the
observation (O).

E = F−O (1)

Given that O represents an observation without uncertainty, the variance of deterministic forecast
F is the same as that of the error forecast.

var(F) = var(E) (2)

Thus, the uncertainty of the forecast can be deduced from the uncertainty of forecast errors. Then,
the probability distribution of the forecast ΠF can be derived by adding the probability distribution of
forecast errors ΠE into the single deterministic forecast F.
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ΠF = F + ΠE (3)

Consequently, the probabilistic forecasting results can be demonstrated as a confidence interval
with a certain confidence level from the probability distribution ΠF.

2.2. Support Vector Regression

This study used SVR to provide deterministic forecasts. SVR is a regression procedure based on a
SVM that utilizes the structural risk minimization induction principle to minimize the expected risk
based on limited data [45]. Detailed descriptions of SVM theory can be found in the literature [26,46].
A brief methodology of SVR is described as follows.

SVR finds the optimal nonlinear regression function f (x) according to r data sets (xi, yi), where xi
are input vectors and yi are corresponding output variables (i = 1, . . . , r). The SVR function can be
written as

f (x) = w·Φ(x) + b (4)

where w is the weight vector, b is bias, and Φ is a nonlinear function that maps the original data onto a
higher dimensional space, in which the input–output data can exhibit linearity. The calibration of the
regression function involves an error tolerance ε when calculating the loss L, which is defined using
Vapnik’s ε-insensitive loss function.

L(yi) =

 0, for
∣∣∣yi − (w×Φ(xi) + b)

∣∣∣ < ε∣∣∣yi − (w×Φ(xi) + b)
∣∣∣− ε, for

∣∣∣yi − (w×Φ(xi) + b)
∣∣∣ ≥ ε (5)

This regression problem can be formulated as a convex optimization problem, in which a dual
set of Lagrange multipliers, αi and α∗i , are introduced to solve the problem by applying a standard
quadratic programming algorithm. As a result, the SVR function can be written as

f (x) =
∑r

i, j=1

(
αi − α

∗

i

)
Φ(xi)

T
·Φ

(
x j

)
+ b (6)

Then, a kernel function K
(
xi, x j

)
= Φ(xi)

T
·Φ

(
x j

)
is used to yield the inner products in the higher

dimensional space to ease the calculation. This study used the radial basis function kernel with a
parameter γ as the kernel function.

K
(
xi, x j

)
= exp

(
−γ

∣∣∣xi − x j
∣∣∣2) (7)

From Equation (6), only data with nonzero Lagrange multipliers
(
αi − α

∗

i

)
are used in the final

regression function, and these data are termed support vectors. Finally, the regression function can be
formulated as

f (x) =
∑m

k=1

(
αk − α

∗

k

)
K(xk, x) + b (8)

where xk denotes the support vector and m represents the number of support vectors.

2.3. Fuzzy Inference Model

This study adopted an FIM with a defuzzification method to infer the probability distribution
of forecast errors (the difference between the observation and forecast). The FIM included four steps
(Figure 1), which are described as follows.

(1) Fuzzification
Fuzzification is a process that converts a crisp value (numerical value) to a fuzzy variable through

a fuzzy membership function. Some membership functions are widely used, such as the triangular,
trapezoidal, and Gaussian functions. In this study, the Gaussian membership function (Equation (9))



Water 2020, 12, 787 4 of 13

was used because of its easier differentiability compared with the triangular membership function [1].
The Gaussian function also exhibits superior performance compared with the trapezoidal function,
and also demonstrates a smoother transition in its intervals [47].

µ(x) = exp

−(x−m)2

2σ2

 (9)

where µ is the membership grade of the crisp input x; σ is the dispersion of the function; and m is the
center of the function.
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Figure 1. Fuzzy inference process.

(2) Fuzzy IF-THEN rules
The IF-THEN rule is used to formulate the conditional statement in the FIM. The fuzzy IF-THEN

rule can be expressed as follows:

IF (x1 is A1) and (x2 is A2) and · · · and
(
xp is Ap

)
THEN (y1 is B1) and (y2 is B2) and · · · and

(
yq is Bq

) (10)

where xi (i = 1, 2, . . . , p) and y j (j = 1, 2, . . . , q) indicate the crisp input and output variables, respectively;
and Ai (i = 1, 2, . . . , p) and B j (j = 1, 2, . . . , q) are fuzzy sets. The IF part of the rule is called the
antecedent or premise, and the THEN part is the consequence or conclusion.

(3) Fuzzy inference
Fuzzy inference calculates the similarity between crisp inputs and fuzzy sets in fuzzy rules. It

involves two procedures, namely implication and aggregation. Implication generates a fuzzy set in the
consequence part for each fuzzy rule, whereas aggregation integrates the output fuzzy sets in all fuzzy
rules into an aggregated fuzzy set. More details can be found in Yu and Chen [48] and Chen [49].

(4) Defuzzification
The fuzzy output obtained in the previous step is an aggregated fuzzy set that should be defuzzified

to a crisp value y∗.
The centroid method, which directly computes the crisp output as a weighted average of

membership grades, was used in the present study.

y∗ =
∑n

i=1 µi × yi∑n
i=1 µi

(11)
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where µi is the fuzzy membership grade of the output variable yi of the i-th rule and n is the number
of rules.

2.4. Defuzzification Into a Probability Distribution

The higher value of µi in Equation (11) indicates that the yi of the i-th rule imposes a higher weight
of influence on the output y∗. Chen and Yu [1] proposed a probability interpretation of defuzzification
on the basis of basic defuzzification distribution transformation [50]. Thus, the defuzzification process
in the FIM can be converted to produce a probability distribution. For the detailed theory and process
of defuzzification into a probability distribution, please refer to Chen and Yu [1].

2.5. k-Nearest Neighbors Method

The k-NN method, an effective nonparametric technique, was utilized in this study to smooth the
derived probability distribution from the previous step because it may have a rough shape. The k-NN
algorithm typically picks a certain number of data items that are closer to the object. Given an object
data vector of z = (z1, z2, · · · , zm), the k-NN algorithm selects k data items that are nearest to the object
according to the similarity or distance D from the candidate data z′ to the object data z.

D = ‖z− z′‖ =

√∑m

i=1

(
zi − z′i

)2
(12)

3. Deterministic Forecasting

3.1. Study Area and Data

In this study, Yilan River (Figure 2) in Taiwan was selected as the study area. There are some river
level stations in the Yi-Lan River basin. The Liwu station that has relatively more complete records
than other stations was used in this study. Therefore, the flood stage at Liwu station was the target for
real-time forecasting. The Liwu basin has an area of 108.1 km2. Hourly rainfall data from six gauges
and hourly river stage data at Liwu station from 2012 to 2018 were collected, and 15 flood events with
complete rainfall and stage data were obtained. The collected 15 flood events were divided into a
calibration set with 10 events and a validation set with 5 events. Table 1 lists the flood events with
information on the source event (typhoon or storm), date of occurrence, rainfall duration, peak flood
stage, and total rainfall amount. Spatially averaged rainfall was calculated from six gauges using the
Thiessen polygon method, and was used as the rainfall variable in the study.

Table 1. Collected flood events and their statistics.

Event No. Name of Typhoon
or Storm Date Rainfall

Duration (h)
Peak Flood
Stage (m)

Total Rainfall
(mm) Note

1 Jelawat 26 September 2012 96 1.22 85.2 Calibration
2 Trami 20 August 2013 71 2.14 196.3 Calibration
3 Kongrey 31 August 2013 44 1.69 138.0 Calibration
4 Usagi 20 September 2013 60 1.71 76.4 Calibration
5 Fitow 4 October 2013 67 1.62 118.5 Calibration
6 Matmo 21 July 2014 79 2.28 156.9 Calibration
7 Storm 0809 09 August 2014 133 1.22 145.6 Calibration
8 Fungwong 20 September 2014 147 2.91 364.8 Calibration
9 Dujuan 27 September 2015 86 4.23 188.2 Calibration

10 Meranti 14 September 2016 72 1.69 103.9 Calibration
11 Megi 26 September 2016 77 3.39 158.5 Validation
12 Storm 0601 1 June 2017 79 1.34 122.3 Validation
13 Storm 1013 13 October 2017 73 4.41 351.3 Validation
14 Maria 10 July 2018 41 1.47 107.4 Validation
15 Yutu 1 November 2018 73 2.52 219.9 Validation



Water 2020, 12, 787 6 of 13

Water 2020, 12, 787 5 of 13 

 

detailed theory and process of defuzzification into a probability distribution, please refer to Chen and 
Yu [1]. 

2.5. k-Nearest Neighbors Method 

The k-NN method, an effective nonparametric technique, was utilized in this study to smooth 
the derived probability distribution from the previous step because it may have a rough shape. The 
k-NN algorithm typically picks a certain number of data items that are closer to the object. Given an 
object data vector of 𝒛 = (𝑧 , 𝑧 , ⋯ , 𝑧 ), the k-NN algorithm selects k data items that are nearest to the 
object according to the similarity or distance 𝐷 from the candidate data 𝒛′ to the object data 𝒛. 𝐷 = ‖𝒛 − 𝒛′‖ = ∑ (𝑧 − 𝑧 )    (12) 

3. Deterministic Forecasting 

3.1. Study Area and Data 

In this study, Yilan River (Figure 2) in Taiwan was selected as the study area. There are some 
river level stations in the Yi-Lan River basin. The Liwu station that has relatively more complete 
records than other stations was used in this study. Therefore, the flood stage at Liwu station was the 
target for real-time forecasting. The Liwu basin has an area of 108.1 km2. Hourly rainfall data from 
six gauges and hourly river stage data at Liwu station from 2012 to 2018 were collected, and 15 flood 
events with complete rainfall and stage data were obtained. The collected 15 flood events were 
divided into a calibration set with 10 events and a validation set with 5 events. Table 1 lists the flood 
events with information on the source event (typhoon or storm), date of occurrence, rainfall duration, 
peak flood stage, and total rainfall amount. Spatially averaged rainfall was calculated from six gauges 
using the Thiessen polygon method, and was used as the rainfall variable in the study. 

 
Figure 2. Yilan River basin and stations. 

  

Figure 2. Yilan River basin and stations.

3.2. Deterministic Model Development and Forecasting

This study used SVR to perform deterministic forecasting of the flood stage at Liwu station. The
observed rainfall and river stages at Liwu station during flood events were selected as input variables
because of the strong relationship between these data and future stages. As the cross-sections of a river
change markedly during a flood, the absolute river stage may not provide appropriate information for
discriminating floods. Instead, the river stage increment, which is the river stage relative to the initial
stage at the beginning of a flood event, is a more relevant variable for determining flood magnitude.
Thus, the river stage increment relative to the initial stage was chosen as the stage variable for this
study. Specifically, the initial stage was subtracted from the river stage data, and the obtained residual
(stage increment) was the stage variable used in this study. The forecasted absolute river stage can be
simply obtained by adding the forecasted stage increment to the initial stage.

Furthermore, the data of spatially averaged rainfall (R) and stage increment (S) were normalized to
a range of [0, 1]. The benefit of using normalized data is avoiding one variable dominating others when
the differences in their values are notable. Bray and Han [25] demonstrated that the SVR model with
normalized data outperformed that without normalized data. The time lags between rainfall and stage
had to be identified to construct the forecasting model; therefore, the correlation coefficients among
lagged variables were calculated to identify relevant input variables for the forecasted variables [26,51].
The correlated time lags between stage and rainfall were 1–5 hours and the correlated time lags for the
stage itself were 1–3 hours. Therefore, the SVR stage forecasting model in this study had eight inputs,
and the model structure can be expressed as follows:

Ŝt+1 = fSVR[St, St−1, St−2, Rt, Rt−1, Rt−2, Rt−3, Rt−4] (13)

where Ŝ is the forecasted flood stage; S is the observed flood stage; R is the observed average rainfall;
fSVR indicates the SVR model; and the subscript t is the time index. The SVR model was calibrated
using normalized data, and the original model outputs were the flood stages in the normalized scale.
The output flood stages were transformed to their actual scale to match the observations. The SVR
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model, Equation (13), was established using data from 10 calibration flood events. This study used the
root mean square error (RMSE) as the objective function to optimize the SVR parameters.

RMSE =

√∑n
i=1

(
Si − Ŝi

)2

n
(14)

where n is the number of data. During the calibration phase, the SVR model simulated flood events
with an RMSE value of 0.07 m, indicating that the model was well calibrated. The SVR model, Equation
(13), was used to perform real-time deterministic forecasting with a lead time of 1 hour regarding
the five validation events. To perform multiple-hour-ahead forecasting, Equation (13) could be used
in a recursive form as in Equations (15) and (16), where the future stage inputs Ŝt+2 and Ŝt+1 can
be available from the forecasted data and the future rainfall is obtained from naïve forecasts; that is,
R̂t+2 = R̂t+1 = Rt.

Ŝt+2 = fSVR

[
Ŝt+1, St, St−1, R̂t+1, Rt, Rt−1, Rt−2, Rt−3

]
(15)

Ŝt+3 = fSVR

[
Ŝt+2, Ŝt+1, St, R̂t+2, R̂t+1, Rt, Rt−1, Rt−2

]
(16)

Figures 3 and 4 present the deterministic forecasting results of the flood hydrographs for Events
11 and 15, respectively. Basin average rainfall and forecast error are also presented in the figures. The
forecasted hydrographs were close to the observed ones and the forecast errors were small, indicating
that the deterministic forecasting model could effectively perform real-time forecasting with lead times
of 1–3 hours. To evaluate the forecasting performance in an objective manner, statistical indices, the
RMSE, and the coefficient of efficiency (CE), were calculated with respect to validation events.

CE = 1−

∑n
i=1

(
Si − Ŝi

)2

∑n
i=1

(
Si − S

)2 (17)

where S is the average of the observation stage. The CE value being closer to unity indicated good model
performance. Table 2 lists the statistical indices of the RMSE and CE with respect to multiple-hour-ahead
forecasting for validation events. The low RMSE and high CE values confirmed that the SVR model
could effectively perform deterministic forecasting.
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Table 2. Statistical indices for deterministic forecasting.

Lead Time RMSE (m) CE

1 hour 0.07 0.99
2 hours 0.15 0.97
3 hours 0.25 0.93

4. Probabilistic Forecasting

4.1. Probabilistic Model Development

This section describes the use of the FIM to obtain error probability distributions. The deterministic
forecasting model was originally used with normalized data. Thus, fuzzy inference was also performed
with data in a normalized scale. First, the data regarding the input variables were transformed into
fuzzy sets by applying a fuzzy membership function, namely the Gaussian membership function in
Equation (9). The parameter of the membership function is the dispersion parameter σ. As parameter σ
indicates the dispersion of the data, adopting the standard deviation of the data as the parameter is
logical. The parameters of the fuzzy membership function for rainfall (R) and stage (S) were 0.18 and
0.14, respectively, at their normalized scale.

Subsequently, the fuzzy rules were used to formulate a conditional statement to infer the forecast
errors. The deterministic model used eight inputs (see those in Equation (13)) to produce the forecasts.
Therefore, the forecast errors were dependent on the used inputs. Using these inputs in the premise
of the fuzzy rule is rational; however, too many variables in the premise may lead to an inadequate
implication. Moreover, lagged input variables can contain the same information when naïve forecasting
is applied for forecasting with longer lead times. Therefore, the premise part was simplified using the
most relevant variables of rainfall and stage at time t. That is, the variables Rt and St were used in
the premise to infer the forecast errors with lead times of 1–3 hours. Accordingly, the fuzzy rule was
formulated as

IF (St is Fs) and (Rt is FR)

THEN (Et+1 is FE1) and (Et+2 is FE2) and (Et+3 is FE3)
(18)

where Fs and FR, are fuzzy sets defined by the Gaussian fuzzy membership function pertaining to
variables St and Rt, respectively; Et+1, Et+2, and Et+3 are inferred forecast errors with lead times of 1–3
hours; and FE1, FE2, and FE3 are the respective fuzzy sets of forecast errors.

When stage and rainfall data St and Rt at present time t were available, fuzzy inference could be
conducted to derive the aggregated output fuzzy set. The proposed defuzzification approach was then
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employed to obtain the probability distributions of forecast errors. After defuzzification is performed,
the derived probability distribution may demonstrate a rough-shaped curve. To solve this problem,
this study applied the k-NN method to smooth the rough probability curve. The smoothing process
generates numerous data to form a smooth curve to replace the original probability distribution’s
rough curve. A resampling technique was adopted to implement the smoothing. At each sampling
time, an object data item was randomly selected from the original probability distribution. Then, the
k-NN method was applied to select three data items nearest to the object from the original probability
distribution (k was set to 3 herein). The mean and standard deviation of the three data items were
calculated to construct an interval, of which the upper and lower boundaries were the mean ± standard
deviation, respectively. Next, a number within the interval was randomly picked to become an
adjusted value to refine the probability distribution. The resampling process was repeated 10,000
times to produce a smooth probability curve with 10,000 values. With the derived smooth probability
distribution, different confidence levels could be used to form the predictive confidence interval (CI).
Figure 5 presents the forecast errors and the predicted 90% CI pertaining to five validation events with
continuous data sequences. The confidence region could include most of the forecast errors, indicating
that the CI practically covers the uncertainty of the forecast errors. The confidence region is extended
with the forecast lead time, which is also rational in light of the uncertainty in forecasting.
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Figure 5. Forecast errors and 90% confidence intervals.

4.2. Probabilistic Forecasting Results

The probabilistic flood-stage forecasting results were obtained by adding the probability
distribution of forecast errors to the deterministic stage forecasts. Figure 6 illustrates the probabilistic
flood-stage forecasting results with 90% CIs for validation events. For 1-hour forecasting, the confidence
regions covered most of the observed data well with a narrow span, indicating that the proposed
probabilistic forecasting method was both correct and useful. The CI range widened when the lead
times increased to 2–3 hours. Moreover, the predictive CIs around the peak stage broadened sharply,
and the upper boundary of the 90% CI was large. This meant that the predictive CI was less practical
around the peak, because a larger CI indicates less confidence in the object of interest. Nevertheless,
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the proposed probabilistic forecasting model reflected the existence of greater uncertainty around the
peak flood.
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If the predictive probability distribution can effectively explain the forecasting uncertainty, then
the percentage of data included in the CI will be identical to the confidence level. Therefore, the
quantity of data that are correctly enclosed within the confidence region can be used as a guide to
assess the probabilistic forecasting results. Figure 7 plots the percentages of observed flood stages that
were included in the CI for confidence levels of 10%, 20%, . . . , 90%, 95%, and 99%, with respect to
validation events. The percentages of included data closely matched the confidence levels, because the
points on the graph were close to the 45◦ line. Scrutinizing the data regarding different lead times
revealed that the probabilistic forecasting performance only decreased marginally with an increase
in lead times. This suggested that the probabilistic forecasts with longer lead times were not inferior
to those with shorter lead times in terms of this assessment measure. The capability of the proposed
probabilistic forecasting model that involves using multiple machine learning methods is promising.
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5. Conclusions

Probabilistic forecasts are more informative and helpful than deterministic forecasts in practical
flood forecasting. This study developed a real-time probabilistic forecasting model for impending
flash floods using various machine learning methods. The probabilistic forecasting method combines
deterministic forecasting and the probability distribution of forecast errors. SVR was employed to
provide deterministic forecasts, and an FIM with a modified scheme for defuzzification was applied to
deduce the predictive probability distribution of forecast errors. A resampling scheme with the k-NN
method was used to refine the predictive probability distribution. The probabilistic forecasting results
could thus be presented using a CI.

The proposed methodology was applied to perform probabilistic flood-stage forecasting with
lead times of 1–3 hours in Taiwan’s Yilan River. Correlation analysis was performed to determine the
lagged inputs, and a recursive form of the model was established to perform multiple-hour-ahead
forecasts. The SVR performed deterministic forecasting well, as was indicated by the low RMSE and
high CE values. The probabilistic forecasting results were agreeable because the 90% CI could cover
most of the observations with a narrow band width. To objectively assess the probabilistic forecasting
performance, this study adopted a quantitative measure that calculated the percentage of observations
included in the predictive CI. The percentages of included data closely matched the confidence levels,
suggesting the capability of the proposed probabilistic forecasting model that involves using multiple
machine learning methods.
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