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Abstract: Flow and water quality of rivers are highly dynamic. Water quantity and quality
are subjected to simultaneous physical, chemical and biological processes making it difficult to
accurately assess lotic ecosystems. Our study investigated net ecosystem production (NEP) relying
on high-frequency data of hydrology, hydrodynamics and water quality. The Kanawha River, West
Virginia was investigated along 52.8 km to estimate NEP. Water quality data were collected along the
river using three distributed multiprobe sondes that measured water temperature, dissolved oxygen,
dissolved oxygen saturation, specific conductance, turbidity and ORP hourly for 71 days. Flows
along the river were predicted by means of the hydrologic and hydrodynamic models in Hydrologic
Simulation Program in Fortran (HSPF). It was found that urban local inflows were correlated with
NEP. However, under hypoxic conditions, local inflows were correlated with specific conductance.
Thus, our approach represents an effort for the systematic integration of data derived from models
and field measurements with the aim of providing an improved assessment of lotic ecosystems.
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1. Introduction

Physicochemical and hydro-morphological properties of a river combined with biological
communities [1,2] cause simultaneous physical, chemical and biological processes. Consequently,
spatiotemporal variation is under an endless search for equilibrium by means of interactions between
biotic and abiotic factors [3,4]. Those interactions can be assessed using the net ecosystem production
(NEP) [5], which has been successfully applied to rivers for several decades [6]. NEP is the combined
representation of gross primary production and ecosystem respiration. However, NEP must balance
reaeration rates with photosynthetic production, respiratory consumption and all processes that can
cause changes to dissolved oxygen [7–9]. Among the complex interaction of nutrients, biomass and
trophic structure, NEP can be used, for example, as a means to explain carbon fluxes [10,11], given the
potential of rivers to store, mineralize and transport carbon to coastal areas [9]. To accurately estimate
NEP, data associated with flow and water quality must be reliable [12]. Nonetheless, different deployed
instruments are needed. To succeed in an analysis over time and space, our study alternatively
proposes the use of models to estimate flow as an adequate approach to reduce instrumentation. It also
proposes an integration of hydrologic and hydrodynamic models with water quality data which can
also be implemented as an automated procedure to estimate NEP.
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Development, calibration and validation of a hydrologic model to represent a drainage area along a
river within the spatiotemporal domain must consider phenomena such as infiltration, evaporation and
streamflow [13–15]. The hydrologic model took account of information about land use and topography
specifications to handle hydro-climatic conditions in order to determine streamflow [16]. Consequently,
streamflow can be coupled to a hydrodynamic model to predict flow along the river. In our study, the
hydrologic and hydrodynamic models were implemented in the Hydrologic Simulation Program in
Fortran (HSPF). Given that there was a set of unknown parameters governing the HSPF model, our study
integrated a process for parameters calibration using the non-sorted genetic algorithm II (NSGA-II) [17,18].
This approach increased reliability under uncertainty of new hydrologic scenarios [19–21] and supported
the use of an optimal solution [20,22,23] as the best set of parameters for the HSPF model. To guarantee
satisfactory predictions, HSPEXP+ 2.0 was used to assess the calibrated HSPF model, as in the works of
Xie et al. [20] and Lampert and Wu [24]. In this way, the streams module of the HSPF model can provide
reliable predictions of the flow and velocity variables at specific locations along the river. Flow and
velocity variables were input data to estimate reaeration rates. Nonetheless, an enhanced calculation
of reaeration rates can be achieved by means of a set of equations [25] using a standardized Schmidt
number [26,27] which was empirically estimated as a function of water temperature [28,29].

To provide an improved assessment of NEP, high-frequency data of water quality is now
feasible [30], which seems promising and advantageous with respect to the periodic collection of water
samples on a daily or lower frequency. Periodic observations of water quality at high-frequency could
incorporate all processes such as cycles of nutrients (e.g., nitrogen, phosphorous), dissolved oxygen
balance, sorption/desorption, volatilization, ionization, oxidation, biodegradation, hydrolysis and
photolysis [31]. As result of all these processes, dissolved oxygen has been given special attention
because it is the key variable for estimating NEP [32]. Dissolved oxygen is also closely related to water
mixing, gas exchanges at the air–water interface, water temperature, flow, velocity and irradiance [27].
In addition, dissolved oxygen is subjected to spatial variability according to specifications of land use
and local inflows [33–37]. Therefore, our study uses high-frequency data at various locations along the
river as a way to contribute to the analysis of spatiotemporal impact of physicochemical properties of
water on NEP.

This study was conducted within the Appalachian Region which is subjected to various water
related stressors such as mining, urban settlements and industry. The Kanawha River, West Virginia,
was chosen because it merges multiple inflows along the river at different rates and locations, disturbing
water quantity and quality. Those inflows include tributaries, creeks, combined sewer overflows (CSO)
and national pollutant discharge elimination system (NPDES). Therefore, NEP can be used as a proxy
to assess those stressors and also to depict their variability over time and space.

In our study, hydrologic and hydrodynamic models and water quality data were integrated using
a series of steps to estimate NEP under a high-frequency approach. Those steps were defined in this
research as follows: (1) implementing a hydrologic model for drainage area along the river; (2) linking a
hydrologic model with a hydrodynamic model; (3) collecting data about water temperature, dissolved
oxygen and dissolved oxygen saturation, specific conductance, turbidity and ORP using monitoring
stations installed along the river; (4) analyzing NEP under a spatiotemporal approach; and (5) assessing
the impact of water quality on NEP and local inflows.

2. Materials and Methods

2.1. Watershed Description

The study area within the Appalachian Region was defined by 2995 km2 draining water along the
Kanawha River located in West Virginia, USA. Elk, Coal and Pocatalico Rivers (Figure 1) are tributaries
of the Kanawha River; these rivers delimited the drainage area at the location of the flow gages F2, F4
and F5, respectively. The Kanawha River had F1 and F3 flow gages located at the upstream and center
of the study area. Locations for the five flow gages are provided in Table 1. Along the Kanawha River,
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the start and end limits were defined at the highest and lowest elevation of 190 m (38.1381◦ N, 81.2144◦

W) and 172 m (38.4828◦ N, 81.8258◦ W) above sea level, respectively.
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Table 1. Location of flow gages, weather stations and water quality sondes indicated in Figure 1.

Latitude (N) Longitude (W) Elevation (m)

Flow gage

F1 38.1381◦ 81.2144◦ 190
F2 38.4714◦ 81.2839◦ 186
F3 38.3714◦ 81.7022◦ 173
F4 38.3389◦ 81.8412◦ 177
F5 38.5261◦ 81.6310◦ 183

Weather stations
W1 38.3794◦ 81.5900◦ 279
W2 38.3131◦ 81.7192◦ 277

Water quality
sondes

Q1 38.2244◦ 81.5356◦ 181
Q2a 38.3638◦ 81.6630◦ 173
Q2b 38.3625◦ 81.6642◦ 173
Q2c 38.3625◦ 81.6642◦ 170.5
Q3 38.4828◦ 81.8258◦ 172

Land topography is predominantly hilly dissected terrain. It contains forest, urban, barren and
agricultural land representing 86%, 5.7%, 4.8% and 3%, respectively, where barren land was mainly
characterized by mining activities, and the rest of the study area was dedicated to wetland. A detailed
description of land use is shown in Table 2. Hourly discharge at start of the Kanawha River (F1) had
minimum, average and maximum flows of 35.1, 387.2 and 3645 m3/s, respectively, during a period
of observation of 913 days. The study area along the Kanawha River started with drainage areas at
F1 and F2 of 21,680.8 and 2965.5 km2, respectively. Inflows of tributaries at F4 and F5 comprised
drainage areas of 2232.6 and 616.4 km2, respectively. The study area (S1, S2 and S3) was focused on
2995 km2, which was bounded by the locations along the Kanawha River of the first flow gage (F1)
and three sondes (Q1, Q2 and Q3). This study area provided conditions to conduct an analysis of the
flow dynamics and impact of local inflows on water quality.

Table 2. General description of land use for study area indicated in Figure 1.

S1 (km2) S2 (km2) S3 (km2)

Land Use

Urban 33.33 88.32 49.1
Agriculture 14.68 39.6 36.34

Forest 899.7 1307 359.83
Wetland 9.5 7.69 5.18
Barren 131.75 11.11 1.71

The study area was characterized by annual average minimum and maximum dry bulb temperatures
of 6.7 and 18.9 ◦C, respectively, an annual average precipitation of 1107 mm, and an annual average
snowfall of 838 mm. Snow counted as precipitation, which was melted following the heat balance
approach relying on precipitation, air temperature, solar radiation, wind velocity and dew point [13].
Climate data about precipitation, dry and dew point temperatures and wind speed were provided by
two weather stations (Figure 1). Solar radiation was not available in the two weather stations, so it was
retrieved as an average for the study area from the national solar radiation database [38].

2.2. HSPF Model Description

The HSPF model was used for predicting flows of a watershed that joins modeling of watersheds
and streams [39–41]. In addition, the HSPF model can be used to incorporate the transport of pollutants
and nutrients. Information about land use, topography and climate assisted in the estimation of
flow in streams (Table 3) that follows a hydrodynamic pattern according to the terrain slope. Before
water arrives at the streams, there are regular paths of water flow within the watershed which can be
summarized in Figure 2. For instance, after rainfall there is an immediate interception by the canopy



Water 2020, 12, 783 5 of 18

(CEPSC). The remaining water enters soil, which has a capacity to infiltrate and store within the upper
zone (UZS) and lower zone (LZS). The excess of water could continue to reach active groundwater
(AGWS) and base flow (BASETP) or enter deeper aquifers.

Table 3. Mainstream and tributaries specifications.

Drainage
Section Stream Length,

km
Elevation

Change, m
Average
Slope, m

Average
Width, m

1 Kanawha River 38.5 9 * 0.00005 183
2 Kanawha River 23.5 7.8 * 0.00004 183

Elk River 41.5 13 0.00031 76
3 Kanawha River 29.3 0.61 0.00003 183

Coal River 18.7 4.57 0.00024 52
Pocatalico River 41 10.4 0.00025 31

* Includes a dam with an average level change of 7.1 m.
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Figure 2. Water paths and storages within a watershed occurring in the pervious land used in the
HSPF model.

Concurrently, all of the watershed is subjected to evapotranspiration, where rates depend mostly
on solar radiation, air temperature and humidity, whereas underground water is subjected only to
evaporation. Each stage follows specific equations to determine flow rates which are defined by a set
of parameters according to specifications of the watershed such as average slope (SLSUR) and mean
elevation (MLS). Other parameters must be found during a process of adjustment such as groundwater
recession flow (KVARY) and infiltration (INFILT). Descriptions of all parameters in the HSPF model
are shown in Table 4, where seven values were deduced from the input data related to land use and
topography and thirteen parameters must be calibrated in order to reduce error in flow predictions.

Modeling of streams relied on input data from inflows, river network configuration and a one
dimensional approach of the river under a fully advective flow. The one dimensional approach
required a homogeneous river transect, a representative Manning’s coefficient (equal to 0.1) and a
slope excluding dam elevation. Then, drainage sections with their corresponding streams were used
to generate a HPSF model that was able to predict average flow and water velocity of streams. The
governing equations used within the frame of a HSPF model can be found in Duda et al. [13].
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Table 4. Parameters required to build up a Hydrologic Simulation Program in Fortran (HSPF) model.

Parameter Units Meaning
Range or
Averaged

Data

LZSN (mm) Lower zone nominal storage 51–381
INFILT (mm/h) Index to soil infiltration capacity 0.02–13
LSUR (m) Average length of the assumed overland flow plane 69.2 *

SLSUR (-) Average slope of the overland flow plane 0.107 *
KVARY (1/mm) Variable groundwater recession flow 0–0.2

AGWRC (1/day) Basic groundwater recession rate 0.85–0.99

PETMAX (◦C)
Air temperature below which evapotranspiration (ET) will
arbitrarily be reduced below the value obtained from the

input time series
4.4 *

PETMIN (◦C) Temperature below which E-T will be zero regardless of
the value in the input time series 1.7 *

INFEXP (-) Exponent in the infiltration equation 2 **

DEEPFR (-) Fraction of groundwater inflow which will enter deep
(inactive) groundwater 0–0.5

BASETP (-) Base flow evapotranspiration 0–0.2

AGWETP (-) Fraction of remaining potential E-T which can be satisfied
from active groundwater storage 0–0.2

CEPSC (mm) Interception storage capacity 0–10
UZSN (mm) Upper zone nominal storage 1–51
NSUR (-) Manning’s n for overland flow 0.1–0.5

INTFW (-) Interflow inflow parameter 1–10
IRC (1/day) Interflow recession constant 0.3–0.85

LZETP (-) Lower zone E-T parameter. It is an index to the density of
deep-rooted vegetation. 0–0.9

LAT (◦) Latitude of the pervious land segment (PLS) 38 *
MELEV (m) Mean elevation of the PLS 181 *

* Average value was deduced from the watershed data in BASINS 4.1. ** Value recommended by [13].

2.3. Multiobjective Calibration of the HSPF Parameters

Among the various tools available in the search for adequate parameters defining the water
dynamics of the HSPF model, we chose NSGA-II to look at the solution of two optimized objectives.
The procedure to implement NSGA-II in MATLAB consisted of an iterative evaluation of different
scenarios of the hydrologic model. Different scenarios were obtained using initial random values
within the range stated in Table 3 regarding the parameters LZSN, INFILT, KVARY, AGWRC, DEEPFR,
BASETP, AGWETP, CEPSC, UZSN, INTFW, IRC, LZETP and NSUR. The iterative evaluation was
accomplished for 400 sets of parameters that were evaluated in the HSPF model (Figure 3). The next
generation was deduced by creating 400 new sets of parameters that had a crossover and mutation
probability of 0.9 and 0.1, respectively. The NSGA-II considered 1000 generations to define final
calibrated values of the 13 parameters. To identify the best set of solutions, NSGA-II implemented two
objectives: Nash–Sutcliffe model efficiency (NSE) and the percent bias coefficient (PBIAS) as the criteria
to evaluate the error between flow measurements and HSPF model flow predictions. Identification of
the optimal solution was accomplished by means of the Pareto front, which has the best solution when
the magnitude is minimum for NSE [42] and PBIAS [43].
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2.4. Field Measurements of Water Quality

The high-frequency monitoring system consisted of three Eureka Manta 2 multiprobe sondes.
Each sonde measured water temperature (±0.1 ◦C), dissolved oxygen (±0.2 mg/L), dissolved
oxygen saturation (±1%), specific conductance (±1 of reading), turbidity (±3% of reading) and
oxidative-reductive potential (±20 mV) with a time step of 1 h. Three locations along the river indicated
in Figure 1, defined by Q1, Q2 and Q3, were monitored. That configuration facilitated our estimate of
water quality changes as water moved downstream. Differences of sensor measurements served to
further assess impact of local inflows comprising point and nonpoint sources of water pollution due to
drained water along the river.

2.5. Net Ecosystem Production

NEP provides an assessment of rivers that encompasses physical and chemical characteristics.
Physical characteristics include slope, width, depth and flow together with chemical characteristics
such as nutrients, organic matter and water chemistry. In addition, other factors can be intrinsically
intervening in NEP dynamics such as the effects of dams, riparian vegetation and pollution. NEP can
also be seen as the balance of autotrophic and heterotrophic elements of the river [7]. Specifically, NEP
can be evaluated through Equation (1) of Odum, 1956 [5].

dO
dt

= NEP + k(Cs −C) + P (1)

where NEP is the gross primary production minus ecosystem respiration. k is oxygen reaeration
coefficient. Cs is dissolved oxygen saturation and C is dissolved oxygen observed. P is the drainage
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accrual and accounts for all processes happening in the river together with dissolved oxygen of local
inflows. Some of those processes include horizontal and vertical advection, photochemical oxidation
of organic matter and nonaerobic consumption of oxygen during the time step of observation [7].

Estimation of the k value was determined by means of k600 (Equation (2)) which can be obtained
by using one of three candidate Equations (4)–(6) and the Schmidt number. According to Raymond et
al. [25], those three equations had the best fit with respect to field measurements. Those three equations
also relied on the Schmidt number (Equation (3)) to estimate the mass transfer rates under momentum.
The Schmidt number is the ratio of kinematic viscosity to the diffusion coefficient, which in turn can be
determined as a function of temperature.

k600 =
(600

Sc

)−0.5
× k (2)

Sc = A + BT + CT2 + DT3 (3)

k600 = 5037× (VS)0.89
×H0.54 (4)

k600 = 5937(1− 2.54Fr2) × (VS)0.54
×H0.58 (5)

Fr = V/
√

gH

k600 = 4725× (VS)0.86
×Q−0.14

×H0.66 (6)

where V is water velocity, S is slope and H is depth of the river. g is the gravity force. Sc is the Schmidt
number and T is temperature. Fr is the Froude number. Constant values are A = 1568, B = −86.04, C =

2.142 and D = −0.0216 [25].

3. Results and Discussion

3.1. Input Data and Calibration

Data for all flow gages and climate stations were retrieved for the period from 1 October 2015
to 31 March 2018. To match all data, a common time step of one hour was adopted for all variables.
Data from two climate stations were averaged instead of segmenting the watershed according to the
area of influence, since both stations were in proximity. An example of average precipitation is shown
in Figure 4. It should be noted that peaks related to precipitation might not coincide with peaks on
measurements of flow gages due to local inflows of tributaries to the Kanawha River. The estimation
of evapotranspiration rates was deduced by following the Turc method [44] and adding this data to
the HSPF model. Climate data used in this model were compared by means of coefficient of variation
(CV) with NASA data sources (i.e., NLDAS and AIRS) in daily time step for precipitation, temperature,
dew-point temperature and evapotranspiration; results are presented in Table 5. Data of flow gages
originally obtained with a time step of 15 minutes were converted to a 1 h time step using a moving
average filter.

Table 5. Average daily data comparison between NASA data sources and climate station.

Precipitation,
mm Temperature, ◦C Dew Point

Temperature 1, ◦C
Evapotranspiration (EVT),

mm

Source Station NLDAS Station NLDAS Station NLDAS
and AIRS Station NLDAS Potential

EVT

Mean 2.54 2.91 12.78 12.88 7.72 10.11 0.965 1.677 4.318
CV 2.292 2.085 0.299 0.302 0.380 0.368 0.964 0.706 0.533

1 Dew point was estimated from average daily temperature (NLDAS) and relative humidity (AIRS) datasets.
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Figure 4. Observed precipitation and flows in the Kanawha River and its tributaries during 1 October
2015 to 31 March 2018.

The calibration of the HSPF model was conducted for 2413 km2, corresponding to S1 and S2
drainage sections. The HSPF model was subjected to an iterative evaluation using the NSGA-II. The
best optimal solution was deduced with the minimum Euclidean distance from the origin to the NSE
and PBIAS scores. It should be pointed out that NSE and PBIAS were applied to the outflow F3
comprising inflows F1 and F2 together with predicted drained water at S1 and S2. Nonetheless, inflows
F1 and F2 greatly contributed to the outflow predictions, given that the drainage area from F1 and F2
to F3 increased by 10%. This means that drainage changed from 24,646.3 to 27,060 km2 at the location
of gage F3. Such conditions enhanced NSE and PBIAS scores, which were 0.96 and 1.97%, respectively,
when comparing predictions and observations from 1 October 2015 to 11 January 2018 in flow gage F3
(Figure 5). NSE and PBIAS scores can be categorized as acceptable [43]; however, those results should
be weighed based on the aggregated water between inflow and outflow of the drainage area along
the river.
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Figure 5. Observed and HPSF predictions of the flows at F3 during the stage of calibration and validation.

To confirm the adequacy of these parameters (Table 6) as the best optimal solution identified
by NSGA-II, the calibrated HSPF model was analyzed by means of the HSPEXP+ 2.0 program in
order to fulfill overall criteria regarding water balance (Table 7). It was found that error between
predictions and measurements increased as the flow decreased; even so, the criteria were satisfied.
Subsequently, the HSPF model predicted a water budget that was distributed as follows: 4.3% to
surface flow, 17.9% to interflow, 32.5% to base flow and deep aquifers and 45.3% to evapotranspiration.
The rate of evapotranspiration dominated water balance and was driven by BASETP and AGWETP and



Water 2020, 12, 783 10 of 18

LZETP parameters. Water also accumulated in soil at rates determined by USZN, LZSN and INFILT
parameters; however, a significant volume of water moved down to the base flow and deep aquifers.

Table 6. Calibrated parameters of the HSPF model identified by the NSGA-II.

Parameter Value Parameter Value

LZSN 51 CEPSC 9.7
INFILT 6.1 UZSN 4.4
KVARY 0.098 NSUR 0.109

AGWRC 0.98 INTFW 2.647
DEEPFR 0.494 IRC 0.302
BASETP 0.198 LZETP 0.709

AGWETP 0.105

Table 7. HSPF model performance through HSPEXP+ 2.0.

Measure HSPEXP Limit

Error in total volume, % 1.71 10
Error of highest 10% flows, % −0.21 15
Error of highest 25% flows, % −0.49 10
Error of highest 50% flows, % −0.03 10
Error of lowest 50% flows, % 9.59 10
Error of lowest 25% flows, % 13.29 15
Error of lowest 10% flows, % 14.72 20

Flow estimations using the calibrated HSPF model at the S1 and S2 drainage sections can be
considered reliable as they were validated by flow measurements at gage F3. However, flow estimations
at the outlet (Q3) of the S3 drainage area entirely relied on the accuracy of the calibrated HSPF model.
The HSPF model validation found a significant contribution of the tributaries to the Kanawha River. For
instance, from the total amount of water added within the S2 section, 78% of the water was contributed
by the Elk River based on flow measurements at F2. In the same way, from the total amount of water
added within the S3 section, 91% of the water was contributed by Coal and Pocatalico Rivers, according
to measurements at F4 and F5. Flow dynamics at Q1, Q2 and Q3, during the period from 11 January
2018 to 31 March 2018 (Figure 6), were based on the combined effects of inflows and drainage areas
along the river. S1, S2 and S3 involved local inflows such as rainfalls, CSO and NPDES. The CV for
flow data was computed having 0.77, 0.73 and 0.73 for locations Q1, Q2 and Q3, respectively. These
CV values verified that flow dynamics were similar only in the Q2 and Q3 locations.
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Figure 6. HSPF model predictions about (a) flow and (b) average water velocity at the locations Q1, Q2
and Q3 along the Kanawha River.
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3.2. Water Quality

Water quality data were collected for 71 days with a time step of 1 h covering the period
from 11 January 2018 to 22 March 2018 (Supplementary Data). Erroneous readings were discarded.
Measurements for the three locations are shown in Figures 7 and 8 and available in Huber et al. [45].
The CV among all sensor readings (Table 8) showed that minimum and maximum scores were for
dissolved oxygen saturation and turbidity, respectively. The same type of sensor readings among the
three locations also had minimum and maximum differences of the CV for temperature and dissolved
oxygen saturation. In summary, we found that dissolved oxygen saturation had minimum dispersion
among all the sensors at the same location and maximum dispersion among the three locations.
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Table 8. Coefficient of variation for water quality measurements from 11 January 2018 to 22 March 2018.

Location Temperature Dissolved
Oxygen

Dissolved Oxygen
Saturation

Specific
Conductance Turbidity ORP

Q1 0.551 0.097 0.042 0.142 1.549 0.134
Q2 0.543 0.192 0.029 0.280 1.628 0.281
Q3 0.529 0.304 0.030 0.266 1.311 0.208

3.3. Net Ecosystem Production

The reaeration rates (k) were calculated using Equations (4)–(6) that consequently helped to
estimate NEP through Equation (1). The time series of hydrodynamics (Figure 6) and water quality
data (Figure 7) were used at Q1, Q2 and Q3 locations to estimate NEP (Figure 9). Hydrodynamics of
the Kanawha River showed higher flows and lower water velocities as water moved downstream,
from Q1 to Q2 and to Q3. From water quality monitoring stations (Figure 7), a significant decay of
dissolved oxygen and its saturation were observed in Q2 and Q3. For instance, a length of 23.5 km
along the river, the distance between Q1 and Q2, had an average decay from 14.9 to 6.1 mg/L. In the
following 29.3 km, the distance between Q2 and Q3, had an additional decay from 6.1 to 4.8 mg/L.
Those dissolved oxygen decays reduced the NEP estimations from Q1 to Q2 by 93% and from Q2 to
Q3 by 95%.
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Figure 9. Comparison of the net ecosystem production using Equations (4)–(6) to estimate reaeration
rates k at Q1, Q2 and Q3 locations along the Kanawha River, from 11 January 2018 to 22 March 2018.

3.4. Spatial and Temporal Variability of NEP

Repeatability and reproducibility are issues around NEP estimations when limited datasets are
available in either time or space. These issues frequently happen over sub-daily patterns of dissolved
oxygen [46]. In practice, NEP estimations are subjected to periods of observations, the choice of
location along the river and the choice of the equation to estimate reaeration rates. Our study provided
insight into NEP resolution over space and time based on field surveys and estimating reaeration rates
through Equation (4).

For large rivers, either temporal or permanent local gradients may be observed as a result of flow
regimes generating specific hydrodynamics [47,48] and consequently variability in NEP. Those NEP
estimations will be the consequence of the level of turbulence in local mixing and the exchange rate
of gases in the air–water boundary layer [49]. Nonetheless, NEP variability is also a consequence of
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physicochemical properties, such as organic matter [50], nutrient regimes [35], water temperature [51]
and flow [10]. Our study conducted a river transect examination of NEP using horizontal and vertical
profiles that occur near Q2. The horizontal profile was based on the Q2a and Q2b locations which are
separated by 179 m, whereas the vertical profile was based on the Q2b and Q2c locations which are
separated by 1.5 m. Three repetitions were conducted at each location, and water velocity was deduced
from the HSPF streams module (Table 9). The horizontal profile of NEP was not homogeneous since
different conditions were observed in the field; however, there was a prevailing lower NEP in Q2b, which
mainly occurred due to water temperature and dissolved oxygen measurements. In contrast, we found
that the vertical profile generated lower NEP amounts in Q2c with respect to Q2b, which can be inferred
as less prevailing irradiance, as it was 2.5 m deep. Still, such a discrepancy in NEP at the vertical profile
was lower than the horizontal profile as a consequence of the distance between locations. Thus, these
findings illustrated that spatial heterogeneity of NEP is driven by transport-reaction phenomena [52]
due to local gradients created by hydrodynamics and their corresponding water quality.

Table 9. River transect examination using average net ecosystem production (NEP) with N number
of observations.

Location Repetition N Depth,
m

Velocity,
m/s

Water
Temperature, ◦C

Dissolved
Oxygen, mg/L

NEP,
g[O2]/m3/day

Q2a 1 36 1 0.12 28.3 (±0.9) 8.6 (±0.3) 4.3
2 54 1 0.08 26.7 (±1.2) 9.2 (±0.5) 3.3
3 163 1 0.05 26 (±0.5) 8.3 (±0.1) 1.7

Q2b 1 63 1 0.11 27.8 (±0.8) 8.2 (±0.2) 1.8
2 49 1 0.08 26 (±0.5) 8.2 (±0.1) 0.9
3 73 1 0.05 27.3 (±1.7) 8.7 (±0.3) 1.2

Q2c 1 62 2.5 0.06 26.7 (±1.5) 8.4 (±0.3) 0.8
2 60 2.5 0.04 26.3 (±1.0) 8.4 (±0.1) 0.7
3 70 2.5 0.05 26.6 (±1.3) 8.4 (±0.2) 0.9

NEP in rivers is the result of a dynamic interaction between biotic [53] and abiotic factors [54,55].
Among those biotic factors, autotrophs and heterotrophs are continuously balanced to determine
NEP dynamics through the year [56]. Autotrophy impacting NEP along the river is a consequence
of nutrient loads from local inflows to the mainstream such as wastewater treatment plants, CSO
and NPDES [57]. For instance, it has been found that spatial heterogeneity of NEP can be caused by
watersheds comprising urban areas [58]. Our study had an urban area between Q2 and Q3, causing
differentiated NEP estimations along the river (Figure 9). A driving variable causing a decay of NEP
(Table 10) was dissolved oxygen, which mainly declined due to the various local inflows mixed with
the mainstream. It can be interpreted that water residence times of 0.25 ± 0.03 days and 0.62 ± 0.12
days for the Q1–Q2 and Q2–Q3 river sections, respectively, along with local inflows with different
water quality did not help to keep the same NEP estimations as observed in Q1. From our study, we
can also claim that the balance between autotrophs and heterotrophs was significantly impaired as
water moved downstream. We estimated a decay of 1.18 ± 0.38 g[O2]/m3/day from NEPQ1 to NEPQ2

and an additional decay of 0.08 ± 0.12 g[O2]/m3/day from NEPQ2 to NEPQ3. The latter one was a
consequence of prevailing hypoxic conditions observed in Q3.

Table 10. Net ecosystem production (NEP) at three locations of the Kanawha River using N number
of observations.

Location N Velocity,
m/s

Water
Temperature, ◦C

Dissolved
Oxygen, mg/L

NEP,
g[O2]/m3/day

Q1 1682 1.11 (±0.16) 5.5 (±3) 14.9 (±1.4) 1.24 (±0.4)
Q2 1600 0.6 (±0.13) 5.4 (±3) 6.1 (±1.2) 0.09 (±0.07)
Q3 1674 0.46 (±0.11) 5.4 (±3) 4.8 (±1.5) 0.004 (±0.03)
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3.5. Impact of Water Quality on NEP and Local Inflows

Additional water quality data were retrieved that can potentially affect NEP dynamics. In particular,
the effects of specific conductance [59] and turbidity [60] on NEP were evaluated using the Spearman
coefficient. We found through the Spearman coefficient that NEP and turbidity were positive at the
three locations along the river (Table 11). We also found that NEP and specific conductance had
negative values at the three locations along the river. Nevertheless, it can be deduced that specific
conductance and turbidity could play a significant role in determining NEP if the dissolved oxygen
measurements do not reach hypoxic conditions.

Table 11. Spearman correlation of net ecosystem production (NEP) with water quality data at three
locations of the Kanawha River.

Specific Conductance Turbidity

NEPQ1 −0.61 0.81
NEPQ2 −0.57 0.41
NEPQ3 −0.01 0.06

Because water quality and consequently NEP changed due to local inflows along the river, we
computed volumes of aggregated water to the Kanawha River between paired locations WQ1–Q2 and
WQ2–Q3 as well as their corresponding changes on NEP. We also conducted the same calculations
for changes in specific conductance, turbidity and ORP measurements. For the aforementioned
calculations, we considered average travel times obtained from the HSPF streams module. Then,
Spearman correlations were calculated (Table 12). The segment of the river between Q1 and Q2 showed
that WQ1–Q2 was mainly correlated with NEP and turbidity. For the segment of the river between Q2
and Q3, we found that WQ2–Q3 was mainly correlated with specific conductance and NEP. From these
correlations, we can state that NEP can be used as an indicator to assess water quality of local inflows,
as it merges various properties of the river related to hydrodynamics and water quality data along the
river. However, a more reliable assessment could be achieved if hypoxic conditions are avoided.

Table 12. Spearman correlations between local inflows (WQ1–Q2 and WQ2–Q3) along the Kanawha
River and their corresponding changes on the net ecosystem production (NEP), specific conductance,
turbidity and ORP.

Local Inflows NEP Specific Conductance Turbidity ORP

WQ1–Q2 −0.71 −0.28 −0.55 0.42
WQ2–Q3 −0.42 −0.61 0.15 −0.29

4. Conclusions

In order to estimate flows along the Kanawha River, our study had to consider a drainage area of
2995 km2. A HSPF model was developed and then calibrated by means of NSGA-II in order to identify
the best optimal solution. The streams module of the HSPF model served for hydrodynamic modeling,
which provided data about flow and average water velocity at Q1, Q2 and Q3 locations along the
Kanawha River. In addition, water quality data were collected for 71 days by placing sondes in the
same three locations to hourly log dissolved oxygen concentration, dissolved oxygen saturation, water
temperature, specific conductance, turbidity and ORP. Flow and average velocity data were used to
estimate reaeration rates (k). Then, k values were used together with water quality data to estimate
NEP. It was found that NEP greatly depends on the specific location within the river, as it was observed
during a river transect examination. Our study also identified a decreasing NEP as water moved
downstream, starting from NEPQ1 equal to 1.24 (±0.4) g[O2]/m3/day to NEPQ2 equal to 0.09 (±0.07)
g[O2]/m3/day and to NEPQ3 equal to 0.004 (±0.03) g[O2]/m3/day. Such decay was attributed to local
inflows (WQ1–Q2 and WQ2–Q3), which were computed and correlated with their corresponding changes
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in water quality and NEP. The best Spearman coefficient (ρ = −0.71) was between WQ1–Q2 and NEP.
However, under hypoxic conditions, the best Spearman coefficient (ρ = −0.61) was between WQ2–Q3

and specific conductance. These findings showed that spatial and temporal analyses of NEP were
adequately addressed through datasets of hydrology, hydrodynamics and high-frequency data from
water quality monitoring stations. Our study can also be useful for further research where assessment
of local inflows to the mainstream should be accomplished by means of NEP. These advances encourage
us to count more on field surveys, given that the scope of NEP dynamics in rivers depends on multiple
scenarios related to flow and water quality conditions.

Supplementary Materials: The Supplementary Data are available online at http://www.mdpi.com/2073-4441/12/
3/783/s1, Data: water quality data.
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