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Abstract: This study examines the hydrological sensitivity of an agroforested catchment to changes
in temperature and precipitation. A physically based hydrological model was created using the Cold
Regions Hydrological Modelling platform to simulate the hydrological processes over 23 years in
the Acadie River Catchment in southern Québec. The observed air temperature and precipitation
were perturbed linearly based on existing climate change projections, with warming of up to 8 ◦C
and an increase in total precipitation up to 20%. The results show that warming causes a decrease in
blowing snow transport and sublimation losses from blowing snow, canopy-intercepted snowfall
and the snowpack. Decreasing blowing snow transport leads to reduced spatial variability in peak
snow water equivalent (SWE) and a more synchronized snow cover depletion across the catchment.
A 20% increase in precipitation is not sufficient to counteract the decline in annual peak SWE caused
by a 1 ◦C warming. On the other hand, peak spring streamflow increases by 7% and occurs 20 days
earlier with a 1 ◦C warming and a 20% increase in precipitation. However, when warming exceeds
1.5 ◦C, the catchment becomes more rainfall dominated and the peak flow and its timing follows
the rainfall rather than snowmelt regime. Results from this study can be used for sustainable
farming development and planning in regions with hydroclimatic characteristics similar to the
Acadie River Catchment, where climate change may have a significant impact on the dominating
hydrological processes.

Keywords: cold regions hydrology; climate change; hydrological modelling; snowpack; snowmelt;
river discharge; spring floods; agroforested catchment; Acadie River Catchment

1. Introduction

Ongoing and future changes in air temperature and the amount and timing of precipitation can
have large impacts on the hydrological cycle, such as changes to the quantity, seasonality and timing of
streamflow [1–5]. These changes are likely to vary regionally depending on current and future regional
climate conditions and catchment characteristics. In particular, climate projections at mid-latitudes
in North America (40◦ N to 60◦ N) show an overall warming and increasing precipitation trend,
with seasonal changes varying among regions [6]. The hydrological regime of cold regions is largely
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controlled by snow processes that are expected to be particularly sensitive to climate change [7–14].
Changes to snow accumulation and melt are expected to modify the timing, duration and magnitude of
streamflow in the mid-latitudes of the Northern Hemisphere [15], which could redefine flooding risks
as well as hydrological services, such as water supply from snowmelt runoff. The interactions between
snow and vegetation play a significant role in snow accumulation [16,17], which can influence runoff

volumes and timing. Snowfall intercepted by vegetation can increase sublimation losses, depending
on tree species, canopy structure as well as atmospheric conditions [18,19]. Once on the ground, snow
can be redistributed by wind, particularly in open and wind-exposed environments, which increases
sublimation losses from blowing snow [20,21]. Snow is typically transported from sparsely vegetated
and exposed terrains to densely vegetated areas and/or topographic depressions [22,23].

The traditional approach to assess climate change impact on hydrology is a “top–down” approach,
where one or several hydrological models are forced by climate change scenarios from Global
Circulation Models (GCMs) [24]. The spatially coarse outputs of GCMs (approximately 150–300 km) are
downscaled to represent local climate conditions required by hydrological models, using either statistical
or dynamical downscaling approaches [25]. Statistical downscaling relies on empirical relationships
between GCMs and locally-observed climate variables, while dynamical downscaling uses GCM
simulations to force initial and boundary conditions on a higher-resolution (approximately 1–50 km)
regional climate model [26]. Although statistical downscaling is less computationally demanding, it
requires long-term and high-quality observations to develop the empirical relationships [27], which
may not be valid under future climate conditions. Dynamical downscaling, on the other hand, is
physically based, but computationally more expensive as it involves higher-resolution climate models.
Extensive reviews on the use of downscaling methods in hydrological climate change impact studies
were made by Fowler, Blenkinsop and Tebaldi [26] and Teutschbein and Seibert [28]. Meanwhile, some
have advocated the use of simpler approaches to avoid the limitations of statistical and dynamical
downscaling. These approaches have been used under different names, such as arbitrary/incremental
scenarios [29], sensitivity analysis [12,30], and scenario-neutral approaches [31]. The “sensitivity
analysis” approach will be used in this study, where uniform and regional annual and/or seasonal
climate changes are calculated and used to perturb historical time series of air temperature and
precipitation. The main limitation of this method is that it does not account for changes in the
variability of future climatic conditions [32]. Nevertheless, simple sensitivity analyses of hydrological
models to a wide range of plausible climate conditions can reveal how some specific hydrological
characteristics (e.g., flood amplitude and timing, snow cover duration and distribution) respond
to climate change [24,33] and guide the need to conduct more targeted scenario-based projections.
The method is particularly well suited to examine the interplay of warming temperatures and increasing
precipitation that are predicted for many cold regions.

There have been a large number of snow hydrology studies performed in the Canadian Prairies [34–41]
and in forest environments in Europe [42,43], Scandinavia [44,45], western Canada [18,46–48] and
southern Québec [49–55]. However, some of the main cold regions hydrological processes such as
blowing snow redistribution, sublimation and infiltration into frozen soils have been ignored in
previous modelling studies in southern Québec. Also, to our knowledge, there has been no application
of physically based hydrological models to investigate the hydrological processes and their climate
sensitivity in catchments characterized by alternating agricultural fields and forest patches, which are
the dominant landscapes along the south shore of the St. Lawrence River. These mosaics of forests and
agricultural fields are referred to as agroforested landscapes in southern Québec [56]. The amount and
timing of available water, and the length of the growing season shape the agricultural production in
this region; therefore, climate change-induced modifications of hydrological conditions could have
important implications for the economic development of the region. Furthermore, southern Québec
suffers from water quality problems caused by erosion from agriculture soils [49,57]. As soil erosion
rates are enhanced during the cold season [58], changes in winter surface runoff processes could
increase soil erosion rates and further deteriorate the water quality. Therefore, there is an urgent need
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to better understand cold regions hydrological processes and characterize their climate sensitivity in
this region. The main purpose of this study is to the explore the impacts of changes in temperature and
precipitation on the hydrology of the agroforested Acadie River Catchment (45◦11′ N 73◦26′ W) at
the catchment and landscape (agriculture vs. forest) scales. The main hydrological controls for the
historical 1996–2019 period were first diagnosed using the physically based Cold Regions Hydrological
Modelling (CRHM [59]) platform. Then, the model was perturbed using climate change projections and
used to assess the hydrological sensitivity to climate change. This study aims to answer the following
questions: (1) what are the physical processes and feedback mechanisms driving the hydrological
response of the catchment to warming and increasing precipitation associated with climate change?
(2) how sensitive are the hydrological processes to various climate change scenarios? and (3) how do
they change across different land cover types (agriculture and forest)? The climate sensitivity analysis
framework used in this study provides a useful assessment of potential hydrological changes and their
driving processes under a wide range of climate change scenarios.

2. Materials and Methods

2.1. Study Area and Data

The Acadie River begins near the Canada-United States border and flows northwards over 82 km
in the Montérégie region of Québec, on the south shore of the St. Lawrence River (Figure 1). It is
the main tributary of the Richelieu River into which it drains at the town of Carignan. The drainage
area of the Acadie River Catchment is 364 km2; however, this study excludes a small (1%) part of the
catchment located in US (Figure 1) due to the lack of data.

Figure 1. Acadie River Catchment drainage area, contour lines (every 10 m), land cover, and
the location of the discharge gauge, main meteorological station, snow survey station and soil
moisture/temperature sensors.



Water 2020, 12, 739 4 of 29

The elevation ranges from 40 to 110 m a.s.l. (Figure 1) with gentle slopes ranging from 0◦ to 2◦.
Approximately 77% of the catchment is covered by agricultural fields with scattered forest patches
(Figure 1), which is representative of the intensive farming landscape of the southern St. Lawrence
lowlands [56]. In total, 17% of the catchment area is covered by forest—of which, 60% is deciduous,
27% is mixed forests and 13% is coniferous forests. The rest of the catchment (6%) is composed of
urban areas, wetlands and lakes and shrubs (Figure 1).

The climate is cold and humid, with warm summers (Dfb) (Köppen climate classification [60]).
Based on hourly records from the L’Acadie weather station (Figure 1) available for the 1996–2019
period (Environment and Climate Change Canada, WMO ID 71372), the mean annual and cold
season (November–April) air temperature was 7.2 and −3.9 ◦C, respectively, while the mean annual
precipitation was 1030 mm. The hydrology of the Acadie River is driven by mixed rain and snow
processes, resulting in two high flow events on a normal water year. The first high flow typically
occurs in early spring following snowmelt, while the second is a rainfall-runoff event in late fall.
The surficial geology of the upper catchment is mainly composed of stony tills due to the geographical
proximity of the Adirondack Mountains, whereas the lower catchment is mostly composed of clayey
and loamy soils formed from marine and fluvial deposits [57]. Organic soils formed from the gradual
accumulation of organic matter are present across the catchment, and discontinuous glacial till is
found below the marine and fluvial sediments [57]. Given the flat topography and poor drainage
of soils (particularly clay), tile drainage is used extensively to remove excess water from the surface
and rootzone. These subsurface tiles drain into a system of ditches, or surface canals, that are
connected to the river network (Figure 1). The soil textures in the catchment are 40% clayey, 25%
till deposits, 17% organic soil, 10% sandy, 4% loamy and 4% gravelly, which were acquired from
Québec Research and Development Institute for the Agri-Environment (IRDA) at a 1:50,000 scale.
The land use datasets were obtained from Québec Ministry of Forests, Wildlife and Parks (MFFP)
and La Financière Agricole du Québec (FADQ) for both non-agricultural lands and cropping systems.
While the main crop is soybeans (40%) followed by corn (34%) [57], different crop types such as
vegetables (mainly potatoes and onions), wheat, barley and other cereal grains are also cultivated
in the agricultural lands. A 1 × 1 m resolution LIDAR-based digital elevation model (DEM) was
obtained from MFFP. The stream and open channel drainage networks were acquired from Québec
Ministry of Energy and Natural Resources (MERN). Hourly air temperature, wind speed and relative
humidity data within the catchment were acquired for the 1996–2019 period from the L’Acadie weather
station (Figure 1) maintained by Environment and Climate Change Canada (ECCC). Gaps in the data
were filled with data from four other ECCC weather stations (Ste-Clotilde, McTavish, St-Anne de
Bellevue and Frelighsburg) located within a radius of 50 km from the geometric center of the study area.
The 1.6% gaps were filled by a principal component analysis (PCA) with the expectation-maximization
algorithm [61]. This method uses a cross-validation procedure prior to filling the missing data to detect
the number of statistically significant empirical orthogonal functions (EOFs) used for reconstructing the
missing data. The temperature was spatially distributed at the catchment based on an environmental
lapse rate of 0.005 ◦C m−1 [62]. Hourly solar radiation was extracted for the L’Acadie weather
station from the database of Hydro-Québec (available at https://www.simeb.ca:8443/index_fr.jsp).
Daily total precipitation data were extracted from the 0.1◦ × 0.1◦ gridded climate data produced by
the Québec Ministry of Sustainable Development, Environment, and Fight against Climate Change
(MELCC). This dataset was created by spatially interpolating (kriging) quality-controlled observations
of permanent weather stations from the Programme de Surveillance du Climat du Québec (PSC) and
ECCC [62]. The main advantage of this dataset is its long coverage from 1961 to present. Bajamgnigni
Gbambie et al. [63] compared the different gridded precipitation datasets and their implication for
hydrological modelling in Québec and found that the MELCC data showed the best performance in
catchments located on the south shore of the St. Lawrence River. Daily river discharge measured at
the L’Acadie discharge gauge (Figure 1) were extracted from the database of Québec Center of Water
Expertise (CEHQ) (www.cehq.qc.ca) for the 1996–2019 period. Observations of snow depth and density

https://www.simeb.ca:8443/index_fr.jsp
www.cehq.qc.ca
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were obtained from the Hemmingford snow course station, located within a mixed forest patch a few
kilometers away from the catchment (Figure 1). Snow surveys have been performed by the MELCC
every two weeks during winter and spring since the 1980s, using 10 fixed points uniformly distributed
along a 300 m transect representative of the surrounding landscape [64]. Snow depth is measured by
probing with a snow tube at eight locations surrounding the fixed points and the results are averaged.
Density is measured by weighting the snow tube sample taken at the center of the fixed point and
the result is multiplied by the mean snow depth to estimate SWE at the point. Finally, the mean SWE
at the site is obtained by averaging the SWE measured at the 10 points along the transect. Errors on
site-averaged SWE are not reported, but federal snow tubes are known to overestimate SWE, typically
by 0% to 11% [65]. Additional snow depth and density measurements were made for the winters of
2018 and 2019 along survey transects at agricultural and forest sites, where soil temperature/moisture
probes were installed (Figure 1). SWE values were then averaged to represent landscape-scale SWE.

2.2. Hydrological Model Configuration

The Cold Regions Hydrological Model (CRHM) platform [59] was used to develop a hydrological
model for the Acadie River Catchment. The CRHM platform has been successfully used in several
catchments in Canada [7,48,66], as well as other cold environments such as the Spanish Pyrenees [67],
Patagonia [68], northwest US [12], western China [69] and Svalbard Archipelago [70]. The CRHM
platform has a modular structure that allows creating purpose-oriented models with great emphasis
on physically based parameterizations. Modules within the CRHM platform represent hydrological
processes of varying complexity that can be selected depending on available data [71]. Cold regions
hydrological processes included in the CRHM platform include snow accumulation and redistribution
by wind, sublimation of canopy-intercepted snowfall, energy budget snowmelt, and infiltration into
frozen soils. Hydrological response units (HRUs) with different biophysical attributes (e.g., vegetation
cover and soil type) [72] were used as the main spatial units for mass and energy balance calculations.
Table 1 provides the hydrological processes and modules used to simulate the hydrology of the Acadie
River Catchment.

Table 1. Modules used in the Cold Regions Hydrological Modelling (CRHM) platform to simulate the
hydrological processes in the Acadie River Catchment.

CRHM Module Description

Observation
Meteorological data are read and extrapolated with the environmental lapse rate.
The phase of precipitation is predicted with a psychometric energy balance
method using air temperature and relative humidity [73].

Radiation Calculates theoretical global radiation, direct and diffuse solar radiation, and
maximum sunshine hours based on latitude, elevation, slope and azimuth [74].

Sunshine hour Sunshine hours are estimated from incoming short-wave radiation [75].

Long-wave radiation Estimates incoming long-wave radiation using observed short-wave
radiation [76].

All-wave radiation The net all-wave radiation is calculated from short-wave radiation and the
calculated net long-wave radiation [77] for snow-free conditions [78].

Albedo

The snow albedo decay rate is calculated differently depending on the snow cover
condition: pre-melt, melt, and post-melt. Albedo is estimated following a linear
decay rate for each snow cover condition based on snow depth, new snow, and
melting occurrence [79].

Canopy

Estimates snowfall and rainfall intercepted by, and sublimated or evaporated
from, forest canopy and unloaded or dripped from the canopy. It updates the
under-canopy snowfall and rainfall and calculates short-wave and long-wave
subcanopy radiation. This module has options for forest environments, small
forest clearings, and open environments [18].
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Table 1. Cont.

CRHM Module Description

Blowing snow transport
Simulates wind redistribution of snow and sublimation [21,34]. Wind
redistribution depends on surface roughness, wind speed and atmospheric and
snowpack conditions.

Snowpack
energy-balance

The snowpack is represented by a two-layer mass and energy balance model
(SNOBAL [80]). The energy balance includes net radiation, sensible and latent
heat fluxes, ground heat, advection from rainfall, and change in internal energy.

Evapotranspiration

The Penman–Monteith algorithm [81] is used to calculate actual
evapotranspiration from unsaturated surfaces and the Priestly–Taylor
algorithm [82] is used for saturated surfaces. These algorithms access water from
surface depression and soil moisture.

Crop growth

A linear crop development is simulated over the growing season, assuming the
crops grow continuously from a prescribed Julian date to a maximum value [59].
Initial crop height at the beginning of the growing season, crop growth rate, crop
planting date, crop maturity date and crop harvest date are used to estimate the
crop height change over the growing season. These parameters are defined
according to the most common crops (soya bean and corn) at the catchment using
the studies performed in south west Québec [83,84].

Infiltration
Snowmelt infiltration into frozen soil using a parametric equation [85] and
rainfall infiltration into unfrozen soil based on soil texture and ground cover [86]
are estimated.

Soil moisture

A three-layer model consists of two soil layers (recharge layer and lower layer)
and a groundwater layer. It estimates soil moisture balance, depressional storage,
surface/subsurface flows within two soil layers and groundwater discharge in the
groundwater layer, and interactions between surface flow and
groundwater [48,87,88]. The recharge (top) layer receives infiltration from
depressional storage, snowmelt, and rainfall. Evaporation withdraws water first
from canopy interception and depressional storage, whereas transpiration
withdraws water from both soil layers depending on the rooting depth, soil
moisture, stomata resistance and atmospheric conditions [89]. Horizontal and
vertical flows from soil layers and groundwater layer are calculated based on
Darcy’s law, where Brooks and Corey’s relationship [90] is used to estimate the
actual hydraulic conductivity in the unsaturated zone.

Surface-subsurface
runoff routing

Runoff between hydrological response units is routed using the Muskingum
method based on the geometric characteristics of the stream channel [91].
Subsurface and groundwater flows are routed by Clark’s routing algorithm [92].

HRUs were delineated using a combination of six soil types (clayey, till deposits, organic soil,
sandy, loamy and gravelly) and seven land use classes (agriculture, urban, deciduous forest, mixed
forest, coniferous forest, shrub and wetland), resulting in 37 HRUs. The open drainage canals and
river network were also defined as two separate HRUs, resulting in a total of 39 HRUs. Elevation,
slope and aspect were not used for HRU delineation as they vary little over the catchment. Mean
physiographic parameters for each HRU (i.e., area, altitude, slope, aspect and latitude) were extracted
from the 1 m DEM and HRU maps processed in ArcGIS. Soil parameters such as soil texture, thickness
of the recharge and lower soil layer, porosity and saturated hydraulic conductivity were derived from
studies in neighboring catchments [55,93–96], a soil survey report from the Agriculture and Agri-Food
Canada [97], and a groundwater study in the Montérégie region [98]. The pore size distribution indices
were defined based upon soil textures [99]. Summer leaf area index (LAI) for the agricultural and forest
HRUs were transferred from the neighboring Chateauguay River basin [55]. An LAI value of 3 m2 m−2

was assigned to agricultural HRUs (mainly corn and soybean), while summer LAI values for forest
HRUs varied between 2.2 and 6 m2 m−2 depending on forest type (deciduous, mixed and coniferous).
Coniferous and mixed forests were assigned a winter LAI of 2.2 and 0.5 m2 m−2, respectively [55].
An LAI of 0.4 m2 m−2 was assigned to deciduous forests, which is similar to the value used for aspen
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forests in the Canadian Prairie during winter [100]. Maximum canopy snow load capacity values for
the forest HRUs were assigned based on previous studies performed in western Canada [38,100,101],
using values of 5.9, 2.1, 0.5 kg m−2 for coniferous, mixed and deciduous forests, respectively. Based
on the local measurements (Figure 1) from November to April in 2018 and 2019, initial average fall
volumetric soil moisture content was assigned as 30%, and soil temperature was estimated at +2 ◦C
(at 15 cm soil depth) prior to snowmelt, which controls the heat flux from the soil to the snowpack
base [80]. While this positive soil temperature was chosen to best represent the observed near surface
(0–30 cm) temperature before snowmelt, shallow soil freezing was also observed in the agricultural
fields in the winter of 2019. With this in mind, the frozen soil infiltration algorithm [85] was included
in the model (Table 1).

Blowing snow transport is simulated from the agriculture towards the forest HRUs, following
the sequence from agriculture to wetland, shrub, drainage canal and finally to forest HRUs [34].
The maximum value for the liquid water holding capacity of snow was set to 0.01 mm mm-1 as
suggested by Marks, Kimball, Tingey and Link [80]. Saturation excess water in soils is added to the
subsurface flow in the agricultural fields to emulate the effect of subsurface tile drainage. Regarding
runoff routing, agricultural fields were first routed to the drainage canals, and then the outflow from the
drainage canals routed to the river network, while other HRUs were routed directly to the streamflow
network. Similar to the method used by Cordeiro et al. [102], the routing length was determined as the
median distances from the centroid of each HRU to the closest drainage canal for agricultural HRUs,
and as the median distances from each HRU to the streamflow network for non-agricultural HRUs.

Given that the Hemmingford snow survey station (Figure 1) is located a few kilometers outside
of the catchment, a point-scale snowmelt model was constructed for the Hemmingford station using
the CRHM platform. The point-scale model was forced with disaggregated hourly precipitation
from daily precipitation extracted from the MELCC gridded climate data at the Hemmingford station
(Figure 1), and the infilled hourly meteorological air temperature, relative humidity, wind speed
and solar radiation at the L’Acadie weather station. This point-scale model was used to validate
the snowpack and canopy parameters, which were assigned based on the literature, as presented
in the previous section. As such, the model did not require a calibration. The SWE observations
at the Hemmingford snow station were compared with the point-scale model simulations for the
1996–2019 period.

The evaluation of the hydrological model performance was carried out using statistical performance
measures, including the Nash–Sutcliffe efficiency (NSE [103]; Equation (1)), the Kling–Gupta efficiency
(KGE [104]; Equation (2)), the percent bias (PBIAS; Equation (3)), the root mean square error (RMSE;
Equation (4)) and the root mean square error-observations standard deviation ratio (RSR [105];
Equation (5)).

NSE = 1−
∑
(Xs −Xo)

2∑
(Xo − µo)

2 (1)

KGE = 1−

√
(r− 1)2 +

(
σs

σo
− 1

)2
+

(
µs

µo
− 1

)2

(2)

PBIAS = 100×
∑
(Xs −Xo)∑

Xo
(3)

RMSE =

√
1
n
(Xs −Xo)

2 (4)

RSR =
RMSE
σo

(5)

where n is the number of samples, r is the linear correlation between observations and simulations,
and µo, σo are the mean and standard deviation of the observed values (Xo), respectively. µs, σs are
the mean and standard deviation of the simulated values (Xs), respectively. The NSE is an often-used
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metric in hydrology, which determines the relative magnitude of the residual variance compared to
the measured data variance [103]. While NSE = 1 indicates perfect fit between the observations and
simulations, NSE = 0 indicates that the model simulations have the same explanatory power as the
mean of the observations. KGE is based on a decomposition of NSE into its constitutive components
(correlation, bias and variability) in the context of hydrological modelling [104]. While KGE = 1
indicates perfect correspondence between simulations and observations, it has been argued that
KGE < 0 indicates that the mean of observations provides better estimates than simulations [106].
Therefore, any positive value of NSE and KGE suggests that the model has some predictive power
and higher values indicate better model performance. A positive value of PBIAS indicates a model
overestimation, while a negative value indicates an underestimation. The RMSE is a weighted measure
of the difference between observation and simulation. The RSR standardizes RMSE using the standard
deviation of the observations. The lower RSR, the lower the RMSE, and the better the model simulation
performance [105].

2.3. Climate Sensitivity Analysis

Climate sensitivity analysis was performed at both the catchment and landscape (agriculture
vs. forest) scale. The range of projected changes in temperature and precipitation was based on
ensemble climate model projections available for the administrative regions of Québec [107]. These
projections were produced from a set of 11 downscaled global climate simulations produced from the
CMIP5 ensemble for two periods (2041 to 2070 and 2071 to 2100) and two greenhouse gas emission
scenarios (moderate: RCP 4.5 and high: RCP 8.5) for the province of Québec [107]. The reference
period for the projections was 1981–2010. The 1-d quantile mapping [108] method was employed
to downscale the raw global climate simulation outputs to a finer resolution [109]. Guided by the
scenarios produced for the Montérégie administrative region where the Acadie River Catchment is
located, temperature warming up to 8 ◦C (0–8 ◦C at 1 ◦C intervals) and an increase in total precipitation
up to 20% (0–20%, 5% intervals) were considered in the sensitivity analysis. Thus, these scenarios
encompass the most extreme end-of-the-century projection within the spread (10–90 percentile) of
ensemble projections under the high emission RCP 8.5 scenario [107]. The different combinations of
warming and precipitation changes were applied to the historical data and the hydrological run for
each perturbed climate record, for a total of 45 individual climate scenarios. The baseline scenario of
no change in air temperature and precipitation (∆t = 0 ◦C and P = 100%: reference run) represents the
historically averaged observed data over the 1996–2019 period. The scenario of “∆t = 8 ◦C and P =

120%” stands for a warming of 8 ◦C and an increase of 20% in averaged precipitation relative to the
reference run.

3. Results

3.1. Historical Simulations

3.1.1. Point-Scale Snow Simulations

Observed and simulated SWE at the Hemmingford snow survey station was compared for the
1996–2019 period (Figure 2). The Nash–Sutcliffe efficiency (NSE) is 0.57 over the 23-year simulation.
The root mean square error (RMSE), correlation coefficient and mean percent bias (PBIAS) are 28 mm,
0.84 and −10% for the simulation period, respectively. SWE is mostly underestimated during low
snowpack years, which is likely due to uncertainties in the gridded precipitation dataset, parameters
selections and limitations of the snow model (SNOBAL) [80], which was originally developed to
simulate deep snowpacks. Despite some discrepancies, these results are considered to be adequate for
the purpose of this study.
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Figure 2. Observed and simulated snow water equivalent (SWE) at the Hemmingford snow survey station.

3.1.2. Simulation of Snow Mass Fluxes

Simulated SWE was compared against snow surveys at the agriculture and forest sites for the
winters of 2018 and 2019 (Figure 3). The observed spatial heterogeneity in snow accumulation within
the agricultural sites and forest patches is represented by the error bars (Figure 3). The simulations
show that the annual peak SWE is higher in the deciduous forest than in agricultural fields for both
winters (Figure 3). For the forest site, the mean percent biases are 10% and −6%, and the RMSEs are
35 mm and 25 mm for the winters of 2018 and 2019, respectively. For the agriculture site, the mean
percent biases are −19% and 50%, and the RMSEs are 21 mm and 41 mm for the winters of 2018 and
2019, respectively. While the overall absolute accuracy is similar between the two sites, relative errors
are greater in fields where the snowpack is thinner. Hence, the model performs relatively better in
forests than in fields, which could be partly explained by the fact that thinner snowpacks are more
difficult to simulate by SNOBAL [80]. The model could not capture the melt event leading to the
complete disappearance of snow cover in agriculture fields in mid-March 2019 (Figure 3c), which is the
main reason for the high percent bias and root mean square error. It is important to note that although
there was no snow cover observed in agriculture fields in mid-March 2019, there was an ice layer with
a thickness of 5 to 10 cm over the fields. Disregarding the mid-March 2019 event, the mean percent
bias and RMSE becomes 23% and 11 mm, respectively, for the winter of 2019. For both agriculture
and forest sites, the statistical performance measures show a better performance in the winter of 2019,
which had wetter conditions and a thicker snowpack.

Figure 4 shows simulated SWE at the catchment and landscape (i.e., agriculture, deciduous forest,
mixed forest and coniferous forest) scale for the 1996–2019 period. The mean annual peak SWE at
the catchment scale is 65 mm and occurs on February 25, with large inter-annual variability ranging
between 21 mm and 118 mm (Figure 4a). Landscape scale simulated SWE shows that peak SWE is on
average higher in the deciduous and mixed forest, followed by agricultural fields and coniferous forest
(Figure 4b). The accumulated SWE in the coniferous forest is lower than in the mixed and deciduous
forests because of the greater sublimation losses from canopy-intercepted snowfall, as the maximum
canopy interception load capacity and LAI are significantly higher in the coniferous forests than in the
deciduous and mixed forests. The bare agricultural fields suffer from sublimation losses and transport
of blowing snow, resulting in lower snow accumulation than in deciduous and mixed forests. These
processes were further investigated by examining snow mass balance at the landscape scale.
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Figure 3. Comparisons of simulated and observed SWE for (a,c) agriculture and (b,d) deciduous forest
for the winters of 2017–2018 and 2018–2019, respectively. Error bars represent the standard deviation
of SWE.

Figure 4. SWE simulations at the (a) catchment and (b) landscape scale. The grey envelope in (a)
illustrates the inter-annual variability for the 1996–2019 period.

Daily average cumulative snow mass fluxes and mean daily SWE for the 1996–2019 period for
agriculture and forest (i.e., deciduous, coniferous and mixed forest HRUs) landscape units are presented
in Figure 5. Snowmelt is the largest outflux at approximately 200 mm year−1 for both landscape
units, representing approximately 15% of the mean annual precipitation and 85% of the mean annual
snowfall. Snowpack sublimation reaches an average of 23 mm year−1, which is approximately 10%
of the mean annual snowfall, with a negligible difference between landscape units. Overall, total
sublimation losses from both snowpack and blowing snow reach 33.7 mm year−1 (14.3% of annual
snowfall) in fields, while in forests snowpack and canopy sublimation together account for 46.4 mm
year−1 (19.4% of annual snowfall).
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Sublimation from canopy interception exhibits large spatial variability among the forest types
(Figure 5b). Canopy interception loss reaches approximately 40% of the mean annual snowfall in the
coniferous forest, whereas it is 12% and 3% of the mean annual snowfall in the mixed and deciduous
forest, respectively. Higher canopy interception losses in the coniferous canopies is attributed to the
greater canopy snow interception loads and LAIs. However, the dominant deciduous (60%) and
mixed (27%) forest cover in the catchment shape the average canopy interception loss in the forest,
which is on average 24 mm year−1 (10% of the mean annual snowfall) (Figure 5). Simulated blowing
snow transport out of agricultural fields is only 5 mm year−1 and the blowing snow sublimation is
approximately 10 mm year−1, which together represent approximately 6% of the mean annual snowfall.
On the other hand, blowing snow transport into forests reaches 19 mm year−1 which is higher than
blowing snow transport out of agricultural fields. This difference is due to the larger area of agricultural
fields and also because snow is transported from other HRUs such as open drainage canals once their
storage capacity is reached. Although total sublimation losses are greater in forests than in agricultural
fields, the annual peak SWE is slightly higher in forests (65 mm) than in agriculture fields (59 mm),
as also observed from snow surveys (Figure 4). This can be explained with the redistribution of the
blowing snow from the agriculture and other HRUs to the forest.

3.1.3. Simulation of Streamflow and Water Fluxes

Simulated daily streamflow was compared against measurements at the outlet of the catchment
for the 1996–2019 period (Figure 6). The Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE),
percent bias (PBIAS) and the ratio of root mean square error to the standard deviation of measured
discharge (RSR) for the 23 year simulation period are 0.51, 0.71, 2.4% and 0.70, respectively. Simulated
streamflow properly represents flow duration curves (Figure 6b); however, low flows (high exceedance
probability, >0.9) are overestimated. The cumulative mean daily discharge (Figure 6c) shows good
performance with a mean bias of 2.4% at the end of the water year. However, the model slightly
overestimates winter streamflow (Figure 6c), which corresponds to overestimated high exceedance
flows (Figure 6b). The peak flow timing and magnitude are generally well represented by the model
(Figure 6a,b). The inter-annual variability of observed annual streamflow volume is approximately
30%, which is slightly higher than that of simulated streamflow (23%) (Figure 6c). Uncertainties in
simulated streamflow may arise from uncertainties in the forcing data, parameters uncertainty and
errors in the model structure. Despite these reasonable discrepancies, both the timing and volume of
streamflow are overall well simulated, suggesting a good model performance.
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Figure 6. Assessment of the CRHM platform performance in simulating streamflow at the outlet
of the Acadie River Catchment by comparing (a) daily streamflow, (b) flow duration curve, and (c)
cumulative mean daily streamflow. The shades around the average values in panel (c) represent the
inter-annual variability.

On average, 77% of the mean annual precipitation is rainfall and 23% is snowfall (Figure 7).
The snowfall and rainfall ratios exhibit large inter-annual variability with the snowfall ratio varying
between 17% and 34%, and the rainfall ratio between 66% and 83% (Figure 7). On average, 6% of
the total rainfall occurs during winter months (Dec-Jan-Feb), while almost half of the total rainfall is
observed from May to September. The evapotranspiration (ET) loss constitutes the largest water loss
term (462 mm year−1) (Figure 7), representing 45% of total annual precipitation. ET exhibits a relatively
low inter-annual variability with an annual standard deviation of 28 mm (Figure 7). The simulated ET
is very similar to the annual evapotranspiration value (487 ± 42 mm) calculated for a neighboring basin
(Chateauguay River Basin) for the 1963–2001 period [55]. The ratio of annual evapotranspiration to
annual precipitation is also comparable to that simulated for the 1971–2001 period for the neighboring
Pike River agricultural watershed using the SWAT model (47%) [49]. Annual total sublimation loss
including snowpack sublimation, canopy interception sublimation and blowing snow sublimation
is 36 mm (Figure 7), which is approximately 3% of the annual precipitation and 15% of the mean
annual snowfall. Mean annual sublimation shows an inter-annual variability of ±15 mm (Figure 7).
The sublimation losses are simulated between mid-November and mid-April when the snow cover is
present. During the same period, ET is suppressed due to the presence of snow cover. Once the snow
cover disappears, ET begins and almost 60% of the total ET occurs between mid-April and August.
Mean annual streamflow is 453 mm (Figure 7), resulting in an average runoff ratio of 0.44. The mean
annual runoff exhibits large inter-annual variability (±110 mm), which mostly results from the high
interannual variability of rainfall (±115 mm) (Figure 7). Annual average groundwater recharge rate is
79 mm (8% of total annual precipitation) over the 23 year period, with an inter-annual variability of ±26
mm (Figure 7). The historically averaged groundwater recharge rate is comparable to the simulated
annual groundwater recharge of 86 ± 10 mm in the neighboring Chateauguay River Basin using the
physically based HELP (Hydrologic Evaluation of Landfill Performance) numerical model for the
1963–2001 period [55]. The ratio of groundwater recharge to annual precipitation is also comparable
to that (8%) simulated for the Pike River Watershed [49]. The largest increase in both cumulative
streamflow and groundwater recharge is observed between April and May (Figure 7), which can be
explained by the snowmelt contribution to both fluxes. High evapotranspiration levels in summer
months decrease soil moisture levels, thereby limiting the amount of excess soil moisture available for
percolation, which in turn results in very low groundwater recharge rates in summer months (Figure 7).
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Figure 7. Average annual cumulative water fluxes at the catchment scale between the years 1996 and 2019.
The shades around the average values represent the inter-annual variability (± standard deviation).

3.2. Climate Sensitivity

3.2.1. Climate Sensitivity of Snow Regime and Mass Balance Components

Historically, snowfall represents 23% of the mean annual precipitation for the reference period
(∆T = 0; P = 100%) (Figure 7), which decreases down to 11% and 8% for a 5 and 8 ◦C warming scenario,
respectively, regardless of changes in the mean annual precipitation (Table 2). With a warming of
2 ◦C and no change in precipitation, peak SWE decreases by 70% and occurs 8 days earlier (Table 2).
The same scenario delays the snow onset date (SOD) by 25 days and advances the snow disappearance
date (SDD) by 14 days, shortening the snow cover duration (SCD) by 39 days (Table 2). In case of a
5 ◦C warming and no change in precipitation, the peak SWE drastically shifts from late February to
late December and decreases below 10 mm. Under the same scenario, SDD advances by more than
a month and SCD decreases to 132 days per year (Table 2). With the maximum warming of 8 ◦C,
peak SWE decreases by more than 90%. A 20% increase in precipitation would only buffer 28% of
the warming induced peak SWE decline for a +2 ◦C scenario, and 7% and 3% for the +5 and +8 ◦C
scenarios, respectively. Hence increasing precipitation could only counterbalance less than a third of
the SWE decline under a moderate (+2 ◦C) warming scenario.

Table 2. Sensitivity of snow variables to selected climate change scenarios. The snow onset date (SOD)
and the snow disappearance date (SDD) are the first and last days of the water year with snow on the
ground (SWE > 0.1 mm), respectively. SCD, snow cover duration.

Snow Variable ∆T (◦C)
P (%)

0
100

2
100

5
100

8
100

0
120

2
120

5
120

8
120

Snowfall Ratio (%) 23 17 11 8 23 17 11 8
Peak SWE (mm) 65 19 9 5 100 32 13 7
SOD (DOWY *) 20 45 45 58 20 26 45 58
Peak SWE Date (DOWY) 148 140 83 77 148 140 83 77
SDD (DOWY) 212 198 177 171 212 198 177 177
SCD (days) 192 153 132 113 192 172 132 119
Snowmelt (mm year−1) 201 145 99 67 251 180 121 82
Snowmelt Rate (mm day−1 year−1) 1.04 0.95 0.75 0.59 1.31 1.05 0.91 0.68

DOWY * = day of the water year (starting in 1 October).

Along with the simulated decline in SCD and snowmelt, the mean snowmelt rate also exhibits a
decline under all warming scenarios. However, it is important to note that the snowmelt rate under a
2 ◦C warming scenario with 20% increase in precipitation slightly increases compared to the reference
period. In addition, all warming scenarios lead to more frequent mid-winter snowmelt events, resulting
in several snow accumulation maxima during the snow season (Figure 8).
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Figure 8. Sensitivity of snow accumulation to selected climate change scenarios.

The climate response surfaces demonstrate that the timing and magnitude of annual peak SWE is
very sensitive to warming (Figure 9). Peak SWE decreases under all scenarios where warming occurs
(Figure 9a), while peak SWE increases by 10% to 60% in response to increasing precipitation alone
(Figure 9b). There is a positive sensitivity zone on the response surface where peak SWE increases (blue
surface on Figure 9b) in response to increasing precipitation and limited warming (<1 ◦C). However,
once further warming occurs, peak SWE decreases regardless of simulated changes in precipitation.
Considering that the catchment already has a relatively warm and wet cold season, small changes in
temperature generate large changes in snowfall ratios (Table 2) that result in a stronger sensitivity of
peak SWE as shown by the closer contours between 0 and 2 ◦C warming (Figure 9a,b). Warming causes
a considerable shift in the timing of peak SWE towards earlier dates (Figure 9c). A more pronounced
sensitivity of peak SWE timing is observed for warming between 2 and 3 ◦C, as shown by the closer
contours in Figure 9c. This strong sensitivity can be explained by the occurrence of several seasonal
snow accumulation maxima due to more frequent mid-winter snowmelt events in warmer winters
(Figure 8). Although multiple snow accumulation peaks are also simulated for warming up to 2 ◦C,
the annual SWE peak remains towards the end of winter. However, when warming reaches 3 ◦C, the
peak SWE simulated in early January becomes the annual peak, which explains the shift in annual
peak SWE date by more than a month (Figure 9c).

Figure 9. Climate sensitivity of snow metrics. (a) Annual peak SWE; (b) relative change in annual peak
SWE; (c) change in annual peak SWE date—negative values represent a shift towards earlier dates;
(d) change in snow cover duration (SCD); (e) relative change in the snowmelt rate.
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As shown by Figure 9d, changes in snow cover duration (SCD) are mostly driven by warming
and not by increasing precipitation. This is because the declining snowfall ratios, caused by warmer
temperatures, shorten both the onset and termination of the snow season. Figure 9e shows that the
snowmelt rate is primarily influenced by warming and to a lesser extent by increasing precipitation.
If warming is not accompanied by an increase in precipitation, then snowmelt rates decrease. This occurs
because with reduced snow accumulation in response to warming, snow melts earlier and at lower
rates under lower available solar energy. On the other hand, the snowmelt rate could increase when
low to moderate warming is accompanied by increasing precipitation. For instance, a 1 ◦C warming
and a 20% increase in precipitation result in a 10% increase in the snowmelt rate (Figure 9e). This can
be explained by the fact that the thicker snowpack persists longer into the spring, which combined
with warming temperatures, increase the amount of energy available to melt the snow.

The responses of peak SWE to warming air temperatures and increasing precipitation in agriculture
and forest landscapes (Figure 10a,b) are similar to that of the catchment average (Figure 9a). Here, peak
SWE in forest landscape is obtained by aggregating peak SWEs in deciduous, mixed and coniferous
forest HRUs. There is a considerable decline in peak SWE in response to warming temperature in both
landscapes (Figure 10a,b). The peak SWE decreases below 10 mm in both landscapes when warming
exceeds 4 ◦C and precipitation remains unchanged. The sensitivity of peak SWE in forests is more
pronounced than in agriculture fields for warming between 0 and 2 ◦C, as shown by the closer contour
lines in Figure 10c. The peak SWE in agriculture fields becomes slightly higher than in the forests when
the warming reaches 2 ◦C (Figure 10c). This can be explained by changes in blowing snow transport in
response to warming, such that less snow is transported into the forest under warmer temperatures,
which is due to the increasing bond strength and cohesion of snow as it warms [110].
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Figure 10. Peak SWE in response to temperature and precipitation changes in (a) agriculture, (b) forest,
and (c) difference between forest and agriculture.

Table 3 summarizes the changes in key snow processes with respect to selected climate change
scenarios for the agriculture fields and forests. The values in Table 3b are the aggregated changes over
the forest types (deciduous, mixed and coniferous). Snow erosion (drift out) from agricultural fields
and snow transport to forested areas (drift in) decline by 50% in response to a 2 ◦C warming without
changing precipitation (Table 3). A warming of 5 ◦C leads to a decline in snow transport by more
than 80% even if precipitation increases by 20% (Table 3). Accordingly, blowing snow sublimation in
agriculture fields declines considerably with warming (>85% with 5 ◦C warming), while snowpack
sublimation is relatively less sensitivity to warming (<50% with 5 ◦C warming, Table 3a). Apart from
an insignificant increase (0.3%) in the sublimation ratio in agriculture fields for a 2 ◦C warming, this
ratio declines for the rest of the warming scenarios.
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Table 3. Changes in magnitude of annual snow mass fluxes and resulting annual peak SWE in (a)
agriculture and (b) forest under selected warming and increasing precipitation scenarios.

(a) Agriculture ∆T (◦C)
P (%)

0
100

2
100

5
100

8
100

0
120

2
120

5
120

8
120

Drift out (mm year−1) 4.5 2.2 0.6 0.2 5.0 2.7 0.8 0.3
Snowpack Sublimation (mm year−1) 23.4 19.9 13.2 7.5 19.6 19.5 14.9 8.4
Blowing Snow Sublimation (mm year−1) 10.3 5.2 1.5 0.5 11.5 6.4 2.1 0.6
Snowmelt (mm year−1) 198 145 100 68 248 179 121 83
Sublimation Ratio (%) 14.3 14.6 12.7 10.5 10.9 12.5 12.2 9.8
Drift Out Ratio (%) 1.9 1.3 0.5 0.3 1.8 1.3 0.6 0.3
Snowmelt Ratio (%) 83.8 84.2 86.7 89.2 87.3 86.2 87.2 89.9
Peak SWE (mm) 59 19 9 5 95 30 13 7

(b) Forest ∆T (◦C)
P (%)
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Drift in (mm year−1) 18.8 8.9 2.6 1.0 20.8 11 3.4 1.1
Snowpack Sublimation (mm year−1) 22.6 18.6 12.7 6.3 18.8 18.8 13.5 7.2
Canopy Sublimation (mm year−1) 23.8 18.6 13.2 9.1 19.2 14.5 17.5 19.1
Snowmelt (mm year−1) 208 144 93 62 259 180 115 76
Sublimation Ratio (%) 18.2 20.5 21.8 19.9 12.8 15.6 21.2 25.7
Snowmelt Ratio (%) 81.8 79.5 78.2 80.1 87.2 84.4 78.8 74.3
Peak SWE (mm) 65 17 8 5 96 31 12 6

Snowpack sublimation and canopy sublimation in forests are less sensitive to a 2 ◦C warming
(decline by <21%, Table 3b) than the blowing snow influx (decline by 53%, Table 3b). The declines in
canopy sublimation are most likely due to more rapid and earlier unloading of snow with warmer
temperatures. The sublimation ratio in forests increases up to 5 ◦C warming (with no increase in
precipitation) and then declines for 8 ◦C warming. The sublimation ratio in forests is higher than
that in agriculture fields during the reference period, and this difference accentuates under warming
scenarios. Snowmelt shows a considerable decline in response to warming for both agriculture and
forests (approximately 50% for 5 ◦C warming, Table 3), due to decreasing snowfall ratios. Within the
0–2 ◦C warming zone, the peak SWE in forests decreases faster than in agriculture fields (Figure 10c and
Table 3). Eventually, a warming of 2 ◦C leads to a homogenization of peak SWE among the agriculture
and forest landscapes (Figure 10c), due to reduced redistribution and sublimation of blowing snow
from agriculture fields to forests, and decreased canopy sublimation in the forest.

3.2.2. Climate Sensitivity of Streamflow Regime and Water Balance Components

The Acadie River Catchment has a mixed snowmelt/rainfall hydrological regime and in a warmer
future, it is expected to shift toward a more rainfall-dominated regime (Figure 11a). The ratio of
snowmelt volume to mean annual streamflow volume changes from 43% in the reference period to
32%, 23% and 16% for the 2, 5 and 8 ◦C warming scenarios, respectively. With a 2 ◦C warming and
no change in precipitation, the annual peak daily flow decreases by 21% and occurs 3 months earlier
(mid-January) than for the reference period (mid-April) (Figure 11a). The annual peak daily flow
declines by 37% and occurs in mid-December under 8 ◦C warming and no change in precipitation
(Figure 11a). In case of 2 ◦C warming accompanied by a 20% increase in precipitation, the annual peak
daily discharge shows an insignificant increase (0.02%) (Figure 11a,b), but a 3 month shift in timing
from mid-April to mid-January, increasing winter flows (Figure 11a). This effect can also be seen from
the increase in flows with exceedance probability between 0.2 and 0.8 under 2 ◦C warming with a 20%
increase in precipitation (Figure 11b). In the reference period, the Acadie River mean hydrograph
exhibits two peaks flow following snowmelt in spring: the first peak occurs early April, followed by a
second, slightly greater peak some ten days later (Figure 11a). With a 20% increase in precipitation
and no warming, the second peak becomes more distinct while the first peak becomes higher than the
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second one (Figure 11a). The increase in high flows (exceedance probability lower than 0.1) under a 20%
increase in precipitation and no warming can also be seen in Figure 11b. The low flows (exceedance
probability higher than 0.8), on the other hand, exhibit an increase with a 20% increase in precipitation
regardless of warming (Figure 11b).

Water 2020, 12, x FOR PEER REVIEW 16 of 28 

 

Snowpack sublimation and canopy sublimation in forests are less sensitive to a 2 °C warming 

(decline by <21%, Table 3b) than the blowing snow influx (decline by 53%, Table 3b). The declines in 

canopy sublimation are most likely due to more rapid and earlier unloading of snow with warmer 

temperatures. The sublimation ratio in forests increases up to 5 °C warming (with no increase in 

precipitation) and then declines for 8 °C warming. The sublimation ratio in forests is higher than that 

in agriculture fields during the reference period, and this difference accentuates under warming 

scenarios. Snowmelt shows a considerable decline in response to warming for both agriculture and 

forests (approximately 50% for 5 °C warming, Table 3), due to decreasing snowfall ratios. Within the 

0–2 °C warming zone, the peak SWE in forests decreases faster than in agriculture fields (Figure 10c 

and Table 3). Eventually, a warming of 2 °C leads to a homogenization of peak SWE among the 

agriculture and forest landscapes (Figure 10c), due to reduced redistribution and sublimation of 

blowing snow from agriculture fields to forests, and decreased canopy sublimation in the forest. 

3.2.2. Climate Sensitivity of Streamflow Regime and Water Balance Components 

The Acadie River Catchment has a mixed snowmelt/rainfall hydrological regime and in a 

warmer future, it is expected to shift toward a more rainfall-dominated regime (Figure 11a). The ratio 

of snowmelt volume to mean annual streamflow volume changes from 43% in the reference period 

to 32%, 23% and 16% for the 2, 5 and 8 °C warming scenarios, respectively. With a 2 °C warming and 

no change in precipitation, the annual peak daily flow decreases by 21% and occurs 3 months earlier 

(mid-January) than for the reference period (mid-April) (Figure 11a). The annual peak daily flow 

declines by 37% and occurs in mid-December under 8 °C warming and no change in precipitation 

(Figure 11a). In case of 2 °C warming accompanied by a 20% increase in precipitation, the annual 

peak daily discharge shows an insignificant increase (0.02%) (Figure 11a,b), but a 3 month shift in 

timing from mid-April to mid-January, increasing winter flows (Figure 11a). This effect can also be 

seen from the increase in flows with exceedance probability between 0.2 and 0.8 under 2 °C warming 

with a 20% increase in precipitation (Figure 11b). In the reference period, the Acadie River mean 

hydrograph exhibits two peaks flow following snowmelt in spring: the first peak occurs early April, 

followed by a second, slightly greater peak some ten days later (Figure 11a). With a 20% increase in 

precipitation and no warming, the second peak becomes more distinct while the first peak becomes 

higher than the second one (Figure 11a). The increase in high flows (exceedance probability lower 

than 0.1) under a 20% increase in precipitation and no warming can also be seen in Figure 11b. The 

low flows (exceedance probability higher than 0.8), on the other hand, exhibit an increase with a 20% 

increase in precipitation regardless of warming (Figure 11b). 

 

Figure 11. Changes in mean daily streamflow in response to selected warming and increasing
precipitation scenarios. Changes in (a) mean daily streamflow, and (b) exceedance probability of mean
daily streamflow.

The response surfaces of the magnitude and timing of annual peak discharge, and total annual
discharge, are presented along with projected changes in annual temperature and precipitation for the
periods 2041–2070 and 2071–2100 under a moderate emission scenario (RCP 4.5) and a high emission
scenario (RCP 8.5) [111] (Figure 12). Increasing precipitation could cause an increase in annual peak
daily discharge by up to 60%, depending on the warming and increase in precipitation. This zone of
positive sensitivity of peak discharge is delineated by the 0% contour in Figure 12a, below which the
peak discharge exhibits an increase. In this positive sensitivity zone, the increase in precipitation is
enough to counterbalance the negative impact of warming on the peak discharge. Increasing peak daily
discharge might thus represent the short-term response of peak discharge to climate change, before
more significant warming (Figure 12d) depletes the snowpack and causes peak discharge to decline and
shift from the spring to winter. This sensitivity zone is particularly interesting considering the recent
flood events in southern Québec [112,113], versus the long-term projection of reducing SWE and peak
discharge. For instance, a warming of 1.2 ◦C increases the annual peak daily discharge by 2% if there is
an increase in precipitation by 12%, whereas the same amount of warming causes peak daily discharge
to decline by 15% if there is only a 1% increase in precipitation. Both of these scenarios are within the
uncertainty range of projected changes in annual temperature and precipitation for the 2041–2070
period under a moderate emission scenario RCP 4.5 (Figure 12d). Meanwhile, when the warming
exceeds 2 ◦C, as projected under both moderate and high emission scenarios (Figure 12d) for the mid
and end of century, the peak daily discharge declines regardless of changes in precipitation (Figure 12b).
Warming scenarios lead to considerable shifts in the timing of annual peak discharge towards earlier
dates (Figure 12b). With a 1.2 ◦C warming and a 12% increase in precipitation (Figure 12d), the peak
discharge shifts by 20 days earlier, while a precipitation increase of less than 3% under the same
warming level shifts the peak discharge 50 to 80 days earlier, i.e., before peak SWE.
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Figure 12. Climate sensitivity of streamflow in Acadie River. (a) Changes in annual peak daily
discharge; (b) changes in annual peak daily discharge date; (c) changes in annual total discharge in
response to temperature and precipitation changes; and (d) projected changes in annual temperature
and precipitation for the periods 2041–2070 and 2071–2100 under a moderate emission scenario (RCP
4.5) and a high emission scenario (RCP 8.5) for Montérégie region of Québec [111].

These results show that a higher peak daily discharge could occur earlier in response to limited
warming (<1.5 ◦C) if precipitation increase sufficiently, which highlights the considerable uncertainty
in future peak daily discharge caused by uncertainties in projected precipitation. Meanwhile, when
warming exceeds 1.5 ◦C, the peak daily discharge occurs before peak SWE regardless of the precipitation
increase. For instance, a 2 ◦C warming and 20% increase in precipitation advances the timing of peak
SWE by only eight days from February 25 to February 17 (Figure 9c), the same warming scenario
without precipitation change causes the annual peak daily discharge timing to shift from April 11 to
January 13 (Figure 12b). This highlights that a warming beyond 1.5 ◦C causes a transition in the flow
regime of the Acadie River Catchment from a mixed snowmelt/rainfall to rainfall dominated regime,
with the seasonality of precipitation dictating the magnitude and timing of the annual peak discharge
(Figure 12a). Total annual discharge, on the other hand, appears much more sensitive to increasing
precipitation than to warming (Figure 12c), which contrasts with the response of peak SWE (Figure 9a,b).
Total annual discharge decreases by 2% with a 1 ◦C warming, however, an increase of 7% is simulated
if this 1 ◦C warming occurs with an increase in precipitation of only 5%. The decrease in annual
discharge volume caused by a 5 ◦C increase in temperature could be completely counterbalanced with
an increase in precipitation of 5%.

The rainfall ratio is simulated to increase between 6% and 12%, depending on the amount of
warming (Table 4). Increasing evapotranspiration rates occur under all warming and increasing
precipitation scenarios (Table 4). In terms of seasonal changes in streamflow, the mean winter
streamflow increases under warmer temperatures, which can be explained by the increasing rainfall
ratios and more frequent snowmelt events in warmer winters. The mean winter streamflow increases
by 45% and 71% under a 2 ◦C warming and 2 ◦C + 20% precipitation increase, respectively. A 20%
increase in precipitation with no warming results in an unchanged rainfall ratio but an increase
in total rainfall in winter, which together cause the smallest increase (9%) in winter mean runoff.
The same scenario increases the mean spring streamflow by 39%, which is due to the greater amount
of snow accumulation and associated snowmelt contribution as well as higher amount of rainfall.
If only warming air temperatures are considered, mean streamflow declines during both spring and
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summer (Table 4). On the other hand, mean summer streamflow increases in response to increasing
precipitation even under warmer temperatures which drive higher evapotranspiration rates, which
means that increasing rainfall can counteract the enhanced evaporation losses in terms of streamflow
volume generation.

Table 4. Mean annual catchment scale water fluxes for the selected climate change scenarios. For the
reference period, the mean annual temperature is 7.2 ◦C and mean annual precipitation is 1030 mm.

Water Flux ∆T (◦C)
P (%)

0
100

2
100

5
100

0
120

2
120

5
120

Rainfall Ratio (%) 77 83 89 77 83 89
Annual Peak Streamflow (m3 s−1) 19.3 14.8 15.9 35.3 19.0 18.2
Mean Winter Streamflow (m3 s−1) 4.9 7.1 7.3 5.2 8.4 9.1
Mean Spring Streamflow (m3 s−1) 9.5 6.9 6.1 13.2 9.3 8.0
Mean Summer Streamflow (m3 s−1) 2.1 2.0 1.9 3.7 3.5 3.3
Evapotranspiration (mm year−1) 462 479 497 479 498 520
Winter Snowmelt Infiltration (mm) (%) 3.0 (4.2) 2.6 (2.8) 1.9 (2.5) 2.8 (4.0) 2.7 (2.4) 3.5 (3.8)
Winter Rainfall Infiltration (mm) (%) 24 (33) 39 (42) 55 (45) 24 (28) 41 (37) 60 (40)
Spring Snowmelt Infiltration (mm) (%) 4.4 (4) 1.2 (3) 0.7 (3.9) 10 (6.4) 1.0 (1.8) 0.8 (3.5)
Spring Rainfall Infiltration (mm) (%) 107 (53) 122 (55) 131 (55) 116 (47) 134 (51) 145 (51)
Summer Infiltration (mm) (%) 270 (94) 272 (94) 273 (95) 307 (88) 309 (89) 311 (90)
Groundwater Recharge (mm year−1) 79 87 97 103 110 121
Winter Groundwater Recharge (mm) 17 23 30 20 26 35
Surface Runoff Ratio * (%) 43 33 24 40 32 23

Surface runoff ratio * = The ratio of surface runoff volume to total streamflow volume.

In Table 4, the snowmelt infiltration ratio (%) is calculated as the ratio of snowmelt infiltration
volume to total snowmelt volume, whereas the rain infiltration ratio (%) represents the ratio of
rainfall infiltration volume to effective rainfall volume (total rainfall minus evaporation from canopy
interception). Infiltration rates during the cold season are governed by rainfall infiltration (33% in
winter and 53% in spring) rather than snowmelt infiltration (4.2% in winter and 4% in spring) (Table 4),
due to the fact that frozen soil algorithm [85] limits the snowmelt infiltration. Warming causes a
general decrease in the snowmelt infiltration ratio but an increase in the rainfall infiltration ratio.
Under warming with no increase in precipitation, the winter snowmelt infiltration ratio declines by
1.4 to 3.7% (Table 4), which could be explained by the higher initial soil moisture saturation before
snowmelt events caused by higher rainfall ratios and also more frequent mid-winter melt events. For
instance, with a 2 ◦C warming, the rainfall ratio in winter increases from 28% to 56% and the total
number of snowmelt days in January and February increases by 11 days, which in turn lead to greater
soil moisture saturation. The rainfall infiltration ratio in winter increases by 9 to 12% in response to
warming (Table 4), which can be explained with the fact that there is an increase in rainfall fraction
and rainfall infiltration is not limited by the snow cover [85]. In spring, the snowmelt infiltration
ratio declines by 1% (Table 4) with a 2 ◦C warming, which can be explained with declining snow
accumulation and melt available for infiltration. Under warming-only scenarios, rainfall infiltration
in spring increases by 2% due to higher rainfall ratios. An increase in precipitation by 20% with no
warming causes an increase in the spring snowmelt infiltration ratio by 2.4% and a decrease in winter
snowmelt infiltration by less than 1%, whereas rainfall infiltration ratios in both seasons exhibit a
decline. Warmer temperatures cause smaller snowmelt infiltration ratios even if there is a 20% increase
in precipitation, whereas rainfall infiltration ratios become higher. In summer, for the reference period,
more than 90% of the effective precipitation infiltrates, which changes between −5% and 1%, depending
on the climate change scenario (Table 4). Overall, changes in summer are lower than those in spring
and winter. Therefore, changes in winter and spring conditions explain most of the decreases in surface
runoff ratio in response to warming (Table 4). It is important to note that mimicking subsurface tile
drainage plays a role in this response, since replacing snowmelt by rainfall with warming could have
produced saturation excess runoff, however, this saturation excess water is added to the subsurface
flow rather than surface flow. There is also an increase in both winter and annual groundwater recharge
rates under all warming scenarios (Table 4).
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A model falsification was performed to assess the impact of frozen soil infiltration process on
the partitioning between surface and subsurface runoff, and on annual peak streamflow (Table 5).
Annual streamflow declines from 468 mm to 414 mm for the reference period when the frozen soil
infiltration process in removed from the model (Table 5). The results show that removing the frozen
soil infiltration process reduces the surface runoff ratio by 40%, from 43% to 3.2% for the reference
period (Tables 4 and 5). This is due to snowmelt infiltrating rather than forming infiltration excess
surface runoff when the frozen soil infiltration parameterization is disabled [85]. The small amount
of surface runoff generated is thus uniquely from infiltration excess rainfall and/or snowmelt when
frozen soils are not considered, since all saturation excess water is assumed to drain through the
subsurface tiles. Surface runoff becomes less sensitive to warming with the falsification of frozen
soil infiltration (Table 5) compared to when frozen soil infiltration is considered (Table 4). This is
because the infiltration rates in winter and spring, which are driving the changes in surface runoff

ratios (Table 4), are not primarily driven by peak snow accumulation anymore as opposed to when the
frozen soil infiltration algorithm is used [85]. Therefore, the declines in peak SWE caused by warming
scenarios (Table 2) do not result in significant changes in surface runoff ratios (Table 5). The model
falsification also indicates that annual peak streamflow would reduce by 17% for the reference period
when frozen soils do not limit infiltration (Tables 4 and 5).

Table 5. Mean annual catchment scale water fluxes (falsified model) for the selected climate
change scenarios.

Water Flux ∆T (◦C)
P (%)

0
100

2
100

5
100

Streamflow (mm year−1) 414 408 400
Surface Runoff (mm year−1) 13 12 11
Surface Runoff Ratio (%) 3.2 2.9 2.8
Annual Peak Streamflow (m3 s−1) 16 11.1 13

4. Discussion

Snow accumulation in the Acadie River Catchment has historically shown a large inter-annual
variability (Figure 4a) due to its high sensitivity to climatic conditions. Moreover, drastic changes in
snow accumulation regime are simulated under warming scenarios regardless of precipitation. This is
in line with the known high temperature sensitivity of snow in the relatively mild cold regions of
the warmer sectors of the Dfb (cold climate with warm summers) climate zone [60]. The decline in
peak SWE caused by 1 ◦C warming cannot be compensated even with a 20% increase in precipitation
(Figure 9b). Although there is a decrease in the sublimation ratio under this scenario, the decrease
in snowfall ratio predominates and causes reduced snow accumulation. The peak SWE shows the
highest sensitivity in the 0–2 ◦C warming zone, declining by 25%–35% per ◦C, which is higher than
the 7% per ◦C reduction for the Svalbard Archipelago [70], the 7% per ◦C reduction for Yukon [7],
the 15% per ◦C reduction for the Swiss Alps [114], the 11%–20% per ◦C reduction for the Spanish
Pyrenes [67,115] and the 20% per ◦C reduction for the Washington Cascades [116]. The greater
sensitivity of SWE in the Acadie River Catchment is likely due to the warmer temperatures in this
region than in the other study areas. Snow accumulation exhibits several peaks due to more frequent
mid-winter snowmelt events within the 0–2 ◦C warming range (Figure 8), and the first peak occurring
in early January becomes dominant when warming reaches 3 ◦C. Therefore, the peak SWE date shows
its highest sensitivity in the 2–3 ◦C warming band (Figure 9c) and marks the transition from a snowmelt
dominated to a rainfall dominated streamflow regime. Increasing precipitation leads to higher peak
SWE only if the warming is less than 1 ◦C (Figure 9a), which may represent the transient, short-term
response of the catchment to climate change for the next decades.

Under present climate conditions, annual drift out (snow erosion) from agricultural fields were
low (2% of annual snowfall) compared to the prairies and steppe environments where snow erosion
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rates range from 30% to 75% of annual snowfall [20,117]. This is mostly due to higher bond strength
and cohesion of snow resulting from relatively higher winter air temperatures in the Acadie River
Catchment, which in turn leads to higher wind speed thresholds required to initiate snow saltation [110].
Simulated average peak SWE was slightly higher in forests than in agriculture fields under recent
climate, in agreement with field observations (Figure 5). However, the snow accumulation in these
two landscape units become uniform when warming reaches 2 ◦C (Figure 10). This uniformization is
explained by the decrease in blowing snow transport and sublimation due to increased snow cohesion
under warming [110] and decreasing canopy sublimation.

Snowmelt is an important contributor to groundwater recharge (Figure 7), in agreement with
other studies [118–120]. While the decline in snowmelt (Table 2) caused by warmer temperatures was
expected to result in lower groundwater recharge rates, annual groundwater recharge increased instead.
This is driven by significant increases in groundwater recharges during winter due to increasing
mid-winter snowmelt events, as shown by previous studies [121–124]. The results show that shallower
snowpacks caused by warmer temperatures melt earlier and more slowly under most of the warming
scenarios considered, which is in line with the “slower snowmelt in a warmer world” hypothesis [125].
Some other studies also reported that earlier snowmelt occurring at a time of year with lower solar
elevations resulted in slower snowmelt rates in different cold regions such as Spain [67], the western
US [126–128] and south western Canada [128]. In contrast, the results also show that increasing
precipitation under limited warming (≤2 ◦C) can compensate the slower melt rates caused by warming
and even accelerate snowmelt rates depending on the amount of increase in precipitation. Furthermore,
some studies have also reported increasing snowmelt rates in the future such as in an Arctic headwater
basin (Canada), where a 6 ◦C warming and a 40% increase in precipitation was projected under the
RCP 8.5 scenario [129]. This suggest that there are competing mechanisms that depend on the degree
of warming and projected changes in precipitation that can either increase or decrease snowmelt rates,
and that those mechanisms may vary regionally depending on historical conditions.

The peak streamflow was found to consistently shift towards earlier dates under warmer
temperatures, which have also been projected for other catchments in southern Québec [49,51,52].
The magnitude of the annual peak daily streamflow shows a non-linear response to warming and
increasing precipitation. While the peak spring flow decreases under most scenarios when warming
exceeds 1.5 ◦C, the peak flow was found to increase within a restricted climate envelope (Figure 12a).
Hence, higher and earlier peak flows might represent the short term, transient response of peak flow to
warming and increasing precipitation, increasing flooding risks on the short term. On the other hand,
although greater warming causes a decline in spring peak flow, winter flows are projected to increase,
in line with the higher winter streamflow projections for different catchments in Québec [49,51,52,130]
and in some other cold regions [11,44,131]. Greater winter flows can cause extreme flooding and ice
jamming, resulting in significant damages [130]. In addition, changes in the streamflow timing and
volume can have significant repercussions on reservoir operations for flood control and hydropower
generation. Both the direction of change in peak spring flow under limited warming (<1.5 ◦C), and
the amount of increasing winter flow under greater warming (>1.5 ◦C), will strongly depend on the
projected changes in precipitation (Figure 12), highlighting the significant uncertainty in changes to
peak discharge and flood risks, as precipitation is typically the most uncertain variable of climate
projections. The falsification of frozen soil infiltration processes resulted in drastic declines in surface
runoff ratios (Tables 4 and 5), suggesting that this process is very important on the partitioning
between surface and subsurface flows and overall streamflow generation in catchments with extensive
subsurface tile drainage such as the Acadie River Catchment.

5. Conclusions

A physically based hydrological model was created using the CRHM platform to simulate the
hydrological cycle over 23 years in an agroforested catchment in southern Québec, Canada. The model
showed a reasonable performance against discontinuous SWE observations and daily streamflow
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measurements. A possible range of impacts of climate change on catchment hydrology was obtained
by perturbing the model with warming hourly air temperatures from 1 to 8 ◦C and increasing daily
total precipitation from 0% to 20%. The positive sensitivity zone encountered in peak streamflow
response surfaces suggests a possibility for increased flood risks in the very near future (1–2 decades)
given the uncertainties in precipitation projections, while longer-term warming was found to severely
deplete the snowpack and reduce peak streamflow. The results of this study also have important
implications for farming communities in the Acadie River Catchment. This study indicates a decreasing
snow cover duration under warming temperatures, which in turn could extend the farming season.
The overall agricultural production could also benefit from the increase in annual available water
(annual streamflow) in response to increasing precipitation. On the other hand, higher soil moisture
due to increasing rainfall ratios in warmer springs could limit the agricultural production. Considering
that the catchment presents water quality issues related to soil erosion [57], and that in cold agricultural
catchments, soil erosion rates during the snowmelt period can exceed those occurring during other
seasons of the year [58,132], the changes in snowmelt and streamflow dynamics could alter soil erosion
dynamics. Soil erosion could increase due to earlier snowmelt, increased rainfall ratios, and more
frequent snowmelt events caused by higher winter and spring temperatures.

The hydrological model built in this study could be used to assess the impacts of climate change on
snow accumulation and associated runoff under different tilling practices by changing the vegetation
heights over the agricultural fields in the Acadie River Catchment. Future research will aim to
investigate the impact of runoff changes on soil erosion rates in response to climate change scenarios.
In addition, considering that Acadie River Catchment is representative of the typical agroforested
landscapes with relatively warm winters across the south shore lowlands of the St. Lawrence River
Watershed, the results found in this study could be extrapolated to nearby catchments with similar
landscape and climate. Furthermore, since this model includes all the major physical processes at
play in this type of environments, it would be relatively easy to apply it in similar environments or
similar landscapes located in the warmer sectors of the Dfb climate class, which have been shown to be
particularly sensitive to warming [15]. The model is particularly well suited to analyze the interactions
between the hydrological processes at play, and to assess their sensitivity to changes in temperature
and precipitation. It is important to note that the climate sensitivity framework used in this study
only considers mean changes in air temperature and precipitation; therefore, changes in inter-annual
variability or potential changes to other atmospheric variables such as humidity and wind speed
were not considered. Future changes in precipitation frequency could have important hydrological
impacts [133–136]. Nevertheless, the climate sensitivity analysis allowed understanding how key
hydrological processes could shift under a wide range of climate change scenarios, in a fast and easy
way, providing useful guidance for further top–down, model-based climate impact assessments. It
is worth noting that there are different sources of uncertainty in this study. For instance, the lack of
long-term snow observations in agricultural fields prevents a more robust validation of the snow
model. There is thus a need for additional, long-term monitoring of snow conditions in agricultural
fields in the Acadie River Catchment and elsewhere in southern Québec. In addition, some of the
model parameters were transferred from studies in catchments with similar hydrological conditions,
which introduces uncertainties to the modelling. Future studies should perform detailed sensitivity
analyses to quantify the uncertainty in simulations due to parameter uncertainty.
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