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Abstract: In semi-arid climate regions of China, vegetation restoration on open pit mining lands
is limited by soil moisture. However, multi-layered soil profiles can impede water infiltration into
deeper underground, leaving more water stored in the root zone. Here, three types of soils with
contrasting texture, sandy loam (SL), sand (S), and silt loam (SiL), were used to construct four
multilayer profiles: SL-SiL, SL-S, SL-S-SiL, and SL-SiL-S. Silt loam was taken from the humus layer,
which is more conducive to plant growth than other layers, and it was allocated to the first layer
in the four profiles, while sand and silt loam underlay the silt loam layer. Column experiments
and Hydrus-1D simulation of the vertical infiltration and drainage process were performed: (1) The
simulated results showed that when the sand layer underlay the sandy loam layer (SL-SiL and
SL-S-SiL), the sandy loam layer could hold more water than the silt loam layer underlaying the
sandy loam layer (SL-SiL and SL-SiL-S). The water content of the sandy loam layer in SL-SiL (95 cm)
and SL-S-SiL (95 cm) was 28.3% higher than SL-SiL (74 cm) and 10.5% higher than SL-SiL-S (86 cm).
(2) Both the measured and simulated cumulative infiltration and wetting front penetration time were
positively related to the thickness of the silt loam layer and negatively related to the thickness of the
sand layer. (3) The simulated infiltration rate, accumulation infiltration, and wetting front of the first
layer were unaffected by the texture of the underlying layer. According to multi-criteria decision
analysis, SL-S-SiL had the best water holding capacity and was suggested for land reclamation in the
open pit mine in our research.

Keywords: multilayer soil profile; capillary barrier; hydraulic barrier; Hydrus-1D

1. Introduction

Inner Mongolia, which is characterized by a semi-arid climate, is currently an important open pit
mining area in China. Open pit mining causes 2–11 times the land damage as underground mining [1].
Consequently, large tracts of land have been destroyed that must be reclaimed every year. One crucial
task of soil reclamation is to reconstruct a new profile that is conducive to plant growth. In mining
operations, the excavation and transport activities degrade the soil structure and hasten nutrient loss,
so the soils typically used for reclamation purposes are generally characterized by high bulk density,
poor water holding capacity, and low available nutrients [2–4]. A further challenge is that water
deficit is unfortunately a major factor limiting the survival of planted vegetation in arid and semi-arid
climates. It follows that the main purpose of soil reconstruction should be to make the reconstructed
profile better able to retain more water in the root layer.
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To trap more water for plant growth, layered soil profiles have drawn much attention and
investigation by many researchers [5]. Studies have shown that layered soil profiles can retain more
water than do homogeneous soil profiles [6–9]. For example, Zettl et al. [10] compared the field
capacities within a 1 m depth of reclaimed soil profiles and demonstrated that soils with textural
layering had higher field capacities than those with homogenous layering. According to work by
Huang and colleagues [11–13], layered soil can improve soil water storage capacity and reduce nutrient
loss due to the strong textural contrast created. Soils with textural layering may hinder vertical water
movement and allow the soil to store more water than those lacking any textural layering, during both
the infiltration and drainage processes. Increased water storage in layered soils was attributed to two
phenomena: the capillary barrier and the hydraulic barrier [14].

With advances in computing, more and more research on soil moisture has begun to apply
numerical calculation to simulate soil moisture movement [15–17]. Hydrus-1D has been proven to be a
promising mechanistic model for simulating water movement in variably saturated or unsaturated
media [18,19]. Previous research highlighted that layered soils could hold more water and impede
water into deeper layers. In a layered soil, the water dynamics are affected by the inner layer properties
and the thickness of the layers, as well as their spatial configuration [20,21]; hence, the movement
of layered soil is a complex process. Many indices can be used to characterize the water holding
capacity of the soil profile, such as infiltration rate, accumulation rate, and field capacity, but evaluation
indices are usually incommensurable (i.e., criteria with different units) and contradictory. For example,
Wang found that the fine texture of silt clay loam or clay loam layers beneath the loam layer were
more conducive to increase the amount of water infiltration, but a coarse texture of loamy sand below
the loam layer allowed more water to be retained in the topsoil; however, its cumulative infiltration
was lower than the former. The cumulative infiltration and water content of topsoil are generally
considered as positive indicators for choosing a soil profile (i.e., the higher cumulative infiltration or
water content represents the better water holding capacity of the soil profile). It is hard to evaluate
which is better when these criteria are conflicting. In this case, multi-criteria decision analysis (MCDA)
has been suggested to tackle this problem.

To our knowledge, few studies have focused on evaluating the water holding capacity of the soil
profile through the MCDA method. It is important to design and select an appropriate soil profile
suitable for reclamation before commencing land reclamation. In the study, the laboratory experiments
and Hydrus-1D simulation of the vertical infiltration and drainage process were performed on four
soil profiles characterized by different soil properties, layer thicknesses, and spatial configurations.
The main objectives were two-fold: (1) to evaluate the effect of soil texture, thickness, and layer ordering
on water holding capacity by column experiments and numerical modelling; (2) to use MCDA to
evaluate the soil profiles and provide decision making concerning profile optimization.

2. Materials and Methods

2.1. Research Area

The study area (Figure 1) was in ShengLi Open pit Mine, located in Xilinhot, Inner Mongolia
province of northeastern China. The area had a semi-arid continental climate, with mean annual
precipitation of less 300 mm and mean annual evaporation of about 1746 mm. The mean annual
temperature was 18.5 ◦C with a short plant growing season from June to October. A typical undisturbed
profile above the bedrock is shown in Figure 1, for which the corresponding soil texture can be found
in Figure 2, and three samples were taken from each layer. The soil profile (5.7 m) was divided into
five layers (Layers A–E) according to the properties of the soil, and the ratio of each layer is also shown
in Table 1. Three types of soil taken from Layer A, Layer D, and Layer E were used for filling columns
to reconstruct the soil profiles. Layer B was not considered a single layer because it was adjacent to the
humus layer (Layer A), which was thin (about 30 cm), the single minimum stripping thickness being
more than 50 cm in ShengLi open pit mine, so their separation by the mining machine in the actual
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striping process was quite difficult. Layer C was too thin (<30 cm) to be worth selecting and using.
It should also be pointed out that the soil profile had spatial heterogeneity, in that the thickness of
each soil layer (Layers A–E) may vary across different source sites. Field investigation did show that
Layers D and E were ripe for land reclamation, and since Layer A was a humus layer, which was more
conducive to plant growth than other layers, it was allocated to the first layer in the subsequent profile
design schemes.
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Figure 1. The location of the research area and a typical natural profile. Figure 1. The location of the research area and a typical natural profile.

Table 1. Physical properties of the experimental soils.

Sample Clay (%) Silt (%) Sand (%) Texture Bulk Density (g cm−3) Porosity (%) The Proportion of
Total Profile (%)

Layer A 4.55 37.73 57.72 Sandy Loam 1.23 0.51 4.6%
Layer B 4.43 34.04 61.54 Sandy Loam 1.59 0.39 21.8%
Layer C 3.32 21.8 74.87 Loamy Sand 1.72 0.33 2.2%
Layer D 0.15 2.69 97.16 Sand 1.54 0.37 35.6%
Layer E 7.44 71.72 20.83 Silt Loam 1.22 0.51 35.9%
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Figure 2. Soil texture distribution (USDA) of the soil samples collected from the research area. 

Figure 2. Soil texture distribution (USDA) of the soil samples collected from the research area.

2.2. Soil Column Experiments

The column experiments were carried out in the laboratory, and the experimental apparatus is
displayed in Figure 3. The selected soils (Layer A, Layer D, and Layer E) were air dried to a mass
constant, then sifted through a 2 mm sieve. The column experiments were conducted to simulate the
infiltration and drainage process through different soil profiles. Considering the soil properties, the
thickness of the layers, as well as their spatial configuration, four profiles suitable for the mining area
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in Inner Mongolia were designed (Figure 4). Soil with a sandy loam texture was taken from Layer A,
sand from Layer D, and silt loam from Layer E. These soils were compacted to maintain the original
bulk density level. To perform this experiment, four columns with a diameter of 15 cm and a height of
120 cm were used. The soil was piled to a height of 100 cm, with an empty layer of 20 cm on top of the
column to let water stand without allowing surface runoff. The EC-5 (METER Group, Inc. USA) was
used for water content measurements, which was based on time-domain reflectometry (TDR) with a
±2% error in any porous medium. To enable the probes to measure the soil moisture content at each
soil layer of the soil columns accurately, the probes were inserted in each layer at 10 cm intervals as
shown in Figure 3. The data of the wetting front, infiltration rate, and accumulation infiltration were
recorded manually at 5 min intervals. These data were collected before the wetting front reached the
bottom of each column. After the infiltration ended, the constructed columns were soaked for 48 h to
allow them to drain freely. Meanwhile, the soil was covered with a polyethylene sheet to prevent soil
evaporation. During the drainage process, the change of water content of the whole soil column was
measured by EC-5 at 1 hour (1h), 2 hours (2h), 4 hours (4h), 8 hours (8h), 12 hours (12h), 24 hours (1d),
48 hours (2d), 96 hours (4d), and 168 hours (7d). The above experiment for each profile was replicated
three times. The average moisture data were used for parameter inversion and the following analysis.
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2.3. Hydrus-1D Simulation

Hydrus-1D was developed to solve the Richards equation based on finite element methods, which
is widely used to simulate water and solute transport in soil [22].

2.3.1. Governing Equation

The vertical soil column infiltration and drainage experiment could be simulated by Richards’
equation describing one-dimensional saturated and unsaturated soil water movement, which is
expressed as follows:

∂θ
∂t

=
∂
∂t

[
K(h)

(
∂h
∂z

+ 1
)]

(1)

where t is time (T); θ is volumetric water content (L3 L−3); h is the soil water pressure head (L); z is the
vertical spatial coordinate (L) and taken positive upward; K is the unsaturated hydraulic conductivity
(L T−1). Richards’ equation was solved numerically by Hydrus-1D [22].

2.3.2. Soil Hydraulic Parameters

The relationship between soil matrix potential, hydraulic conductivity, and moisture content was
fitted by the following equations:

θ(h) =

 θr +
θs−θr

[1+|αh|n]m
h < 0

θs h ≥ 0
(2)

K(h) =

 Ks Se
1/2

[
1−

(
1− Se

1/m
)m]2

h < 0
Ks h ≥ 0

(3)

Se =
θ− θr

θs − θr
(4)

where θ is volumetric water content (L3 L−3); θr and θs respectively represent the residual moisture
content and saturated water content (L3 L−3); α (L−1), n, and m are van Genuchten’s equation parameters,
and m = 1− 1/n; Ks is the saturated hydraulic conductivity (L T−1); Se is the effective saturation.

2.3.3. Particle Swarm Optimization

The inversion method is usually used to obtain the parameters, but Hydrus-1D is incapable of
solving multiple parameters using its built-in least squares algorithm; therefore, a multi-parameter
optimization algorithm, particle swarm optimization (PSO), was used here [23]. PSO is a global search
algorithm, and the average root mean squared error (RMSE) of the probes in each layer was taken to be
an objective function to calculate the inverse parameter values. In this study, the inversed parameters
derived from one column were validated at the corresponding layer with the same texture of the
remaining soil columns, and those parameters were selected for subsequent simulations.

2.3.4. Initial and Boundary Conditions

Initial and boundary conditions for the infiltration process of the experiment consisted of
the following:

h(z, t) = hi(z), t = 0 (5)

h(z, t) = h0, z = L (6)

∂h(z, t)
∂z

= 0, z = 0 (7)
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where hi is the initial pressure head (cm) in the soil profile; h0 is the pressure head at the soil surface,
equal to 3 cm in this study; L is the depth coordinate of the soil surface and is equal to 100 cm based on
the column depth.

Initial and boundary conditions for the drainage process from a saturated condition with zero
flux across the surface were as follows:

h(z, t) = 0, t = 0 (8)

h(z, t) = 0, z = 0 (9)

−K
(
∂h
∂z

+ 1
)
= 0, z = L (10)

2.3.5. Model Performance Evaluation

The performance of Hydrus-1D was evaluated using the (1) Nash–Sutcliffe efficiencies (NSE)
index, (2) the root mean square of the prediction error (RMSE), and (3) the mean absolute error (MAE).
The mathematical definition of these statistical indices is as follows:

NSE = 1−

∑N
i=1(Mi − Ei)

2∑N
i=1

(
Mi −M

)2 (11)

RMSE =

√√√
1
N

N∑
i=1

(Ei −Mi)
2 (12)

ME =
1
N

N∑
i=1

(Ei −Mi) (13)

where Ei is the ith estimated value, Mi is the ith measured value, M is the mean of the observed values,
and N is the number of observations.

2.4. Multi-Criteria Decision Analysis Methods

Multiple criteria decision analysis (MCDA) is a framework for evaluating limited alternatives
(e.g., various soil profiles in our research) against multiple criteria. There is a number of approaches
available for addressing an MCDA problem. The MCDA methods tested in our research included: the
analytic hierarchy process (AHP); the technique for order preference by similarity to ideal solution
(TOPSIS), and Grey relation analysis (GRA).

2.4.1. AHP

The different procedural steps in the method were as follows:
(1) Build a multi-level hierarchical structure with a goal at the top level, criteria (and sub-criteria)

at the intermediate levels, and alternatives at the lowest level.
(2) Construct a judgment matrix using pairwise comparisons for all alternatives. The relative

importance of each indicator is demonstrated in Equation (14):

A =
(
ai j

)
n×n

=


1 · · · a1n
...

. . .
...

an1 · · · 1

 (14)
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where A is the judgment matrix, n is the size of the matrix, and ai j is the relative importance of indicator
i to indicator j, which ranges from 1 to 9. ai j = 1/ai j and ai j = 1 when i = j. The scale of relative
importance is shown in Table 2.

Table 2. The fundamental scale.

Intensity of Importance Definition

1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance

2, 4, 6, 8 Intermediate values between the two adjacent judgments

(3) Normalize the judgment matrix by dividing ai j of the judgment matrix with the sum of its
column; the sum of each column is 1. Then, the weight vector can be obtained by averaging across the
rows. Since it is normalized, the sum of all elements in the weight vector is 1. The weight vector shows
relative weights among the things that we compare.

Wi =
Ai∑n

j=1 Ai
(15)

wi =
1
n

n∑
i=1

Wi (16)

W =
(

w1 w2 · · · wi · · · wn
)T

(17)

(4) The consistency ratio (CR) is used to evaluate the consistency of the judgment matrix. For
computing CR, the following Equation (18) is applied:

CR =
CI
RI

(18)

CI =
λmax − n

n− 1
(19)

where CI represents the consistency index computed according to Equation (6) and λmax is the largest
eigenvalue of the judgment matrix, which can be calculated from Equation (20).

λmax =
1
n

n∑
i=1

(AW)i
wi

=
1
n

n∑
i=1


∑n

j=1 ai jwi

wi

 (20)

According to Vaidya [24], if the CR is >0.1, then the judgment matrix is unreasonable and must
be reset.

2.4.2. TOPSIS

TOPSIS is a method based on how close a limited number of evaluation criteria is to the idealized
target [25]. The procedures for applying the TOPSIS method are described as follows:

(1) Create a performance matrix with m alternatives and n criteria. The performance matrix is
represented as:

Xmn =


X11 · · · X1n

...
. . .

...
Xm1 · · · Xmn

 (21)
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(2) The values in the performance matrix are normalized into the range [0, 1]. The normalized
values of each element in the performance matrix can be calculated as follows:

Positive indicator (the larger the better),

X′i j =
Xi j −min

{
Xi j

}
min

{
Xi j

}
−min

{
Xi j

} (22)

Negative indicator (the smaller the better),

X′i j =
Xi j −min

{
Xi j

}
min

{
Xi j

}
−min

{
Xi j

} (23)

The normalized matrix is constructed as:

X′mn =


X′11 · · · X′1n

...
. . .

...
X′m1 · · · X′mn

 (24)

The weighted value of the normalized indicator (ri j) is calculated by the following equations:

ri j = wiX′mn (25)

where wi is the weight of the indicators and X′mn is the normalized value of indicators.
(3) The ideal point (A+) is a composite of the best performance values, while the negative ideal

point (A−) is a composite of the worst performance values. They are determined by the following
equations (separately):

A+ =
{
r+1 , r+2 , · · · , r+n

}
(26)

A− =
{
r−1 , r−2 , · · · , r−n

}
(27)

r+j =

 max j
{
ri j

}
i f i is a positive indicator

min j
{
ri j

}
i f i is a negative indicator

 (28)

r−j =

 max j
{
ri j

}
i f i is a negative indicator

min j
{
ri j

}
i f i is a positive indicator

 (29)

(4) The Euclidean distances from ri j to the ideal point (A+) and negative ideal point (A−) are
calculated by the following equations

D+
j =

√√√ n∑
j=1

(
r+j − ri j

)2
, j = 1, 2, · · · , n (30)

D−j =

√√√ n∑
j=1

(
ri j − r−j

)2
, j = 1, 2, · · · , n (31)

(5) The value of the closeness coefficient (C j) is calculated by Equation (32). A larger value of
closeness indicates the better performance of a profile:

C j =
D−j

D+
j + D−j

(32)
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2.4.3. GRA

The GRA method was proposed by Deng [26]. The process consists of the following steps
(1) The process of normalization is addressed in the above Section 2.3.1.
(2) Generate the reference sequence (R j) from the normalized matrix by taking the largest

normalized value of each criterion as:
R j = maxm

i=1

{
ri j

}
(33)

(3) Construct the difference matrix by calculating the difference between a normalized term and
its reference value as:

∆i j =
∣∣∣∣R j −X′i j

∣∣∣∣ (34)

∆ =


∆ · · · ∆1n
...

. . .
...

∆m1 · · · ∆mn

 (35)

(4) The Grey correlation coefficient for each term is determined as:

ψi j =
minm

i=1minn
i=1∆i j + χmaxm

i=1maxn
i=1∆i j

∆i j + χmaxM
i=1maxn

i=1∆i j
(36)

where χ generally takes the value of 0.5.
(5) A Grey correlation degree is calculated as:

ϕi =
1
n

m∑
j=1

[
ψi j

]
(37)

where ϕi is the Grey correlation degree that indicates the magnitude of correlation measured between
the reference sequence and the ith data sequence.

2.4.4. Criteria Weights

The weight value of each MCDA method can affect the evaluation results. In addition to AHP,
TOPSIS and GRA do not specify how the weights are calculated. As mentioned above, the calculation
process of AHP includes the weight vector, which is also a widely used subjective weight calculation
method [27,28], and one objective weight calculation method, the entropy method, was also adopted.
Two kinds of weight vectors were applied to the MCDA above. In total then, five hybrid methods
(AHP, AHP-TOPSIS, AHP-GRA, entropy-TOPSIS, entropy-GRA) were applied to evaluate the four soil
profiles. The evaluation and inversion steps involved in this study are presented in Figure 5.
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3. Results and Discussion

3.1. Calibration and Validation of Hydrus-1D

The Hydrus-1D model was calibrated using the measured water content of SL-S-SiL during the
infiltration and drainage process and validated using the corresponding SL-S, SL-SiL, and SL-SiL-S
column data. The results (Table 3) showed that Hydrus-1D successfully captured the moisture
movement of the infiltration and drainage process in the four soil profiles, which was also reported
in [11]. In order to reduce the computational cost, a set of hydraulic parameter values was roughly
estimated by the trial-and-error method first [29–31], and these hydraulic parameters would be further
optimized as the initial input values of the particle swarm optimization (PSO). The initial hydraulic
parameters are given in Table 4, and the searching space was within a 20% fluctuation of the initial
value. The searching space was the effective range of inversion parameters when executing the PSO.
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Table 3. The simulation performance using optimized parameters by Hydrus-1D.

Dataset Soil Profile RMSE NSE MAE

Validation data SL-S-SiL 0.0170 ± 0.0036 0.9840 ± 0.0090 0.0118 ± 0.0041
Calibration data SL-SiL 0.0265 ± 0.0045 0.9662 ± 0.0261 0.0192 ± 0.0052

SL-S 0.0107 ± 0.0031 0.9900 ± 0.0087 0.0066 ± 0.0019
SL-SiL-S 0.0207 ± 0.0044 0.9679 ± 0.0111 0.0135 ± 0.0025

Table 4. Optimized parameters used in PSO and the search space. Residual moisture content (θr),
saturation moisture content (θs), a and n the shape parameters of the soil water characteristic curves,
and saturated hydraulic conductivity (Ks).

Soil Texture Parameters Initial
Values

Lower
Boundary

Upper
Boundary

Optimized
Values

Sandy loam θr (cm3 cm−3) 0.000 0.00 0.050 0.003
θs (cm3 cm−3) 0.440 0.374 0.506 0.450

a (cm−1) 0.020 0.017 0.023 0.019
n 1.530 1.301 1.761 1.514

Ks (cm min−1) 0.500 0.051 0.069 0.06

Sand θr (cm3 cm−3) 0.000 0.00 0.050 0.007
θs(cm3 cm−3) 0.310 0.264 0.357 0.312

a (cm−1) 0.055 0.047 0.063 0.059
n 2.500 2.125 2.875 2.599

Ks (cm min−1) 0.500 0.213 0.288 0.238

Silt loam θr (cm3 cm−3) 0.00 0.000 0.050 0.016
θs (cm3 cm−3) 0.470 0.400 0.541 0.479

a (cm−1) 0.020 0.017 0.023 0.021
n 1.400 1.190 1.610 1.462

Ks (cm min−1) 0.500 0.034 0.046 0.045

In the calibration process, the root mean squared error (RMSE), Nash–Sutcliffe efficiencies (NSE),
and mean absolute error (MAE) values of simulated water content of SL-S-SiL were 0.0170, 0.9840,
and 0.0118, respectively. The results showed that the validation results were slightly worse than
the calibration results, but the results remained at an accurate level, which ranged from 0.0107 to
0.0265 (cm3 cm−3) for RMSE, from 0.9662 to 0.9900 (dimensionless) for NSE, and from 0.0066 to 0.0192
(cm3 cm−3) for MAE. The low MAE, RMSE, and high NSE values indicated that Hydrus-1D performed
well. This was consistent with previous studies [17,19], which reported an excellent performance of
Hydrus-1D in simulating the water movement, and similar accuracy was also obtained. Consequently,
we concluded that the error of the simulation was low enough so that the performance of the model
was deemed acceptable for further research. Further, the PSO algorithm accurately converged at the
optimal value (Table 4) without falling into a local optimization space; PSO reportedly had the ability
to invert multiple parameters at the same time [22,23].

3.2. Water Infiltration Rate and Cumulative Infiltration of Different Soil Profiles

The simulated maximum cumulative infiltration occurred in the SL-SiL profile, at 44.0 cm,
followed by SL-S-SiL (39.2 cm), SL-SiL-S (36.6 cm), and SL-S (28.4 cm), which was close to the measured
cumulative infiltration (Table 5). The measured cumulative infiltration of SL-SiL, SL-S-SiL, SL-SiL-S,
and SL-S was 38.5 cm, 34.7 cm, 32.9 cm, and 27.0 cm, respectively. The cumulative infiltration was
positively related to the thickness of the silt loam layer (i.e., second layer of SL-SiL and SL-SiL-S, third
layer of SL-S-SiL) and negatively related to the thickness of sand layer (i.e., second layer of SL-S and
SL-S-SiL, third layer of SL-SiL-S). The infiltration rate was high and unstable in the initial stage of the
infiltration process (0–10 min), but it soon leveled off. In the initial stage, compared with the estimated
infiltration rate with the same values, the measured infiltration rate ranged from 0.5 and 0.9 cm min−1.
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The measured infiltration rate at the initial stage was significantly higher than its simulated value
(Figure 6), which was attributed to the low bulk density layer at the surface and the instability of the
ponded water depth at the beginning of the infiltration process [10]. Before the water flow entered the
second layer, the infiltration rate trend appeared stable. Although it had not reached a completely
stable state, the subsequent changes were difficult to capture in the experimental data records because
the differences were simply too small. For example, before the water flow entered the second layer
(t = 96 min), the infiltration rate of SL-SiL was 0.07 cm min−1, and after 300 min, the infiltration rate
was 0.05 cm min−1, which only decreased by 0.02 cm min−1.

Table 5. Statistics of the infiltration characteristics of various soil profiles.

Profiles Type Initial Infiltration (cm min−1) Steady Infiltration Rate (cm min−1) Accumulation Infiltration (cm)

SL-SiL Measured 0.8 0.04 38.5
Simulated 0.3 0.05 44.0

SL-S Measured 0.5 0.08 27.0
Simulated 0.3 0.07 28.4

SL-S-SiL Measured 0.9 0.06 34.7
Simulated 0.3 0.05 39.2

SL-SiL-S Measured 0.9 0.06 32.9
Simulated 0.3 0.06 36.6
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The measured steady infiltration rate of the different profiles ranged from 0.04 to 0.08 cm min−1.
The simulation results showed that SL-S reached a stable infiltration rate (0.07 cm/min) at 110.4 min,
being the fastest profile to do so, whereas it took at least three times longer (496.8 min) for SL-SiL to
reach a stable infiltration rate (0.05 cm/min). The infiltration rate of SL-S-SiL was also maintained at
0.07 cm/min after 110.4 min, but after the wetting front moved across the whole soil column, subsequent
simulation results showed its infiltration rate reduced at 501.6 min, where it reached a steady infiltration
rate (0.05 min/cm). The reason was that the low Ks of the silt loam layer hindered the infiltration of
sandy and sandy loam layers, resulting in a decreased infiltration rate. This phenomenon is called the
hydraulic barrier when a coarse-textured soil overlies a fine-textured one [14,20]. The infiltration rate
of SL-SiL-S reached a steady state when t = 230.4 min, but the infiltration rate did not decrease further
like SL-S-SiL, because the infiltration rates through the sandy loam and silt loam layer were both very
slow, and the water content of both layers could reach a saturation state before water flow entered the
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third layer, thereby enabling SL-SiL-S to achieve a steady infiltration rate quickly. In addition, the first
and second layer had similar hydraulic properties, resulting in a weak flow barrier (Figure 7). When
the water flow of SL-SiL-S entered the third layer, the water hydraulic barrier did not occur due to the
higher Ks of the sandy layer than the silt loam layer, resulting in the water flux being allowed to enter
the third layer less than its loss. The low water supply of the silt loam layer and the fast infiltration
rate of the sandy layer prevented the latter from reaching saturation (Figure 8).

Water 2020, 12, x FOR PEER REVIEW 16 of 25 

textured one [14, 20]. The infiltration rate of SL-SiL-S reached a steady state when t = 230.4 min, but 
the infiltration rate did not decrease further like SL-S-SiL, because the infiltration rates through the 
sandy loam and silt loam layer were both very slow, and the water content of both layers could 
reach a saturation state before water flow entered the third layer, thereby enabling SL-SiL-S to 
achieve a steady infiltration rate quickly. In addition, the first and second layer had similar 
hydraulic properties, resulting in a weak flow barrier (Figure 7). When the water flow of SL-SiL-S 
entered the third layer, the water hydraulic barrier did not occur due to the higher Ks of the sandy 
layer than the silt loam layer, resulting in the water flux being allowed to enter the third layer less 
than its loss. The low water supply of the silt loam layer and the fast infiltration rate of the sandy 
layer prevented the latter from reaching saturation (Figure 8). 

 

Figure 7. Optimized soil water retention curves and hydraulic conductivity for all soils. 

 

Figure 7. Optimized soil water retention curves and hydraulic conductivity for all soils.

Water 2020, 12, x FOR PEER REVIEW 17 of 25 

 

Figure 8. Measured and simulated water content at different depths in the infiltration process, (a) 

SL-SiL; (b) SL-S; (c) SL-S-SiL and (d) SL-SiL-S. 

3.3. Wetting Front of Different Soil Profiles 

There were no significant differences among profiles in the penetration time of their first layer 

(Figure 9 and Table 6). It may be concluded that the same texture had the same infiltration 

characteristics [32]. These results showed that the texture of underlying layers did not affect the 

advancing speed of the wetting front at the first layer. The same patterns of results were obtained 

in terms of cumulative infiltration and infiltration rate. The four profiles had the same initial 

infiltration rate due to the same soil properties of the first layer. However, the conclusion was 

difficult to draw from the measured results, because according to the measured data of Table 5, the 

initial infiltration rates of different profiles differed greatly (ranging from 0.04 to 0.08 cm min−1). 

The simulation results showed that after passing through the first layer, the advancing speed of 

Figure 8. Measured and simulated water content at different depths in the infiltration process, (a) SL-SiL;
(b) SL-S; (c) SL-S-SiL and (d) SL-SiL-S.



Water 2020, 12, 773 15 of 21

3.3. Wetting Front of Different Soil Profiles

There were no significant differences among profiles in the penetration time of their first
layer (Figure 9 and Table 6). It may be concluded that the same texture had the same infiltration
characteristics [32]. These results showed that the texture of underlying layers did not affect the
advancing speed of the wetting front at the first layer. The same patterns of results were obtained in
terms of cumulative infiltration and infiltration rate. The four profiles had the same initial infiltration
rate due to the same soil properties of the first layer. However, the conclusion was difficult to draw from
the measured results, because according to the measured data of Table 5, the initial infiltration rates of
different profiles differed greatly (ranging from 0.04 to 0.08 cm min−1). The simulation results showed
that after passing through the first layer, the advancing speed of the wetting front in each profile began
to differ. Because of the sandy texture of the second layer in the SL-S, the advance speed of the wetting
front in this profile remained relatively fast, and its penetration time was thus the shortest of all four
profiles: it took just 303.4 min for the water to reach the bottom of SL-S (Table 6). SL-SiL had the
longest penetration time, at 546.1 min. The penetration times of SL-S-SiL and SL-SiL-S were between
those of SL-S and SL-SiL. Compared with SL-S-SiL (444.8 min), the wetting front penetration time of
SL-SiL-S was slightly shorter (430.4 min). In SL-SiL, after passing through the first layer, the wetting
front advance speed in the silt loam layer was always higher than that of SL-SiL-S in the silt loam layer,
but the simulation results showed no such difference. The simulation performance of Hydrus-1D with
respect to the wetting front was not as robust as that for cumulative infiltration and infiltration rate,
which underestimated the wetting front of all soil profiles. This may have arisen from preferential
flow. The numerical model presumed a uniformly advancing wetting front in a soil profile, but in the
natural soil profile, it was non-uniform. This could therefore explain why the recorded (i.e., observed)
wetting front data values were larger than the estimated (i.e., predicted) ones from Hydrus-1D.
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Table 6. The penetration times of the wetting front through the soil profiles.

Profile Data Type
Infiltration Time of Each Layer (min)

First Layer Second Layer Third Layer Total Time

SL-SiL Measured 77.1 469.0 — 546.1
Simulated 96.0 546.0 — 642.0

SL-S Measured 79.2 224.2 — 303.4
Simulated 96.0 235.5 — 331.5

SL-S-SiL Measured 79.8 105.8 259.2 444.8
Simulated 96.0 99.0 288.0 483.0

SL-SiL-S Measured 83.1 193.1 154.2 430.4
Simulated 96.0 204.0 165.0 465.0

Note: “—“ means no data, SL-SiL and SL-S are a two-layer structure.

3.4. Water Distribution with Different Soil Profiles

The EC-5 probe was used to record the changes in volumetric water content at different positions
of each profile, and this analysis was carried out to distinguish profiles achieving better water retention
performance. The optimized parameters could successfully simulate soil water dynamics in the
drainage process. Figure 8 shows the simulated volumetric water content profiles of each profile at
7d of the drainage process. The simulation results accurately captured the real-time water content of
the multi-layered soil columns. For each profile, the simulated water profiles basically matched those
obtained from the experimental measurements. The moisture content profile of soil columns showed
obvious discontinuity at the interface of different soil layers, as the vertical variation in soil texture led
to an abrupt change in the soil moisture content profile (Figure 10).
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At a drainage time of 7d, the total water holding capacity (Figure 11) was unlikely to further
change, and the moisture content could be considered to have reached field capacity [10]. The main
water loss came from the sandy layer, because the water content ratio of the sandy layer to the whole
profile significantly declined. The sandy layer was located in the second layer of SL-S and SL-S-SiL and
the third layer of SL-SiL-S. In SL-SiL, there was no significant change in the proportion of water content
in the sandy loam layer (first layer) and silt loam layer (second layer), but the total water holding
capacity was constantly diminished, showing that the sandy loam and silt loam layers had similar
drainage rates, which can be seen from Figure 8. The total water holding capacity of SL-SiL was largest
(285 mm), due to the high field capacity of silt loam. However, the water holding capacity of the first
layer in SL-SiL (74 mm) was the poorest of the four soil profiles. The first layer of SL-S-SiL and SL-S
(95 mm) had the highest water holding capacity. A plausible explanation was that in both SL-S-SiL and
SL-S, the sandy loam layer (first layer) lied above the sandy layer (second layer), so upon reaching
equilibrium (when the matrix potentials at the interface are equal in Figure 8), the water content of the
sandy loam layer was now much higher than the underlying layers, thus retaining more water than its
field capacity due to the capillary barrier [20]. Since the first layer of each profile was taken from the
humus layer, it was important to vegetation restoration, being the main active layer of plant roots in
the initial stage of land reclamation. Compared with the total water holding capacity of a profile, the
water holding capacity of its first layer was more important for early stages of vegetation restoration.
The water holding capacities of the first layer of SL-S-SiL and SL-S were same, being 28.4% higher than
that of SL-SiL (74 mm) and 10.5% higher than that of SL-SiL-S (86 mm). The results indicated that the
water holding capacity of SL-SiL was the worst.
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3.5. Evaluation of Soil Profiles

The selected indices are shown in Tables 7 and 8, and their calculated weight values are shown
in Figure 12. The weights of each index calculated by the AHP and entropy method were assigned
different values. The entropy method assigned more weight to Index 1, Index 2, and Index 4 and
had similar values to AHP in Index 3 and Index 5, while the weight value of Index 7 calculated by
the AHP was obviously higher than that calculated by the entropy method. Generally, the entropy
weight method, as an objective weight calculation method, was more convincing because it excluded
anthropogenic interference, but expert knowledge also had an important role in determining such
weight values. In this study, since based on prior knowledge, Index 7 was judged to be more reliable
than the others for characterizing the water holding capacity of soil profiles, more weight was assigned
to it, and the reason is explained in Section 3.3.

Table 7. Selected indices for soil profiles.

Indices Description Unit

Index 1 Steady infiltration rate cm min−1

Index 2 Accumulation infiltration amount cm
Index 3 Breakthrough time of wetting front min
Index 4 Total profile moisture mm
Index 5 Total profile moisture at 7d mm
Index 6 Water moisture of first layer at 7d mm

Table 8. Evaluation indices of different soil profiles.

Profile Index 1 Index 2 Index 3 Index 4 Index 5 Index 6

SL-S 0.07 28.4 331.5 353 137 95.0
SL-SiL 0.05 44.0 642.0 481 285 74.0

SL-S-SiL 0.05 39.2 483.0 426 222 95.0
SL-SiL-S 0.06 36.6 465.0 408 224 86.0
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Figure 12. Weight values calculated by AHP and the entropy method.

Entropy-TOPSIS indicated that SL-SiL-S had the best performance, and AHP-TOPSIS indicated
SL-S-SiL was the best, whereas L30S70 ranked the worst in Entropy-TOPSIS and AHP-TOPSIS. This
result arose from different weight assignments, but the GRA methods (i.e., entropy-GRA and AHP-GRA)
maintained the same result under the two weight calculation methods used. In this study, the results
appeared less affected by the weight values. According to the five methods, SL-S-SiL was considered
to have a better water holding effect, followed by SL-SiL-S, SL-SiL, and lastly, SL-SiL (Figure 13).
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Except for entropy-TOPSIS, the remaining four MCDA methods had the same ordering, and the overall
performance of SL-S-SiL was the best profile. Therefore, the profile of SL-S-Sil was suggested for land
reclamation in ShengLi open pit mine.
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4. Conclusions

This study assessed the performance of four constructed soil profiles in terms of two key water
processes: infiltration and drainage, and further elaborated the water holding mechanism of the
tested multi-layered profiles. Based on those results and according to the five MCDA methods (AHP,
AHP-TOPSIS, AHP-GRA, entropy-TOPSIS, entropy-GRA) used to evaluate the water holding effect of
the four profiles, we were able to draw three conclusions:

1. The wetting front, cumulative infiltration, and infiltration rate of the first layer in each profile
was unaffected by the texture of the underlying layer. Flow barriers caused by contrasting textured
soil would hamper water from entering the underlying layer. When a fine textured layer overlay a
coarse-textured layer, water stagnation ensued because of the capillary barrier, yet when a fine textured
layer underlay a coarse-textured layer, it was instead caused by the hydraulic barrier.

2. In the drainage process, the results showed that the first layer had a water holding capacity
ranking among profiles as follows: SL-S = SL-S-SiL > SL-SiL-S > SL-SiL. However, the water holding
capacity of the whole soil profile took the order of SL-SiL > SL-S-SiL > SL-SiL-S > SL-S. The SL-SiL
profile had the largest total water holding capacity, but the poorest water holding capacity in the
first layer.

3. The four profiles were comprehensively evaluated using five MCDA methods. In addition to
AHP, the results showed a ranking among profiles of SL-S-SiL > SL-SiL-S > SL-SiL > SL-S. The profile
of SL-S-SiL had the best soil water holding capacity and was suggested for land reclamation in ShengLi
open pit mine.
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