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Abstract: To comprehensively evaluate the changes in precipitation patterns in the context of global
climate change and urbanization, the spatiotemporal variability of precipitation during the wet
seasons of 1981–2017 in Beijing was analyzed in this study using up-to-date daily and hourly
precipitation data from observation stations. It was concluded that the average annual precipitation
in wet seasons showed a downward trend, while the simple daily intensity index (SDII) showed
an upward trend. Precipitation in the central urban area of Beijing showed obvious changes from
1981 to 2017; the average annual precipitation in the central urban area was almost as great as that
in Miyun country after 2010, which was the storm center for the past three decades. The average
annual maximum 3-h and 6-h precipitation in the 2010s was higher than the past three decades,
especially in urban and suburban areas. In addition, the atmospheric circulation index, urbanization
impact, and topography were all found to be important factors that affect the pattern of precipitation
in Beijing.
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1. Introduction

Global and regional precipitation patterns have changed in the context of global climate change
and urbanization. The frequency of extreme hydrological events, such as flood events and storms,
has increased in the past decades [1–3]. Annual global economic losses caused by flood events reached
approximately 300 billion dollars in the past decades, and some of the heaviest losses were related to
extreme precipitation events in Asia [4–6]. The Fifth Assessment Report of the Intergovernmental Panel
on Climate Change identified that global climate change affects global extreme events (e.g., extreme
temperature and extreme precipitation), and it predicted that such extreme climate events would
continue to occur until the end of the 21st century [7]. Therefore, many studies have been undertaken
to quantify the trends and changes of precipitation at the global, regional, and watershed scales.
It has been demonstrated that, globally, land precipitation has increased by 2% since the end of the
20th century. However, the occurrence of extreme precipitation events has increased significantly,
including in some regions where there has been no change in the total amount of precipitation [8–10].
Groisman et al. [11] highlighted that trends of increase in the occurrence of extreme precipitation events
have been found in China, the United States, Canada, Poland, Mexico, Norway, and other countries.
Lu et al. [12] pointed out that extreme precipitation in China has increased in association with global
climate change, and that the occurrence of extreme precipitation events in the region of the North
China Plain has become more random.
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Urban areas are sensitive to extreme meteorological events because such areas are centers of
population and infrastructure [13]. Therefore, it is necessary to analyze the changes of precipitation
patterns and spatiotemporal variations of extreme precipitation in metropolitan areas in the context
of a changing environment [14]. As the political, economic, and cultural center of China, Beijing has
undergone very rapid urbanization in the past decades, and it has been demonstrated that urban
development has led to an increase in the intensity of precipitation, especially in downwind urban
regions [15,16]. Two principal conclusions have been drawn following previous studies of the variations
of precipitation in Beijing. The first is that both annual precipitation and extreme precipitation in
Beijing showed a downward trend in the past decades. For example, Song et al. [17] found that the
frequency, amount, and contributions of extreme precipitation events in Beijing have had significant
downward trends in the previous 50 years (1960–2012). The second conclusion is that the phenomenon
of a “precipitation island effect” has occurred in Beijing. For example, Zhai et al. [18] and Zhen et al. [19]
suggested that the average annual precipitation in the central urban area in Beijing is greater than that
in the surrounding areas because of urbanization effects.

Apart from urbanization, the atmospheric circulation index and local topography have also been
recognized as important factors in the distribution of precipitation [17]. The objective of this study is to
provide a better understanding of the characteristics of precipitation patterns and variations of extreme
precipitation in Beijing (in particular, Beijing suffered heavy rainstorms in 2012 and 2016), and examine
the influence of the atmospheric circulation index and local factors. The spatiotemporal variations
of precipitation during 1981–2017 in Beijing were analyzed in this study, using up to date daily and
hourly precipitation data from observation stations and multiple analysis methods. The precipitation
indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) of
the World Meteorological Organization were used in this study, as these have been widely used to
evaluate the impact of climate change at the global scale [20] and in many parts of the world [21–25].
By comparing the differences in precipitation patterns between different subareas, the existence of a
“precipitation island effect” in Beijing was further investigated and identified.

2. Data and Methodology

2.1. Study Area Description

Beijing is located in northern China (Figure 1). Beijing has a typical warm temperature semi-humid
continental monsoon climate, which has hot rainy summers, and cold dry winters. In Beijing, the average
annual temperature is 11.7 ◦C; the highest temperature in summer can reach 42.6 ◦C and the lowest
temperature in winter can reach −27.4 ◦C [17,19,26]. Precipitation is distributed unevenly across
the different seasons. Precipitation in summer (June–August) accounts for more than 70% of the
annual precipitation, spring and autumn account for approximately 28%, and winter is largely dry [27].
The average annual precipitation in Beijing ranges from 372.1 to 682.9 mm/year at different observed
stations, based on daily observed precipitation data at 30 stations from 1981 to 2017. The spatial
distribution of precipitation is highly heterogeneous. For example, Miyun and Pinggu counties,
which are located in the northeast of Beijing, receive the most precipitation, followed by central urban
areas and near southern suburban areas. The western mountainous area and southeastern suburban
area receive the least precipitation. The spatial distribution of average annual precipitation in Beijing is
shown in Figure 1.
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Figure 1. Location of observation stations and spatial distribution of average annual precipitation
in Beijing.

2.2. Data Description

2.2.1. Precipitation Data

In this study, daily precipitation data from 30 observation stations (1981–2017) and hourly
precipitation data from eight observation stations were used for analysis and calculation. All data
were obtained from the Beijing Hydrology Bureau. Strict quality control was performed on both daily
and hourly precipitation data. The number of missing data at all stations was less than 0.1% of the
total data. The average daily precipitation at near stations was used as a substitute for the missing
data. The accuracy of both datasets was 0.01 mm.

In this study, to reflect the characteristics of precipitation in different subareas characterized by
distinct topographic conditions, Beijing was divided into six different subareas [17,28]: the central urban
area, near northern suburb, near southern suburb, far suburb (northeastern), southwest mountainous
area, and northwest mountainous area. Information regarding the 30 observation stations is presented
in Table 1.

Table 1. Information regarding the observation stations.

Regions Name of Stations Elevation
(m) Regions Name of Stations Elevation

(m)

Central urban
area

Gaobeidian (GBD) 36
Near

southern
suburb

Banbidian (BBD) 33
Lejiahuayuan (LJHY) 44 Fengheying (FHY) * 20
Lugouqiao (LGQ) * 64 Majuqiao (MJQ) 30
Songlinzha (SLZ) * 55 Nangezhuang (NGZ) 32
Wenquan (WQ) * 54 Yulinzhuang (YLZ) 21

Tongxian (TX) 28

Far suburb

Fanzipai (FZP) 520
Yangfangzha (YFZ) 44 Huangsongyu (HSY) 173
You’an men (YAM) 46 Miyun (MY) * 74

Near northern
suburb Shahe (SH) 39 Tangzhishan (TZS) 46

Southwest
mountainous

area

Sanjiadian (SJD) 175 Xiahui (XH) 233
Wangjiayuan (WJY) * 761

Northwest
mountainous

area

Huanghuacheng (HHC) * 271
Xiayunling (XYL) 446 Labagoumen (LBGM) 492

Yanhecheng (YHC) 539 Qianjiadian (QJD) 40
Zhaitangshuiku (ZTSK) 560 Yanqing (YQ) 495

Zhangfang (ZF) 109 Zaoshulin (ZSL) 325

* Indicates the station records for daily and hourly precipitation data.
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2.2.2. Land Use Data

Land use maps of Beijing in 1980, 1990, 2000, 2005, 2014, and 2017, based on remote sensing imagery,
were used in this study. These data were obtained from both the remote sensing monitoring database
of land use status in China (Data Center for Resources and Environmental Sciences of the Chinese
Academy of Sciences), and the Landsat remote sensing image database (www.gscloud.cn). The image
data from 1980 were collected from the remote sensing monitoring database of land use status in China,
which is based on interpretations of Moderate Resolution Imaging Spectroradiometer (MODIS) and
Landsat Thematic Mapper (Landsat-TM) satellite remote sensing images [29]. The resolution of this
image data is 1 km. The data of the remaining years were derived from Landsat series images, and the
resolution of these images data are 30 m.

2.3. Methodology Description

2.3.1. Extreme Precipitation Indices

The Expert Team on Climate Change Detection and Indices of the World Meteorological
Organization recommended 27 core indices to represent extreme temperatures and precipitation.
In this study, annual mean precipitation and nine extreme precipitation indices are adopted to analyze
the spatiotemporal variation of extreme precipitation in Beijing. The name and meaning of each
extreme precipitation indices are presented in Table 2. These indices are used widely in research related
to extreme precipitation change [20,30,31].

Table 2. Indices of extreme precipitation.

Code Descriptive Name Definition of the Indices Units

AMP Annual mean precipitation Annual mean precipitation mm

SDII Simply daily intensity index Annual mean precipitation/total number
of wet days mm/day

R20mm Number of moderate
precipitation days

Annual precipitation days with daily precipitation
greater than 20 mm days

R50mm Number of violent
precipitation days

Annual precipitation days with daily precipitation
greater than 50 mm days

Rx1day Maximum 1-day
precipitation amount Annual maximum 1-day precipitation mm

Rx5day Maximum 5-day
precipitation amount

Annual maximum five consecutive days
of precipitation mm

R95p Precipitation on very wet days Annual precipitation exceeds 95% threshold mm

R99p Precipitation on
extremely wet days Annual precipitation exceeds 99% threshold mm

CWD Maximum consecutive wet days Maximum number of consecutive days with daily
precipitation greater than or equal to 1.0 mm days

CDD Maximum consecutive dry days Maximum number of consecutive days with daily
precipitation less than 1.0 mm days

The percentage threshold method is widely used to define extreme precipitation events; thus the
95% and 99% thresholds were used to define extreme precipitation events in this study. Specifically,
the daily precipitation of wet days was arranged in ascending order. Then, the 95% and 99%
precipitation values were defined as the threshold values of extreme precipitation at each station.
It was considered that an extreme precipitation event had occurred when the daily precipitation at a
station reached or exceeded these thresholds on a certain day [17]. In this study, a value of 0.1 mm/d
was used as the threshold to define the occurrence of a precipitation event.

www.gscloud.cn
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2.3.2. Trend Analysis Methods

This study adopts several methods to analyze the spatiotemporal variation of extreme
precipitation in Beijing: the linear fitting method, 5-year moving average method, spatial interpolation,
and Mann–Kendall (M-K) nonparametric test method. The Kriging interpolation method was used to
calculate the spatial distribution of annual precipitation in this study. The M-K test is a nonparametric
test method used widely in hydrological and meteorological research. It is commonly used to test the
trend of a dataset that does not obey any specific distribution. The calculation formula of the M-K
method is as follows:

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0

 (1)

S =
n−1∑
i=1

n∑
k=i+1

sgn(xk − xi) (2)

sgn(xk − xi) =


1, xk − xi > 0
0, xk − xi = 0
−1, xk − xi < 0

 (3)

where n is the length of the dataset, xk and xi are the sequences of the sample data, and var(S)
is the variance of the statistical variable S. A positive (negative) value of Z represents an upward
(a downward) trend of the detected dataset.

2.3.3. Correlation Analysis

The Spearman’s correlation coefficient method was used to calculate the correlation coefficient
between the extreme precipitation indices and the atmospheric circulation index. The larger the
absolute value of the correlation coefficient (closer to 1), the stronger the correlation between indices.

3. Results Analysis

3.1. Annual Precipitation Description

The temporal variations of the average annual precipitation in the entire year and in wet seasons
(June–September) at the 30 observation stations in Beijing (1981–2017) are shown in Figure 2. It can be
seen that the changes in the trend of average annual precipitation in the entire year were consistent
with those in wet seasons during the study periods; that is, both showed downward trends during
1981–2017. Figure 3 shows the average annual precipitation in the entire year and that in wet seasons
per decade at the 30 observation stations. It can be seen that precipitation in Beijing in the 2000s showed
a downward trend compared with the 1980s and 1990s, whereas it showed an obvious upward trend
during 2010–2017.

Precipitation events in the wet seasons (June–September) are the focus of this study because
extreme precipitation in Beijing mainly occurs during the wet seasons. Figure 4 shows the spatial
distribution of annual precipitation in the wet seasons in different decades, interpolated by the original
Kriging interpolation method. It is notable that precipitation in the central area showed obvious
changes from the 1980s to the 2010s. The maximum annual precipitation in the 1980s and 1990s
appeared in Miyun county, which is located in the northeast of Beijing. However, in the 2000s, the storm
center gradually extended to the central urban area, and at the beginning of the 21st century the central
area became the second storm center in Beijing, since its annual precipitation was almost as great as
that in Miyun county.
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3.2. Temporal Trends of Daily Precipitation Indices in the Wet Seasons

The temporal changes of the average precipitation indices at the 30 observation stations in Beijing
during 1981–2017 are shown in Figure 5. The annual mean precipitation (AMP), simple daily intensity
index (SDII), number of moderate precipitation days (R20mm), and number of violent precipitation
days (R50mm) indices reflect the overall condition of precipitation, while the others mainly focus
on extreme precipitation. Four indices (the AMP, maximum 5-day precipitation amount (Rx5day),
R20mm, and maximum consecutive wet days (CWD) indices) showed downward trends, while the
SDII, maximum 1-day precipitation amount (Rx1day), R50mm, precipitation on very wet days (R95p),
precipitation on extremely wet days (R99p), and maximum consecutive dry days (CDD) indices showed
an upward trend.
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To reflect the precipitation patterns in different parts of Beijing, the average precipitation indices
in different subareas during the wet seasons were estimated (Table 3). The average AMP indices value
for all stations was 430.53 mm; however, this value varied from 385.7 to 493.5 mm in different subareas,
with the highest value in the far suburb, followed by the central urban area. The average SDII for all
stations was 14.40 mm/d (range: 12.96–15.66 mm/d). The far suburb had the highest value of the SDII
(15.66 mm/d), followed by the central urban area (15.31 mm/d). The SDII values in the near northern
and southern suburb (14.38 and 14.85 mm/d, respectively) were higher than in the southwestern and
northwestern mountainous areas (13.21 and 12.96 mm/d, respectively). The values of the R20mm
and R50mm indices varied in the range of 5.49–7.55 and 1.13–1.74 d, respectively, and similar to the
AMP and the SDII, the highest values of both the R20mm and R50mm indices were in the far suburb,
followed by the central urban area.

Table 3. Average precipitation indices in different areas in the wet seasons.

Areas
Precipitation Indices

AMP
mm

SDII
mm/day

R20mm
day

R50mm
day

Rx1day
mm

Rx5day
mm

R95p
mm

R99p
mm

CWD
day

CDD
day

Urban area 447.43 15.31 6.80 1.52 85.70 121.76 46.93 15.86 3.98 17.19
North suburb 429.36 14.38 6.19 1.22 80.54 115.38 46.32 10.52 4.11 17.35
South suburb 385.70 14.85 5.81 1.28 77.04 110.95 35.98 11.23 3.72 18.30

Far suburb 493.05 15.66 7.55 1.74 86.10 128.79 47.50 11.71 4.12 15.21
Southwest

mountainous area 412.63 13.21 5.49 1.19 77.56 113.35 48.26 13.67 4.36 16.04

Northwest
mountainous area 415.03 12.96 5.79 1.13 66.85 102.86 35.34 10.73 4.30 15.48

All stations 430.53 14.40 6.27 1.35 78.96 115.51 43.39 12.29 4.10 16.59

The Rx1day and Rx5day indices varied in the range of 66.85–86.10 and 102.86–128.79 mm/d,
respectively, with the highest values in the far suburb, followed by the central urban area. The average
values of the R95p and R99p indices were in the range of 35.34–48.26 and 10.52–15.86 mm, respectively.
Notably, the central urban area had the highest value for the R99p indices. The maximum values of the
CWD indices were in the mountainous areas and the far suburb area, while the lowest values were in
the central urban area and near southern suburb. The highest values of CDD were in the suburb and
central urban area.

In general, the highest values of the precipitation indices that reflect the overall condition of
precipitation (the AMP, SDII, R20mm, and R50mm) were found in the far suburb, followed by the
central urban area. The value of the R99p indices in the central urban area was obviously higher than
that in other areas. In addition, the central urban area had a relatively lower value for the CWD indices
and higher value for the CDD indices.

3.3. Spatial Patterns of Precipitation Indices in the Wet Seasons

Table 4 lists the average values of the nonparametric test statistic index Z in different areas of
Beijing, and Figure 6 presents the spatial distribution of the Z value of the precipitation indices at each
station. The average Z value of the AMP indices for all stations was −0.56, and it ranged from −1.35 to
0.07 in different subareas. The AMP indices in the urban area showed a slight upward trend (the Z
value was positive), while it showed a downward trend in other subareas. It can be seen from Figure 6
that 40% of the stations (12 stations) presented an upward trend of the AMP indices (most of these
stations were located in the central urban area and the southern suburb). The stations in the urban
area (eight stations), except the Lugouqiao (LGQ) and You’an men (YAM) stations, showed an upward
trend, and among the five stations in the southern suburb, the Majuqiao (MJQ), Banbidian (BBD),
and Nangezhuang (NGZ) stations also showed an upward trend. The average Z value of the SDII
for all stations was 0.06, and it ranged from −0.29 to 0.17 in different subareas. In all subareas except
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the far suburb, the SDII presented a slightly upward trend; that is, approximately 53% (16 stations) of
stations presented a positive Z value. The average Z value of the R20mm and R50mm indices varied
from −1.58 to −0.47 and from −0.87 to 0.36, respectively, in different subareas. Notably, the R50mm
indices at 50% of stations showed an upward trend, and these stations were located in the central
urban area, southern suburb, and mountainous areas, while all stations presented a downward trend
of the R20mm indices.
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Figure 6. Spatial distribution of the Z value of extreme precipitation indices for (a) annual mean
precipitation (AMP), (b) simple daily intensity index, (c) number of moderate precipitation days
(R20mm), (d) number of violent precipitation days (R50mm), (e) maximum 1-day precipitation amount
(Rx1day), (f) maximum 5-day precipitation amount (Rx5day), (g) precipitation on very wet days (R95p),
(h) precipitation on extremely wet days (R99p), (i) maximum consecutive dry days (CWD) and (j)
maximum consecutive wet days (CDD).

Table 4. Trends of the precipitation indices in different subareas (Z).

Areas
Precipitation Indices

AMP
mm

SDII
mm/day

R20mm
day

R50mm
day

Rx1day
mm

Rx5day
mm

R95p
mm

R99p
mm

CWD
day

CDD
day

Urban area 0.07 0.04 −0.53 0.02 −0.29 −0.52 −0.17 −0.12 −0.24 1.13
North suburb −0.77 0.07 −1.58 −0.09 0.42 −0.72 0.22 0.65 −0.84 −0.66
South suburb −0.13 0.17 −0.47 0.28 −0.30 −0.30 −0.20 −0.49 0.27 −0.10

Far suburb −1.35 −0.29 −1.22 −0.87 −0.56 −1.16 −0.60 −0.41 −0.81 −0.12
Southwest

mountainous area −0.28 0.16 −0.63 0.10 −0.10 −0.18 −0.16 0 −0.32 −0.04

Northwest
mountainous area −0.89 0.21 −0.87 0.36 0.66 −0.09 0.83 0.70 −1.34 −0.17

All stations −0.56 0.06 −0.88 −0.03 −0.03 −0.50 −0.08 0.33 −0.55 0.01

The average Z value of the Rx1day and Rx5day indices varied from −0.56 to 0.66 and from −1.16
to −0.09, respectively, in the six subareas. Overall, 13 (12) stations presented an upward trend of
the Rx1day (Rx5day) indices. Most of these stations were located in the western mountainous areas.
Most of the stations located in the central urban area and southern suburb showed a downward
trend. The average Z value of the R95p and R99p indices was −0.08 and 0.33, respectively. Overall,
57% (17 stations) and 43% (13 stations) of stations presented an upward trend for the R95p and R99p
indices, respectively. The average Z value of the CWD indices in the six subareas ranged from −1.34 to
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0.27, and this value for all stations was −0.55, which means that the number of continuous maximum
wet days in most areas of Beijing was declining. The average Z value of the CDD indices in the six
subareas ranged from −0.66 to 1.13 (the average Z value for all stations was 0.01), and the values of
the CDD indices in the central urban area showed an obvious upward trend in comparison with the
other subareas.

3.4. Temporal Trends of Hourly Precipitation

The temporal changing trends of the annual maximum 1-h/3-h/6-h precipitation in different
subareas are shown in Figure 7, in which, a, b, c, and d represent the trends in urban area, near suburb
area, the far suburb area, and mountainous areas, respectively. It can been seen that the average value
of the annual maximum 1-h precipitation in the 2010s in the near suburbs was slightly higher than
that in the 2000s, and there were no obvious trends in other subareas; however, the average values
of the annual maximum 3-h and 6-h precipitation in the 2010s were higher than those in the past
three decades, especially in the urban and suburb areas compared to the mountainous areas; extreme
precipitation in 2012 and 2016 could be the main cause for this.Water 2019, 11, x FOR PEER REVIEW 12 of 18 
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(a) urban area, (b) near suburb area, (c) far suburb area, and (d) mountainous areas.

4. Discussion

4.1. Correlation between the Atmospheric Circulation Index and Precipitation Indices

El Niño and La Niña refer to the phenomenon of abnormal warming and cooling, respectively,
of the sea surface in the eastern Pacific Ocean. The Southern Oscillation refers to the phenomenon of
reversed abnormal changes of sea level pressure in the Pacific and Indian oceans. EI Niño–Southern
Oscillation (ENSO) events are a coupled oceanic–atmospheric phenomenon [32]. Previous studies
have shown that ENSO events have considerable impact on extreme precipitation in China, and the
East Asian Summer Monsoon (EASM) also has an important moderating effect on precipitation in
the eastern parts of China [33,34]. For example, Fu et al. [35] suggested that the annual precipitation
and the frequencies of extreme precipitation are correlated with the ENSO index across China, while
the relationship is different at different time scales and during different time periods. Miao et al. [36]
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concluded that the regional means of R95p were positively correlated with the ENSO across China
during 1957–2014. To investigate the influence of atmospheric circulation on precipitation in Beijing,
the Spearman’s correlation coefficient method was used to analyze the correlation between the extreme
precipitation indices and two atmospheric circulation indices—the ENSO index and the EASM index.
In this study, because of space limitations, only the correlations between the AMP, SDII, R95p, and R99p
precipitation indices and the atmospheric circulation index were estimated. The spatial distribution of
the correlation coefficients at each station is shown in Figure 8.

The ENSO index was positively correlated with AMP at all stations, and approximately 87%
of stations had positive correlations between the ENSO index and SDII indices. The ENSO index
exhibited statistically significant positive correlations with the R95p and R99p indices at 28 and 26
stations, respectively. Conversely, the AMP and SDII indices at most of the stations were negatively
correlated with the EASM index, and there were 29 and 28 stations that showed statistically negative
correlations with the EASM index. The results indicate that ENSO had a considerable influence on the
AMP, SDII, R95p, and R99p indices, while the EASM index had a weakening effect on the AMP, SDII,
R95p, and R99p indices in the wet seasons during 1971–2017 in Beijing. These findings are similar
to previous research results in Beijing; for example, Wei et al. [37] analyzed the correlation between
the extreme precipitation indices and large-scale climate variables in the Beijing–Tianjin sand source
region. They found the ENSO and EASM index had a significant impact on precipitation extremes
during 1960–2014. Song et al. [14] concluded that there was a significant relationship between the
EASM and the extreme precipitation indices in Beijing during the end of the 1970s and in the 1980s.
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4.2. Impact of Urbanization

The expansion of urbanization is considered a factor that could affect the pattern of wet seasons
precipitation in urban and downwind areas. Previous researchers have suggested that the pattern
of precipitation in Beijing might reflect the urbanization process and topography (i.e., the western
mountainous areas and eastern plain areas). In this study, the impact of urbanization on precipitation
was investigated through interpretation of Landsat remote sensing image data. The land use of the
Beijing area was divided into four types: water areas, forest areas, farmland areas, and impervious
areas. The temporal and spatial changes of land use during 1980–2017 in Beijing are shown in Figure 9a.
Forest areas are distributed mainly in the northwest and southeast mountainous areas, urban areas
(impervious areas) and farmland areas are distributed in the southeast plain areas, and the amount of
water area is very small. The process of urbanization in Beijing has manifested by filling the central
areas first, then expanding into surrounding areas. There was no significant increase of impervious
areas during 1980–1990. However, the extent of impervious areas expanded rapidly during 1990–2000,
at an annual growth rate of 0.48%, and expanded even more quickly (annual growth rate of 0.54%)
during 2000–2014, while there was decline during 2014–2017. The impervious areas in 2017 were only
73% of that in 2014, which may reflect the effects of the “Sponge City” construction that begun in
Beijing from 2014.
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With rapid urbanization, the land use pattern of Beijing has changed greatly in the past three
decades, especially in terms of the rapid expansion of impervious areas and large-scale reduction of
farmland areas. The changes in precipitation amount and intensity in the central urban areas were
compared with the variation of impervious areas in Beijing in different decades. As shown in Figure 9,
the impervious areas increased by 0.45%/year during 1981–2000 and expanded even more quickly
(annual growth rate of 0.54%) during 2000–2014. The AMP indices and the SDII presented obvious
upward trends during 2000–2014, and the rate of increase of impervious areas during this period was
much faster than in the previous period (1981–2000). It seems that urbanization may have had some
impact on the pattern of precipitation in Beijing.

In general, in the previous three decades, the variation in the pattern of precipitation in the central
urban area and surrounding areas in Beijing might be related to the change in the impervious areas
in Beijing.

4.3. Relationship between Elevation and the Precipitation Indices

The relationship between the average precipitation indices and the elevation of each observation
station (1981–2017) was analyzed in this study (Figure 10). The red solid line in Figure 10 is the linear
fitting line, and “r” is the Spearman’s correlation coefficient between the average precipitation indices
and elevation. It can be seen that the CWD index was correlated positively with elevation, while
the other indices were correlated negatively with the elevation at each station. This means that most
precipitation indices (except the CWD index) decreased as the elevation increased. The SDII, CWD,
and CDD indices exhibited a strong correlation with elevation; these indices passed the significance
test at the 99% confidence level. The Rx1day and R20mm indices passed the significance test at the
95% confidence level. The AMP, Rx5day, R50mm, R95p, and R99p indices had a slightly negative
correlation with elevation. These findings are consistent with previous studies that have indicated that
topography is one of the most important factors affecting the patterns of precipitation in Beijing [13,16].
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Figure 10. Relationship between elevation and precipitation indices for (a) annual mean precipitation
(AMP), (b) simple daily intensity index (SDII), (c) number of moderate precipitation days (R20mm),
(d) number of violent precipitation days (R50mm), (e) maximum 1-day precipitation amount (Rx1day),
(f) maximum 5-day precipitation amount (Rx5day), (g) precipitation on very wet days (R95p),
(h) precipitation on extremely wet days (R99p), (i) maximum consecutive dry days (CWD) and
(j) maximum consecutive wet days (CDD).

5. Conclusions

Based on the daily and hourly precipitation data from 1981 to 2017, the comprehensive
spatiotemporal variability of precipitation in Beijing was estimated and analyzed using multiple
methods in this study. The main conclusions can be summarized as follows:

(1) The average annual precipitation in wet seasons showed a downward trend, while the SDII
showed an upward trend during 1981–2017. Specifically, annual precipitation in the 2000s was
significantly lower than in the past two decades, while it showed an upward trend during 2010–2017.
Spatially, annual precipitation in the central urban area showed an obvious change during the study
period. In the first part of the 21st century, the amount of annual precipitation in the central urban
area was almost as great as that in Miyun county, which was the storm center during the previous
three decades.

(2) Among the 10 precipitation indices, the precipitation indices which related to flood events,
such as the SDII, Rx1day, R50mm, R95p, and R99p, showed a slight upward trend, which means the
possibility of floods increased during 1981–2017; the average values of the annual maximum 3- and 6-h
precipitation in the 2010s were higher than those in the past three decades, especially in urban and
suburb areas compared to mountainous areas.

(3) The ENSO index has a considerably positive influence on the precipitation pattern, while
the EASM index has a weakening effect on the pattern of wet seasons precipitation in Beijing.
The precipitation pattern in the central urban area and surrounding suburbs in Beijing might be related
to the change of impervious areas, and the topography was confirmed as one of the most important
factors affecting the precipitation pattern in Beijing.
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On the basis of the above, this research not only verified the conclusions of former researchers,
but also made some new discoveries. The finding that the annual precipitation was decreased in
the past few decades is consistent with findings from Zhai et al. and Song et al. [16,18], and the
amount of precipitation in the central urban area is indeed slightly higher than in mountainous areas,
and this trend is more obvious after the 2010s. However, the amount of extreme precipitation was
increased during the study periods and this conclusion is different from the findings of previous studies;
the extreme precipitation that occurred in 2012 and 2016 could be the main causes for this. There are
many factors that affect regional precipitation distribution and variations, especially in urban areas.
Both global climate change and regional water cycles affect the temporal and spatial variations of local
precipitation. However, the physical mechanism of precipitation variation is highly complicated [28]
and beyond the scope of this study. Instead, possible correlations between the atmospheric circulation
index, local factors (urbanization and topography), and precipitation were discussed in this study.
It is well known that several other factors (i.e., higher aerosol concentration, urban heat island effects,
and large surface roughness) are important, and these will be further investigated in future studies.

Author Contributions: M.R. designed the technical routes of the study; M.R. analyzed the data and wrote the
manuscript; Z.X., B.P., and J.L. proposed suggestions to improve the quality of the paper; and L.D. provided the
observation data. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Key R&D Program of China (2017YFC1502701) and
the National Natural Science Foundation of China (51879008). The authors wish to thank the Beijing Hydrology
Bureau for providing the ground observation data.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Shi Goswami, B.N.; Venugopal, V.; Sengupta, D. Increasing trend of extreme rain events over India in a
warming environment. Science 2006, 314, 1442–1445. [CrossRef] [PubMed]

2. Zhang, Q.; Xiao, M.Z.; Singh, V.P. Max-stable based evaluation of impacts of climate indices on extreme
precipitation processes across the Poyang lake basin, China. Glob. Planet. Chang. 2014, 122, 271–281.
[CrossRef]

3. Guan, Y.H.; Zheng, F.L.; Zhang, X.C.; Wang, B. Trends and variability of daily precipitation and extremes
during 1960–2012 in the Yangtze river basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [CrossRef]

4. Roxy, M.K.; Ghosh, S.; Pahak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M.
A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 708. [CrossRef]

5. Vellore, R.K.; Krishnan, R.; Pendharkar, J.; Choudhary, A.D.; Sabin, T.P. On the anomalous precipitation
enhancement over the Himalayan foothills during monsoon breaks. Clim. Dynam. 2016, 43, 2009–2031.
[CrossRef]

6. Krishnan, R.; Sabin, T.P.; Vellore, R.; Mujumar, M.; Sanjay, J.; Goswami, B.N.; Hourdin, E.; Dufresse, J.L.;
Terry, P. Deciphering the desiccation trend of the south Asian monsoon hydroclimate in a warming world.
Clim. Dynam. 2015, 47, 1007–1027. [CrossRef]

7. IPCC. Climate Change 2013: The Physical Science Basic Contribution of Working Group 7 to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2013.

8. Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [CrossRef]
9. Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int.

2005, 31, 1167–1181. [CrossRef]
10. Jones, P.D.; Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods

and illustrations. Int. J. Climatol. 1996, 16, 361–377. [CrossRef]
11. Groisman, P.; Keal, T.; Easterling, D.; Knight, R.; Jamason, P.; Hennessy, K.; Suppiah, R.; Page, C.; Wibig, J.;

Fortuniak, K.; et al. Changes in the probability of extreme precipitation: Important indicators of climate
change. Clim. Chang. 1999, 42, 243–283. [CrossRef]

12. Lu, Y.Q.; Yan, Y.; Ding, D.; Zhao, C.L.; Song, Y.; Zhao, J.Z. Trends of extreme precipitation in China and their
influence on urban drainage pressure. Acta Ecol. Sin. 2018, 38, 1661–1667. (In Chinese)

http://dx.doi.org/10.1126/science.1132027
http://www.ncbi.nlm.nih.gov/pubmed/17138899
http://dx.doi.org/10.1016/j.gloplacha.2014.09.005
http://dx.doi.org/10.1002/joc.4776
http://dx.doi.org/10.1038/s41467-017-00744-9
http://dx.doi.org/10.1007/s00382-013-2024-1
http://dx.doi.org/10.1007/s00382-015-2886-5
http://dx.doi.org/10.3354/cr00953
http://dx.doi.org/10.1016/j.envint.2005.03.004
http://dx.doi.org/10.1002/(SICI)1097-0088(199604)16:4&lt;361::AID-JOC53&gt;3.0.CO;2-F
http://dx.doi.org/10.1023/A:1005432803188


Water 2020, 12, 716 17 of 18

13. Willems, P. Revision of urban drainage design rules after assessment of climate change impacts on precipitation
extreme at Uccle, Belgium. J. Hydrol. 2013, 496, 166–177. [CrossRef]

14. Song, X.M.; Zhang, J.Y.; Zou, X.J.; Zhang, C.H.; AghaKouchak, A.; Kong, F.Z. Changes in precipitation
extreme in the Beijing metropolitan area during 1960–2012. Atmos. Res. 2019, 222, 134–153. [CrossRef]

15. Palumbo, A.; Mazzarella, A. Rainfall statistical properties in naples. Mon. Weather Rev. 1980, 108, 1011–1015.
[CrossRef]

16. Song, X.M.; Zhang, J.Y.; Liu, J.F.; Yang, M. Spatial-temporal variation characteristics of precipitation pattern
in Beijing. Shuili Xuebao 2015, 46, 525–535. (In Chinese)

17. Song, X.M.; Zhang, J.Y.; Kong, F.Z.; Wang, G.Q.; He, R.M.; Zhu, K. Spatical-temporal variation characteristics
of precipitation extremes in Beijing. Adv. Water Sci. 2017, 28, 161–173. (In Chinese)

18. Zhai, Y.Z.; Guo, Y.L.; Zhou, J.; Guo, N.; Wang, J.S.; Teng, Y.G. The spatio-temporal variability of annual
precipitation and its local impact factors during 1724–2010 in Beijing, China. Hydrol. Process. 2014, 28,
2192–2201. [CrossRef]

19. Zheng, Z.F.; Wang, A.W.; Gao, H. Characteristics of extreme precipitation events in summer and its effect on
urbanization in Beijing area. Meteorol. Mon. 2013, 39, 1635–1641. (In Chinese)

20. Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Bruent, M.;
Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of
the twentieth century: The HadEX2 dataset. J. Geophys. Res. 2013, 118, 2098–2118. [CrossRef]

21. Pinskwar, I.; Chorynski, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in
Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2019, 135, 773–787. [CrossRef]

22. Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during
1980–2013. Int. J. Climatol. 2018, 38, 125–141. [CrossRef]

23. Tan, M.L.; Ibrahim, A.L.; Crachnell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan
River Basin, Malaysia. Int. J. Climatol. 2017, 37, 3780–3797. [CrossRef]

24. Wang, R.; Chen, J.Y.; Chen, X.W.; Wang, Y.F. Variability of precipitation extremes and dryness/wetness over
the southeast coastal region of China, 1960–2014. Int. J. Climatol. 2017. [CrossRef]

25. Zhao, G.J.; Zhai, J.Q.; Tian, P.; Zhang, L.M.; Mu, X.M.; An, Z.F.; Han, M.W. Variations in extreme precipitation
on the Loess plateau using a high-resolution dataset and their linkages with atmospheric circulation indices.
Theor. Appl. Climatol. 2018, 133, 1235–1247. [CrossRef]

26. Bai, L. Study on Near Surface Urban Heat Island Effect of Beijing City Based on Remote Sensing; Nanjing University
of Information Science & Technology: Nanjing, China, 2017. (In Chinese)

27. Song, X.M.; Zhang, J.Y.; Achakouchak, A. Rapid urbanization and changes in trends and spatial-temporal
characteristics of precipitation in the Beijing metropolitan area. J. Geophys. Res. Atmos. 2014, 119, 11250–11271.
[CrossRef]

28. Wang, J.L.; Zhang, R.H.; Wang, Y.C. Areal differences in diurnal variations in summer precipitation over
Beijing metropolitan region. Theor. Appl. Climatol. 2012, 110, 395–408. [CrossRef]

29. Hu, Y.J.; Kong, X.B.; Zhang, B.D. Spatiotemporal features of land use change in Beijing in the past 30 years.
J. China Agric. Univ. 2018, 23, 1–14. (In Chinese)

30. You, Q.L.; Kang, S.C.; Aguilar, E.; Yan, Y. Changes in daily climate extremes in the eastern and central Tibetan
Plateau during 1961–2005. J. Geophys. Res. 2018, 113. [CrossRef]

31. Skansi, M.M.; Brunet, M.; SigróJ, A.E.; Groening, J.A.A.; Bentancur, O.J.; Geier, Y.R.C.; Amaya, R.L.C.;
Jácome, H.; Ramos, A.M.; Rojas, C.O.; et al. Warming and wetting signals emerging from analysis of changes
in climate extreme indices over South America. Glob. Planet. Chang. 2013, 100, 295–307. [CrossRef]

32. He, L.S. Spatial-Temporal Variation of the Precipitation in North China and the Impact Factors of Precipitation
Reduction; Nanjing University of Information Science & Technology: Nanjing, China, 2011. (In Chinese)

33. Li, S.P. Impact of Atmospheric Circulation Patterns over East Asia on Summer Precipitation in Eastern China;
Lanzhou University: Lanzhou, China, 2015. (In Chinese)

34. Wu, W.B.; You, Q.L.; Wang, D.; Ruan, N. Characteristics of extreme precipitation and associated anomalous
circulation over Eastern China during boreal summer. Clim. Environ. Res. 2018, 23, 47–58. (In Chinese)

35. Fu, G.B.; Yu, J.J.; Yu, X.B.; Ouyang, R.L.; Zhang, Y.C.; Wang, P.; Liu, W.B.; Min, L.L. Temporal variation of
extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2013.05.037
http://dx.doi.org/10.1016/j.atmosres.2019.02.006
http://dx.doi.org/10.1175/1520-0493(1980)108&lt;1041:RSPIN&gt;2.0.CO;2
http://dx.doi.org/10.1002/hyp.9772
http://dx.doi.org/10.1002/jgrd.50150
http://dx.doi.org/10.1007/s00704-018-2372-1
http://dx.doi.org/10.1002/joc.5165
http://dx.doi.org/10.1002/joc.4952
http://dx.doi.org/10.1002/joc.5113
http://dx.doi.org/10.1007/s00704-017-2251-1
http://dx.doi.org/10.1002/2014JD022084
http://dx.doi.org/10.1007/s00704-012-0636-8
http://dx.doi.org/10.1029/2007JD009389
http://dx.doi.org/10.1016/j.gloplacha.2012.11.004
http://dx.doi.org/10.1016/j.jhydrol.2013.02.021


Water 2020, 12, 716 18 of 18

36. Miao, C.Y.; Duan, Q.Y.; Sun, Q.H.; Lei, X.H.; Li, H. Non-uniform changes in different categories of precipitation
intensity across China and the associated large- scale circulations. Environ. Res. Lett. 2019, 14, 025004.
[CrossRef]

37. Wei, W.; Shi, Z.J.; Yang, X.H.; Wei, Z.; Liu, Y.S.; Zhang, Z.Y.; Ge, G.; Zhang, X.; Guo, H.; Wang, B.T. Recent
trends of extreme precipitation and their teleconnection with atmospheric circulation in the Beijing—Tianjin
sand source region, China, 1960–2014. Atmosphere 2017, 8, 83. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1748-9326/aaf306
http://dx.doi.org/10.3390/atmos8050083
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methodology 
	Study Area Description 
	Data Description 
	Precipitation Data 
	Land Use Data 

	Methodology Description 
	Extreme Precipitation Indices 
	Trend Analysis Methods 
	Correlation Analysis 


	Results Analysis 
	Annual Precipitation Description 
	Temporal Trends of Daily Precipitation Indices in the Wet Seasons 
	Spatial Patterns of Precipitation Indices in the Wet Seasons 
	Temporal Trends of Hourly Precipitation 

	Discussion 
	Correlation between the Atmospheric Circulation Index and Precipitation Indices 
	Impact of Urbanization 
	Relationship between Elevation and the Precipitation Indices 

	Conclusions 
	References

