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Abstract: Future projections of anthropogenic climate change play a pivotal role in devising viable
countermeasures to address climate-related risks. This study strove to construct future daily rainfall
and maximum and minimum temperature scenarios in Vu Gia Thu Bon river basin by employing the
Statistical DownScaling Model (SDSM). The model performance was evaluated by utilizing a Taylor
diagram with dimensioned and dimensionless statistics. During validation, all model-performance
measures show good ability in simulating extreme temperatures and reasonable ability for rainfall.
Subsequently, a set of predictors derived from HadCM3 and CanESM2 was selected to generate
ensembles of each climatic variables up to the end of 21st century. The generated outcomes exhibit
a consistent increase in both extreme temperatures under all emission scenarios. The greatest
changes in maximum and minimum temperature were predicted to increase by 2.67–3.9 ◦C and
1.24–1.96 ◦C between the 2080s and reference period for the worst-case scenarios. Conversely,
there are several discrepancies in the projections of rainfall under different emission scenarios as well
as among considered stations. The predicted outcomes indicate a significant decrease in rainfall by
approximately 11.57%–17.68% at most stations by 2099. Moreover, all ensemble means were subjected
to the overall and partial trend analysis by applying the Innovative-Şen trend analysis method.
The results exhibit similar trend patterns, thereby indicating high stability and applicability of the
SDSM. Generally, it is expected that these findings will contribute numerous valuable foundations to
establish a framework for the assessment of climate change impacts at the river basin scale.

Keywords: climate change; climate projection; SDSM; Vu Gia Thu Bon river basin

1. Introduction

There is high confidence that human activities are the main causes of the global warming of
1 ◦C [0.8–1.2 ◦C] above the pre-industrial levels, and this figure is likely to reach 1.5 ◦C between
2030 and 2052 [1]. As a consequence, natural and human systems have to deal with a wide range of
climate-related risks. Based on a comparison between 1.5◦C and 4◦C warming, it is evident that the
global average chance of major heatwave, agricultural drought, and 50-year return period river flood
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is likely to rise from 28%–92%, 24%–61%, 2.4%–5.4%, respectively [2]. Furthermore, Arnell et al. [3]
utilized various indicators representing heat extremes, water resources, river and coastal flooding,
droughts, agriculture, and energy use to estimate the potential impacts of climate change under
different levels of climate forcings and socio-economic scenarios. With regard to climate extremes,
Duan et al. [4] utilized the Database for Policy Decision-Making for Future Climate Change to explore
possible changes in precipitation extremes based on six indices under 4 K warming climates compared
to the Representative Concentration Pathway (RCP) 8.5 scenario of the Coupled Model Intercomparison
Project phase 5 (CMIP5). Generally, this study indicated that precipitation extremes in China are likely
to be more severe, and also highlighted the usefulness of employing large ensemble high-resolution
climate simulations to address future uncertainties.

It is acknowledged that general circulation models (GCMs) are greatly supportive to the assessment
of potential climate change impacts on multiple sectors at the global scale. Unfortunately, a horizontal
resolution of GCMs is typically between 250 and 600 km, which cannot meet the requirements of most
local impact studies. Additionally, an application of GCMs necessitates significant computational
resources, thereby being unfeasible for most developing countries. Hence, many dynamical and
statistical downscaling methods have arisen to overcome these key disadvantages of GCMs. Wilby and
Wigley [5] presented a comprehensive review of the most commonly used downscaling techniques,
discussing their limitations and challenges for future applications. Generally, statistical downscaling is
more flexible, cheaper and less computationally demanding compared to dynamical downscaling [5,6].

Over the last few decades, there has been a proliferation of statistical downscaling tools for the
sake of constructing future climate change scenarios at individual weather stations using various GCM
outputs such as HadCM2, HadCM3, CGCM1, CGCM2, CGCM3, CanESM2, and IPSL-CM5A-MR.
Khan et al. [7,8] quantified uncertainty in the performance of SDSM, Long Ashton Research
Station Weather Generator (LARS-WG), and Artificial Neural Network (ANN) in downscaling daily
precipitation and maximum and minimum temperatures at two meteorological stations in northern
Quebec in Canada by comparing monthly means and variances, monthly mean dry and wet spell
lengths, the cumulative frequency distributions of monthly mean of daily precipitation, and the
distributions of monthly wet and dry days via many robust non-parametric statistical tests. Likewise,
Etemadi et al. [9] compared the performance of SDSM and LARS-WG in terms of their uncertainty
associated with temperature and precipitation projections in a vulnerable international wetland located
in the Southwest Iran. Furthermore, Najafi and Kermani [10] proposed a new method based on fuzzy
logic to investigate uncertainty associated with projected changes in temperature and precipitation
using SDSM and Automated Statistical Downscaling (ASD) over the northern parts of Iran.

It is apparent that one of the most common themes of statistical downscaling application is to
determine the superiority of statistical versus statistical, and/or statistical versus dynamical downscaling
models. Particularly, two widely applied tools (i.e., SDSM and LARS-WG) were subjected to the
well-conducted analysis by Hashmi et al. [11] and Hassan et al. [12] in the Clutha River (New Zealand)
and Peninsular Malaysia respectively. Liu et al. [13] also compared the model performance of SDSM
with the nonhomogeneous hidden Markov model in simulating daily precipitation over an arid basin
in China, with annual precipitation mostly lower than 200 mm. Tryhorn and DeGaetano [14] compared
SDSM and a bias-correction and spatial disaggregation technique, representing statistical downscaling
approach, with the regional climate model HadRM3 representing dynamical approach in terms of
their predictive ability in simulating extreme precipitation over the Northeastern United States. Lately,
Campozano et al. [15] conducted a comparative study on the performance of SDSM and a number of
artificial intelligence approaches such as ANNs and least squares support vector machines over the
Paute River Basin in Southern Ecuador.

Another main aim of previous downscaling studies is to emphasize the importance of predictor
selection methods, which should be employed carefully to deal with the most problematic aspect,
called collinearity. Mahmood and Babel [16] proposed a quantitative procedure to eliminate the effect
of multi-co-linearity in the selection of large–scale predictors. Particularly, the highest correlated



Water 2020, 12, 755 3 of 17

predictor, called super predictor, is defined first. Then, the remaining highly correlated predictors
are regressed individually in the presence of super predictor. Finally, a set of optimal predictors is
obtained by considering the values of the percentage reduction in partial correlation with respect to
the correlation coefficient [16,17]. This approach was also applied successfully by Hasan et al. [18],
Iwadra et al. [19], and Shafiq et al. [20]. Lately, Yang et al. [21] presented a comparative study of the
performance of three predictor selection methods such as correlation analysis (including Pearson’s
and Spearman’s rank correlation coefficients), partial correlation analysis, and stepwise regression
analysis in terms of the uncertainty assessment through a number of non-parametric statistical tests.
The results revealed that stepwise regression analysis performs slightly better than its counterparts.

Apart from modeling conventional climatic variables (e.g., temperature and precipitation),
the predictive abilities of statistical downscaling tools (e.g., SDSM) were also well documented
for other exotic variables such as ground-level ozone and particulate matter [22], and reference
evapotranspiration [23,24]. SDSM was also proved skillful in downscaling climate extremes and
indices [17,25–28]. Additionally, SDSM was applied in combination with a hydrological model, namely
Soil and Water Assessment Tool (SWAT), to characterize the responses of streamflow to future changes
in precipitation, maximum and minimum temperatures over the upper Ishikari river basin, Japan [29].
Lately, Ahmadi et al. [30] integrated SDSM with the ANN and a rainfall–runoff model, called IHACRES,
in order to investigate the impacts of climate change on surface runoff in the Kan watershed (Iran)
under different representative concentration pathway scenarios derived from CanESM2. In general,
it is highly evident that SDSM is such a fruitful tool for constructing future climate change scenarios.

In Vietnam, there have also been a number of salient case studies in the field of climate projections
during the last few decades. Particularly, Ngo-Duc et al. [31] highlighted the advantage of utilizing
the ensemble mean of three regional climate models (RCMs) in reproducing the climatological mean
state and several extreme climate indices (i.e., TXx, TNn, and RX1day) over seven climate sub-regions
of Vietnam. Likewise, Raghavan et al. [32] evaluated the downscaling ability of Providing REgional
Climates for Impacts Studies (PRECIS) model in simulating mean state and extreme rainfall indices by
using a subset of the Perturbed Physics Ensembles and their ensembles. It is discernible that most
previous investigations employed dynamical downscaling approach by applying Conformal Cubic
Atmospheric Model (CCAM), Regional Climate Model Version 3 (RegCM3), Regional Model (REMO),
and PRECIS models. In the Vu Gia Thu Bon (VGTB) river basin, Thanh and Dutto [33], Nam et al. [34]
employed a number of bias correction techniques to reduce systematic biases from the outputs of
multiple GCMs/RCMs, which were subsequently used to assess the impacts of climate change on
extreme flood events.

It is acknowledged that there are very few studies that make use of statistical downscaling tools
(e.g., SDSM) to generate climate change scenarios over the Vu Gia Thu Bon river basin as well as
Vietnam. It is worth noting that most hydrological and hydraulic modeling tools, e.g., SWAT, IHACRES,
Precipitation Runoff Modeling System (PRMS), Integrated Catchment Water Modelling (CATCHMOD),
Hydrologic Engineering Centers River Analysis System (HEC-RAS), MIKE, etc., necessitate historical
and future climate data as primary inputs for assessing the impacts of climate change on water resources
at the river basin scale. Hence, there is an urgent need for the construction of future daily climate data
at individual meteorological stations by applying statistical downscaling approach. In an attempt to
cover this lacuna, the present study was conducted by employing SDSM for the sake of constructing
future climate scenarios over the Vu Gia Thu Bon river basin under multiple emission scenarios based
on the outputs of two commonly used GCMs (i.e., HadCM3 and CanESM2). On the whole, this study
will be conducive to the climate-related risk reduction and adaptation in the study area.
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2. Materials and Methods

2.1. Study Area and Data

The Vu Gia Thu Bon river basin, located in the Central Vietnam (Figure 1), is one of the largest
internal drainage systems of Vietnam. Geographically, this river basin lies approximately between
14◦95′ – 16◦06′ N in latitude and 107◦21′—108◦46′ E in longitude, and has a total area of around
10,350 km2. Administratively, most area of the VGTB river basin is situated in Quang Nam province and
Da Nang city, and a very small proportion (nearly 3%) is located in Kon Tum province. The VGTB river
basin consists of two main rivers, namely Vu Gia and Thu Bon, originating in the Ngoc Linh Mountain
and flowing toward the sea at Cua Dai estuary. The general climate of the VGTB river basin is classified
into the tropical monsoon climate (Am) according to the updated world map of the Köppen–Geiger
climate classification [35]. Based on the well–known global climate datasets (WorldClim 2) developed
by Fick and Hijmans [36], the average temperature ranges from 19.3–25.3 ◦C for the present period
(1970–2000). The total amount of annual rainfall varies from 1900–3000 mm, mainly contributed by
rainfall during the rainy season lasting from May to November. It is acknowledged that the VGTB
river basin is greatly crucial to the livelihood of local residents with regard to water, food, energy,
cultural and recreational activities [37]. However, the recurrence of floods during the rainy season
and droughts as well as water shortages during the dry season poses many serious challenges to local
decision-makers [37,38]. Therefore, future projections of climate variables will provide various insights
into the integrated water resources management in the VGTB river basin.

Figure 1. Geographical location of the Vu Gia Thu Bon river basin. Tmax, Tmin, and R stand for
maximum and minimum temperature and rainfall.

The observed daily rainfall (R), maximum (Tmax) and minimum (Tmin) temperature datasets
at three meteorological stations and three rainfall stations as shown in Figure 1 were provided by
the Mid-Central Regional Hydro-Meteorological Centre for the period 1979–2010. Additionally,
the National Centre for Environmental Prediction (NCEP) reanalysis dataset [39] were obtained for the
purpose of model calibration and validation. Likewise, two sets of 26 large-scale predictors derived
from HadCM3 (A2 and B2) and CanESM2 (RCP2.6, 4.5 and 8.5) were selected for the sake of scenario
generation for the 2020s (2010–39), 2050s (2040–69), and 2080s (2070–99).
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2.2. Research Framework

Figure 2 depicts a brief description of the methodology employed in this study. The first step is to
select input data including observed daily rainfall, maximum and minimum temperatures which are
predictand variables, and a set of predictors derived from NCEP reanalysis dataset and from two GCM
outputs. In SDSM, the functions of quality control and data transformation allow users to inspect the
integrity of input data and unexpected errors (e.g., missing data, suspect values or wrong encoding),
and to transform data in case variables of interest are not normally distributed.

Figure 2. Schematic framework of research methodology.

After obtaining complete datasets, the preliminary task is to define a set of candidate predictors
for each climatic variable at individual stations. In essence, the fundamental principle of all statistical
downscaling approaches is to determine empirical–statistical relationships between large-scale
predictors with local predictands. It is widely acknowledged that potential predictors should have
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high abilities in describing atmospheric circulation, thickness, stability, and moisture content [40].
Additionally, the potential predictors should be well modeled by GCMs and available to be retrieved
from multiple sources of GCMs [6,40]. In general, selecting appropriate predictors constitutes a great
proportion of successful models. In the present study, the choice of appropriate predictors is carried
out by applying correlation analysis, partial correlation analysis and stepwise regression analysis in
order to avoid the collinearity issue and remain a set of predictors with strongly and consistently
correlated with the considered predictands. The applicability of these aforementioned methods was
documented in detail by Yang et al. [21].

The further step is to reproduce ensembles of daily series for the present period based on
well–calibrated models, which are then subjected to the model-performance evaluation by applying the
well-known Taylor diagram and a number of dimensioned and dimensionless statistics. Subsequently,
generation of future climate is executed by using selected predictors derived from GCM outputs.
Finally, trend analysis is performed to identify overall and partial trend patterns by constructing the
Innovative-Şen trend plots, and to determine the magnitude of changes between the future periods and
reference period by calculating delta statistics. It is worth mentioning that the model calibration and
scenario generation for the present and future periods are performed by executing respective functions
in SDSM. The following sections describe briefly the fundamental basis of SDSM, model-performance
measures and the innovative-Şen trend analysis method.

2.3. The Statistical DownScaling Model

The Statistical DownScaling Model was introduced by Wilby et al. [40] as a freely available tool to
support decision making processes with regard to climate change impact assessment at local scale.
According to an exhaustive review after ten years of the first version in 2001 by Wilby and Dawson [41]
and many case studies as described above, it is documented that SDSM can be used for reproducing
present climate, predicting future climate based on multiple scenarios, infilling and hindcasting
missing data. SDSM is applicable to not only conventional climatic variables (e.g., temperature and
precipitation), but also exotic variables (e.g., air quality or reference evapotranspiration) and climate
extremes. SDSM is also used in combination with other tools (e.g., hydrological and hydraulic models)
to develop an integrated framework for uncertainty assessment.

SDSM is established based on a combination of the stochastic weather generator and
regression-based methods [40,42]. Having selected appropriate predictors, SDSM is calibrated by either
dual simplex or ordinary least squares. It is documented that dual simplex should be applied to remove
the effect of instability of regression coefficients for nonorthogonal predictors [27,43], while ordinary
least squares method is faster [42]. It is also necessary to specify a number of model structures during
calibration stage. Particularly, unconditional process, in which a direct link is assumed between
predictors and predictand, is selected for temperature, while conditional process, which assumes
the presence of an intermediate process between predictors and predictand, is selected for rainfall.
It is also advisable that data transformation should be implemented in case the predictand variables
(e.g., rainfall) are not normally distributed. In this study, a fourth root transformation was employed.
Additionally, SDSM provides calibrated parameters for three types of sub-periods such as monthly,
seasonal, and annual models. The present study selected monthly option, which calculates different
model parameters for each month. Having established a set of well-calibrated model parameters,
SDSM reproduces ensembles of present climate data using predictors derived from NCEP reanalysis
dataset for the sake of model-performance evaluation, and generates ensembles of future climate data
using predictors derived from HadCM3 and CanESM2. Wilby and Dawson [42] expounded the theory
of SDSM as well as exemplified a very clear step-by-step procedure to perform SDSM.

2.4. Evaluation of Model Performance

There is a widespread agreement that a reasonable model should exhibit high correlation, low errors
and similar variations compared to the observations. The Taylor diagram, devised by Taylor [44],
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is a powerful tool to measure these aspects graphically via correlation coefficient, root-mean-square
difference and standard deviations of the test field (i.e., models) and reference field (i.e., observations).
Therefore, this study applied the Taylor diagram to compare individual ensemble members with the
ensemble mean during validation.

It is substantiated that the correlation–based and sum-of-squares-based measures are greatly
sensitive to the presence of extreme values and/or outliers, thereby suggesting that these measures are
not appropriate and should not be utilized to address model performance [45–48]. It is also advisable to
employ the absolute-error/deviation-based measures. Hence, the present study applied mean absolute
error (MAE) and mean bias error (MBE), representing dimensioned statistics, and a refined index of
agreement with/without baseline adjustments, representing dimensionless statistics.

MAE is used to quantify average model-prediction error in the units of analyzed variables.
The lower values of MAE indicate better prediction. MBE gives an indication of average model bias,
which can be over-prediction or under-prediction in case the values of MBE are positive or negative.
In addition, a refined index of agreement (dr), introduced by Willmott et al. [49], is employed to
measure the predictive ability of SDSM models. The values of dr are bounded by −1 and +1. Generally,
a positive value of dr indicates a good model. Legates and McCabe [50] further explained that the
performance of a model is better than the baseline value (e.g., observed mean) when dr > 0.5. It is also
recommended to adjust baseline values [46,49–51] when evaluating model performance for variables
of interest, which exhibit high seasonal variations. Hence, monthly means are used in combination
with the overall values when calculating the refined index of agreement.

MAE =
1
n

n∑
i=1

|Pi −Oi| (1)

MBE =
1
n

n∑
i=1

(Pi −Oi) (2)

dr =



1−
∑n

i=1 |Pi−Oi |

c
∑n

i=1

∣∣∣Oi−O
∣∣∣ , when

n∑
i=1
|Pi −Oi| ≤ c

n∑
i=1

∣∣∣Oi −O
∣∣∣

c
∑n

i=1

∣∣∣Oi−O
∣∣∣∑n

i=1 |Pi−Oi |
− 1, when

n∑
i=1
|Pi −Oi| > c

n∑
i=1

∣∣∣Oi −O
∣∣∣

(3)

where n is the length of the data series. Pi and Oi stand for the predicted and observed values of daily
rainfall and maximum and minimum temperatures, respectively. The overbars are used to indicate
overall means for the whole analyzed period. c is a scaling coefficient and is preferably set to be
2 [49,51]. In case of calculating an index of agreement with baseline adjustments (d′r), the observed
overall mean (O) is replaced by the monthly mean (O′).

2.5. The Innovative-Şen Trend Analysis Method

The innovative-Şen trend analysis (ITA) method, originated by Şen [52], is applied to identify
overall and partial trends in a given hydro–meteorological time series. In comparison with a number
of classical trend analysis methods (including parametric and nonparametric statistical trend tests),
the ITA method has an advantage of not considering any restrictive assumptions such as normal
distribution, serial independence and length of data. As a matter of fact, this study was clearly inspired
by a well–conducted investigation, which analyzed multi-duration trend possibilities in the global
monthly temperature records [53]. In the present study, the ITA method was employed to examine
trend behavior of Tmax, Tmin, and rainfall time series between the reference period (1980–2009)
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and the future periods (2010–39, 2040–69, and 2070–99) based on multiple scenarios. Specifically,
the innovative-Şen trend plot is constructed by plotting the sorted series for the reference period on
the x-axis against the sorted series for the future periods on the y-axis. The next step is to draw the
1:1 (45◦) straight line and ±10% error lines on the Cartesian coordinate system. Theoretically, the 45◦

straight line divides the innovative-Şen trend plot into two equal regions. The upper/lower triangular
areas indicate increasing/decreasing trends, while 45◦ straight line corresponds to trend-free cases.
Additionally, it is evident that trend slope is stronger in case the scatter points fall far away from the
45◦ straight line [52].

3. Results and Discussion

3.1. Model Calibration and Validation

The observed daily rainfall, Tmax and Tmin datasets and appropriate predictors derived from
NCEP reanalysis dataset were used to calibrate and validate SDSM models for the period 1979–1990
and 1991–2001, respectively. SDSM can generate up to a maximum of 100 ensemble members. Figure 3
presents the Taylor diagrams used as means of comparing each ensemble member with respective
ensemble mean for Tmax, Tmin, and rainfall at individual stations during validation procedure.
Based on the relative position of all points on such diagrams, it is discernible that SDSM produces
similar outputs between all considered stations for each of climatic variables in the study area.
In particular, all ensemble means show higher correlation and lower error compared to each ensemble
member. With regard to the variations of downscaled results, the ensemble means of Tmax at all
meteorological stations capture the observed standard deviations better than each ensemble member
and all solid points lie approximately on the black dashed arc, implying that the amplitude of variations
downscaled by SDSM for Tmax are similar to the observed ones. Conversely, the variations of ensemble
mean of Tmin and rainfall are lower than each ensemble member as well as the observed values. It is
also apparent that the downscaled outputs show a greater degree of variability in rainfall compared to
Tmax and Tmin, which could be attributable to the conditional process during calibration procedure.
In general, this study only used the values of ensemble means for further calculation for the sake
of simplicity.

In addition to the graphical approach, it is strongly recommended to report both dimensioned
and dimensionless measures for the purpose of model-performance evaluation [46,51]. Figures 4
and 5 depict the validation results for HadCM3 and CanESM2 models by applying the MAE, MBE,
and refined index of agreement with/without baseline adjustments respectively. As shown in Figure 4,
the values of MAE vary approximately from 0.81–0.88 ◦C, 1.16–1.39 ◦C, and 6–11 mm for Tmin, Tmax,
and rainfall respectively. It is visible that the model errors in Tmax are significantly greater than
Tmin. In comparison, HadCM3 and CanESM2 models produce fairly similar error in modeling daily
Tmax and Tmin, while HadCM3 model generates consistently higher error in simulating daily rainfall
compared to CanESM2 model. Moreover, daily rainfall is mainly underestimated during validation,
with MBE values around −1.1 to −4.3 mm. Conversely, daily Tmax is consistently overestimated at all
meteorological stations, with the values of MBE ranging 0.07–0.47 ◦C. In the case of daily Tmin, there is
a slight discrepancy in the validated outputs by using HadCM3 and CanESM2 models at Da Nang and
Tam Ky stations, while daily Tmin at Tra My station is underestimated, with the MBE values around
−0.12 to −0.16 ◦C. In general, the validation results show that the magnitude of these dimensioned
statistics is within acceptable range on the daily time scale.

Furthermore, Figure 5 shows additional validation results by applying dimensionless statistics.
According to the refined index of agreement without baseline adjustment (dr), it is apparent that the
performance of SDSM is more skillful in downscaling daily Tmax and Tmin (dr = 0.76–0.84) compared
to daily rainfall (dr = 0.62–0.70). These values are fairly similar and slightly higher than the figures
found by Najafi and Kermani [10] for the case Tmax, Tmin, and rainfall, respectively. In addition,
the values of refined index of agreement with baseline adjustments by monthly means (d′r) range
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approximately from 0.57–0.70, which are significantly lower than the respective dr values. According
to the values of dr and d′r, HadCM3 and CanESM2 models show similar skill in simulating Tmax and
Tmin, while CanESM2 model performs better than HadCM3 for the case of rainfall at most stations.
On the whole, all calculated values of dr and d′r reveal that the magnitude of average model error,
represented by MAE, is lower than the average reference error, represented by 2 × mean absolute
deviation, thereby suggesting that the calibrated model parameters can be reasonably used for future
scenario generation.

Figure 3. Taylor diagrams for each climatic variable at individual stations during validation. Tmax,
Tmin, and R stand for maximum and minimum temperature and rainfall.
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Figure 4. The values of MAE and MBE between observed and predicted daily series during validation.
Tmax, Tmin, and R stand for maximum and minimum temperature and rainfall.

Figure 5. The values of refined index of agreement with/without baseline adjustments during validation.
Tmax, Tmin, and R stand for maximum and minimum temperature and rainfall.
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3.2. Future Climate Projections

Figures 6 and 7 present projected changes in annual average Tmax, Tmin, and average annual
rainfall by calculating delta statistics (absolute and percentage difference for the case Tmax, Tmin,
and rainfall respectively) between the 2020s, 2050s, 2080s, and the reference period under multiple
scenarios such as HadCM3 A2 B2 and CanESM2 RCP2.6, 4.5, 8.5. As shown in Figure 6, there is
a profound warming tendency in the VGTB river basin, and Tmax is projected to experience a greater
degree of warming compared to Tmin at all meteorological stations. Additionally, there is a minor
difference between all considered scenarios during the 2020s, while the middle and far-future periods
exhibit larger variations in the degrees of warming. Particularly, Tmax and Tmin are predicted to
increase by 0.55–1.0 ◦C and are lower than 0.41 ◦C, respectively, during the 2020s compared to the
reference period. In the middle-future period (2050s), the figures are likely to increase by 1.07–2.27 ◦C
and 0.26–1.08 ◦C for the case Tmax and Tmin, respectively. During the 2080s, the worst-case scenarios
(i.e., HadCM3 A2 and CanESM2 RCP8.5) are responsible for the greatest increase in Tmax and Tmin
by 2.67–3.90 ◦C and 1.24–1.96 ◦C, which are significantly higher than the figures for the remaining
scenarios varying approximately from 1.01–2.65 ◦C and 0.38–1.01 ◦C, respectively. In comparison,
these findings, to some extent, are in agreement with those found by Ngo-Duc et al. [31], in which
the 2 m temperature was projected to increase significantly in most parts of Vietnam for the near and
middle-future periods by utilizing ensembles of three RCMs.

In contrast to Tmax and Tmin, there are a number of discrepancies in the future projections
of annual rainfall between considered stations under all scenarios. Figure 7 shows that annual
rainfall is predicted to decrease significantly at most stations over the VGTB river basin. Out of
six stations, five stations reveal that HadCM3 model exhibits a greater decrease when considering
from near- to far-future periods, while CanESM2 model shows an opposite tendency on the whole.
A detailed description of projected changes in annual rainfall can be obtained from Figure 7. During the
far-future period (2080s), the average annual rainfall is likely to decrease by 14.9%–20.3%, 10.3%–19.8%,
10.5%–17.0%, 4.1%–22.2%, and 10.3%–19.8% compared to the reference period at Da Nang, Tam Ky,
Tra My, Kham Duc, and Tien Phuoc stations respectively. Conversely, annual rainfall at Hien station is
projected to increase significantly between the 2080s and reference period, even though it is mainly
dominated by decreasing trends for the near- and middle-future periods. Particularly, the greatest
increasing trends in annual rainfall at Hien station are estimated by 26.9%–31.3% for the 2080s
under the worst-case scenarios (HadCM3 A2 and CanESM2 RCP8.5). It is worth noting that several
previous studies [33,34] indicated increasing trends in annual rainfall over the VGTB river basin by
applying bias correction approaches, which differs from those found in the present study. To a certain
extent, these findings reflect various uncertainties in future projections of daily rainfall. Generally,
uncertainties in climate projections are mainly attributable to internal climate variability, downscaling
methods and tools, and input data used (including observed predictand variables and GCM-derived
predictors). This study utilized a set of predictors derived from HadCM3 and CanESM2 models,
representing manifold emission scenarios. It is also advisable to apply other downscaling methods (e.g.,
bias correction, LARS-WG, ASD or artificial intelligence approaches) along with SDSM [9]. Another
suggestion is to use more than one set of potential predictors for each climate variable at individual
stations to obtain possible range of climate variation in the future periods.

In addition to calculating delta statistics for the purpose of trend analysis, the present study also
pertains to the overall and partial trend identification between the 2020s, 2050s, 2080s, and the reference
period under multiple scenarios. As shown in Figure 8, the innovative-Şen trend plots for Tmax and
Tmin also indicate a consistent warming trend over the VGTB river basin. It is apparent that all of plus
and filled circle points, representing the 2050s and 2080s periods, are located in the upper-triangular
areas implying significantly upward trends, while most of filled diamond points, representing the
2020s, fall alongside the 1:1 (45◦) straight lines and within ±10% error lines revealing insignificant
rises. In line with the results of delta statistics, it is also evident that the largest deviations from the
1:1 line can be found for the worst-case scenarios (i.e., HadCM3 A2 and CanESM2 RCP8.5) for the
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2080s, which indicates the greatest trend slope compared to the remaining scenarios. With regard to
partial trend assessment, Tmax and Tmin exhibit the same sub-trend patterns. Particularly, most of
these sub-trends are likely to be more significant when the corresponding values get higher, thereby
suggesting an evident indication of the occurrence of hot weather events in the future periods.

Figure 6. Projected changes in annual average maximum and minimum temperatures in the 2020s,
2050s, and 2080s under scenarios B2, A2 (HadCM3), and RCP2.5, 4.5, 8.5 (CanESM2).

Figure 7. Projected changes in average annual rainfall in the 2020s, 2050s, and 2080s under scenarios
B2, A2 (HadCM3), and RCP2.5, 4.5, 8.5 (CanESM2).

Concerning annual rainfall trend analysis in the VGTB river basin, it is discernible that decreasing
trends are detected significantly at most stations for the future periods. Da Nang and Tra My stations
show fairly similar sub-trends patterns, and the high value sub-groups are characterized by significant
decreases irrespective of considered future scenarios. In the case of Tam Ky and Kham Duc stations,
the largest deviations from the 1:1 (45◦) straight lines can be found in the medium value sub-groups,
which implies the greatest declines under all scenarios. As for rainfall trend assessment at Tien
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Phuoc station, most of scatter points fall alongside the lower error line revealing marginal decreases.
As expected, rainfall trend behaviors at Hien station differ clearly from the other stations. Particularly,
the worst-case scenarios (i.e., HadCM3 A2 and CanESM2 RCP8.5) for the 2080s show significant
increases irrespective of low-, medium-, and high-value sub-groups, while the remaining scenarios
exhibit almost trend–free behavior. It is worth mentioning that ensembles of synthetic Tmax and Tmin
series produced by SDSM mostly comply with the linear form, since the large majority of scatter points
are located in the straight data lines. Meanwhile, ensembles of synthetic rainfall series generated by
SDSM can be non-monotonic form. There is also high similarity in the sub-trend patterns of most
considered climatic variables under all scenarios, implying high stability and applicability of SDSM.

Figure 8. Innovative-Şen trend plots for comparing the near-, middle-, and far-future periods to the
reference period under multiple scenarios. Tmax, Tmin, and R stand for maximum and minimum
temperature and rainfall.
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4. Conclusions

A complete and appropriate historical and future climate dataset is a prerequisite for a successful
study of climate change impacts on a given sector. Accordingly, the main aim of this study was to
construct daily rainfall, maximum and minimum temperatures for the near-, middle-, and far-future
periods over the VGTB river basin by employing SDSM tool and a set of GCM-derived predictors
retrieved from HadCM3 (A2 and B2) and CanESM2 (RCP2.6, 4.5, and 8.5). Additionally, the evaluation
of model performance was carried out by a combination of the Taylor diagrams, dimensioned and
dimensionless statistics. During validation, all model-performance measures are within permissible
ranges indicating that calibrated model parameters can be reasonably used for scenario generation.
It is also noting that SDSM shows greater predictive ability in modeling daily maximum and minimum
temperatures compared to daily rainfall as suggested by comparing the refined index of agreement
with/without baseline adjustments.

The results of trend analysis of future climatic changes by calculating delta statistics are in
accordance with those found by the ITA method. Particularly, the VGTB river basin is expected
to experience a consistent warming tendency, with a greater degree of warming for the case Tmax
compared to Tmin at all stations. During the far-future period (2070–99), the worst-case scenarios
(i.e., HadCM3 A2 and CanESM2) were predicted to increase by 2.67–3.90 ◦C and 1.24–1.96 ◦C for the
case Tmax and Tmin, respectively, which are significantly higher than the figures for the remaining
scenarios as suggested by comparing delta statistics as well as examining the relative position of
scatter points in the innovative-Şen trend plots. With regard to daily rainfall, the downscaled outputs
show greater degree of variability compared to Tmax and Tmin. Moreover, the future projections of
annual rainfall are mostly dominated by decreasing trends, with the magnitude varying approximately
11.57%–17.68% at most stations during the 2080s. In general, these outcomes imply that the VGTB
river basin is likely to be hotter and drier in the future periods, which may cause potential issues
relating to agricultural activities and water consumption. It is expected that these findings will be
informative and supportive to further investigations and practical adaptation strategies in the context
of climate emergency.
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