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Abstract: A classical approach to flood frequency modeling is based on the choice of the probability
distribution to best describe the analyzed series of annual or seasonal maximum flows. In the paper,
we discuss the two main problems, the uncertainty and instability of the upper quantile estimates,
which serve as the design values. Ways to mitigate the above-mentioned problems are proposed
and illustrated by seasonal maximum flows at the Proszówki gauging station on the Raba River.
The inverse Gaussian and generalized exponential distributions, which are not commonly used for
flood frequency modeling, were found to be suitable for Polish data of seasonal peak flows. At the
same time, the heavy tailed distributions, which are currently recommended for extreme hydrological
phenomena modeling, were found to be inappropriate. Applying the classical approach of selecting
the best fitted model to the peak flows data, significant shifts in the upper quantile estimates were
often observed when a new observation was added to the data series. The method of aggregation,
proposed by the authors, mitigates this problem. Elimination of distributions that are poorly fitted to
the data series increases the stability of the upper quantile estimates over time.

Keywords: maximum flow; design value; estimation method; model selection procedure;
models aggregation

1. Introduction

The main goal of flood frequency analysis (FFA) is to assess the size of the probable flood peak
flows. As the true probability distribution function (PDF), which describes the analyzed series of
annual or seasonal maximum flows, is not known, the flood frequency analysis refers to a hypothetical
distribution whose parameters are estimated based on the observation series. Due to many practical
applications, interest has been focused on the upper quantile estimates. For example, their values
are necessary when most hydraulic structures are dimensioned and when the limits of flood zones
are determined. The most commonly used design value is the 1% quantile estimate (Q̂max1%) and it
represents the probable maximum flow that is exceeded on average once in a hundred years. The 1%
quantile is equivalent to the 0.99th quantile in the notation of probability of non-exceedance.

Research on FFA has been conducted for almost a century [1,2], resulting in numerous PDFs
proposed for describing the maximum flow series. According to the World Meteorological Organization
(WMO) in 1989, the Gumbel and log-normal distributions were the most widely used, followed by
log-Pearson 3 and Pearson 3 distributions [3]. Nowadays, heavy-tailed distributions are recommended
such as the generalized extreme values distribution (GEV), generalized log-logistic (GLL), or log-Pearson
3 (LP3) [4–6]. However, the heavy-tailed form of hydrological variables is not sufficiently supported
in Polish conditions [7,8] and soft-tailed distributions appear to be more adequate [9]. In general,
the selection of the appropriate distribution function for peak discharges modeling is to some extent
subjective and driven by the regional regime of the rivers or the particular country’s regulations
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(e.g., [4,10,11]). Therefore, one cannot point out one model that would be the best or even better than
the others to be generally used for the estimation of flood quantiles.

For annual and seasonal maximum flow models, the unbounded distributions with non-negative
skewness are usually used. In this paper, two-parameter distributions with the scale and shape
parameters and lower bounded at zero were investigated, instead of their three-parameter equivalents,
since two parameters are more reliable to estimate from short hydrological data series, which are
usually available [3,12]. Note that two-parameter distributions are commonly used for academic and
practical applications when dealing with short measurement series and when there is no regional
information. The list of probability density functions analyzed here is presented in Table 1. The domain
of the shape parameter k is given, while the scale parameter α > 0 and random variable x ≥ 0.

Table 1. Probability density functions used in the paper.

Distribution Probability Density Function (PDF)

Gamma (Ga) f (x) = αk

Γ(k)xk−1e−αx; k > 0

Weibull (We) f (x) = k
α

(
x
α

)k−1
exp

[
−

(
x
α

)k
]
; k > 0

Inverse Gaussian (IG) f (x) = α
√

πx3
exp

[
−

(
α− k

αx
)2

/x
]
; k > 0

Generalized exponential (GE) f (x) = αk(1− e−αx)(k−1)e−αx; k > 0

Log-normal (LN) f (x) = 1
xk
√

2π
exp

[
−

(ln(x)−α)2

2k2

]
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Log-logistic (LL) f (x) = 1
α
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] 1
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1 +

{
−

kx
α

} 1
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]−2

; k < 0

Log-Gumbel (LG) f (x) = 1
α

[
−

kx
α

] 1
k−1

exp
{
−

[
−

kx
α

] 1
k

}
; k < 0

The distributions of gamma (Ga), Weibull (We), log-normal (LN), log-logistic (LL), and log-Gumbel
(LG) are commonly used in FFA, while the inverse Gaussian (IG) and generalized exponential (GE)
distributions are not in standard practice. The inverse Gaussian has alternative names such as the
Wald distribution and, in Poland, the convective diffusion distribution [13] and has revealed a good
fit to the numerous annual maximum flow series for Polish lowland rivers [9]. The generalized
exponential distribution developed by Gupta and Kundu [14] has been compared to gamma, Weibull,
Pareto, and log-normal distributions [15–17], since all of them have a positive skewness. In Poland,
Brzeziński presented the possibility of using GE distribution in order to describe the random properties
of maximum flows [18], while Markiewicz introduced GE to flood frequency analysis of annual Polish
data [19]. In the last paper, the GE distribution has been an alternative to IG distribution and has
proven to be promising in modeling the annual peak flows for Polish rivers.

To select the theoretical distribution for the observed data series, the method of the moment ratio
diagram (MRD) is used in many fields [20,21]. When two-parameter distributions are considered,
the skewness coefficient is usually plotted against the variation coefficient both for the candidate
PDFs and for the data series, and their relative locations are compared [22]. The MRD based on the
L-moment ratios is superior to the conventional MRD, since the results from the L-moment MRD
are more compatible with the results obtained from the goodness-of-fit statistics than in the case of
conventional MRD [5,23,24].

The scope of this study refers to the seasonal maximum flows. In Poland and countries with similar
hydrological regimes, two general hydrological seasons are considered: the summer season, which in
Poland goes from May 1 to October 31, and the winter season from November 1 to April 30. The floods
occurring in each season have different origins: rainfalls in summer and thaws in winter. However,
nowadays, when global climate changes are observed, the genesis of floods in particular seasons is not
as clear and other factors are becoming more important such as land cover, retention, or air circulation,
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which differs in summer and winter [25–27]. At present, very few snowmelt floods are observed [28]
and we can at most say that there are floods from the mixture of rain and snowmelt. The snowmelt as a
factor causing floods is of little relevance for some regions like the northern United Kingdom, western
France, or northern Iberia [28,29]. The seasonal approach is beneficial in analyzing the impact of
climatic change on the high water regime due to the greater vulnerability of seasonal flood generation
processes on climate drivers [30,31]. The comparison of annual and seasonal approaches for modeling
the peak flow series of Polish data has been investigated in theoretical and real aspects [32,33].

The seasonal maximum flows are genetically homogeneous [34,35]. If they are independent,
the product model of seasonal distributions can be used [35,36]. Although the issue of the independence
of seasonal peak flows can be disputed [37], for the Polish hydrological regime, the assumption of the
independence of summer and winter maximum flows is reasonable [32,33,38]. Otherwise, the bivariate
distributions or copula functions ought to be used [38,39].

The aim of the study was to evaluate the accuracy and stability of the estimates of seasonal
maximum flows and give suggestions for their improvement. A particular purpose was the assessment
of the applicability of two distributions, which has not been used for the modeling of seasonal
maximum flows thus far, and these are the generalized exponential (GE) and the inverse Gaussian (IG)
distributions. The second particular goal of this study was a popularization of the aggregation method,
which was developed by the authors in [40], but has not been investigated within the context of flood
frequency analysis as yet. Here, the influence of the number and type of competitive distributions
on the aggregation of seasonal flood quantile estimates was analyzed. The novelty of this research
consists of attracting the attention of researchers to the problem of changing design estimates along
with the lengthening observational series. To the best our knowledge, this issue has not been addressed
in theoretical studies, however, its scrutinized analysis is necessary for engineering, planning, and
water-economic applications. As we are going to show here, the aggregation method provides design
values that are more stable than in the case of choosing one as the best model.

2. Case Study

In this paper, the data of seasonal maximum flows from 37 gauging stations at Polish Rivers were
investigated. The stations are listed in Appendix A (Table A1), along with the observation periods
and the mean value of both the summer and winter maximum flows, while the location of all stations
is illustrated in Figure 1. The studies mainly focused on the catchment of the Vistula Basin, which
is characterized by high flood potential in its southern part. Here, the dominance of summer floods
caused by intensive, long-lasting rainfall is observed. Gauging stations in the central part of the country
represent mainly a snowmelt or mixed snowmelt-rainfall flood regime.

The studies presented in the paper are illustrated for the Proszówki gauging station on the Raba
River (no. 17, Figure 1). The data series of seasonal peak flows from the period 1951–2016 was
considered. A choice of this hydrological station was caused by the main reason to reflect the difficulties
hydrologists come across in their work. Proszówki Station is the closing station of the Raba River
catchment. The reduction of flood peaks at Proszówki is due to the Dobczyce Reservoir (put in use in
1986) situated about 30 km upstream. The reservoir, which has total storage capacity of 127 million m3

and a flood storage capacity of about 30 million m3, is a multi-purpose reservoir for flood protection,
hydropower generation, and drinking water supply. In the face of a lack of information about water
management for the reservoir and the awareness of the importance of naturalization of the flow,
we decided to apply the simplified method for the reconstruction of the seasonal flood peak flows
based on regression analysis with the reservoir upstream station, Stróża, for the common observation
period before 1986, the coefficients of determination being equal to 82.36% for winter and 74.25% for
summer, respectively. It was obvious that this simplified procedure introduced additional uncertainty
to the data series. However, there are other sources of uncertainty one cannot avoid (e.g., uncertainties
of flow measurements, upper parts of rating curves, and in data processing and control). Despite the
continuous development of measurement methods, the assessment of high waters is still not perfect.
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Moreover, we cannot quantify or eliminate uncertainty from historical data, when the measurement
methods were much less precise than today. All of these uncertainties, together with different criteria
of the best model selection, makes the problem of design quantile assessment equivocal, what is shown
in the next sections.Water 2019, 11, x FOR PEER REVIEW 4 of 18 
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Figure 1. The location of 37 gauging stations at Polish rivers that were analyzed in this paper.

The bar charts of regulated (observed) and unregulated (reconstructed) maximum seasonal flow
series are presented in Figure 2. Then, flood frequency analysis was performed with unregulated
flood data (blue columns in Figure 2). The applied procedure diminished the decreasing trends in the
average value of the maximum seasonal flows caused by the reduction in the culmination of flood
waves by the reservoir (red and blue lines in Figure 2).

The mean of unregulated flow maxima in 1951–2016 for summer peak flows was 433 (m3/s), and for
winter peak flows it was 213 (m3/s), while the variation coefficient Cv was 0.718 and 0.569, respectively.
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3. Materials and Methods

3.1. Model Selection Procedures

To determine which of the alternative models was the best for modeling the maximum flow series
of each season, the following procedures of model selection were used in this paper:

1. The AIC criterion (Akaike information criterion) is based on the likelihood function of distribution
maximized with respect to the parameter values, also taking into account the number of
distribution parameters k. The AICi selection statistic is defined by Equation (1) for the i-th
distribution of the probability density function fi from among m alternative distributions and for
i = 1, .., m [41]:

AICi = 2k− 2·max
θ̂

[∑N

j=1
ln fi

(
θ̂i, x j

)]
(1)

where N is the sample size and θ̂i denotes the parameters of the i-th distribution, which can be
determined by any estimation method. In this paper, three methods were used: the method of
conventional moments (MOM) [42]; the linear moments method (LMM) [43]; and the maximum
likelihood method (MLM) [44].

2. The QK (Quesenberry–Kent) procedure is based on the density function modified to the form
given by Equation (2), which is invariant under a scale transformation of the data [45]:

Si = − ln
{∫

∞

0
fi(λx1, . . . ,λxN)λ

N−1dλ
}

(2)

where fi is the probability density function of i-th distribution with its scale parameter equal to
one, and the unknown shape parameter that is estimated by the MLM method. To facilitate the
analysis of the results and to compare the positive numbers with each other, the original selection
statistic is preceded by a minus sign and a minimum value from all models is determined as the
solution, instead of the maximum value.

3. The KS (Kolmogorov–Smirnov) goodness of fit test is based on the Kolmogorov–Smirnov statistics
defined by Equation (3) [46,47]:

Dmax
i = max

j=1, ...,N

∣∣∣∣pi
(
x j:N

)
− p̂ j:N

∣∣∣∣ (3)

where pi
(
x j:N

)
denotes the theoretical probability of the j-th element of the ordered sample x j:N ≥

. . . ≥ xN:N with its empirical probability p̂ j:N, expressed here by the Weibull formula (i.e., p̂ j:N =

j/(N + 1)). The parameters of distribution can be estimated using three methods. The advantage
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of the Kolmogorov–Smirnov statistics is the independence of probability distribution Dmax from
the CDF that is tested [48].

4. The R (range) procedure has two variants. The first variant, R1, is based on the distance between
the estimate of the 1% quantile from the maximum likelihood method and its value from the
method of moments, and it is calculated using Equation (4) [49]:

R1
i =

∣∣∣∣ x̂MLM
1%(i) − x̂MOM

1%(i)

∣∣∣∣ (4)

Another variant of range statistic is R2, proposed by the authors [19], and is based on the distance
between the 1% quantile estimate from the maximum likelihood method and its value from the linear
moments method. The R2 statistic is defined by Equation (5):

R2
i =

∣∣∣∣ x̂MLM
1%(i) − x̂LMM

1%(i)

∣∣∣∣ (5)

Regarding the decision rules of model selection procedures 1–4, the probability distribution with
the smallest value of the selection statistic was the closest to the true population distribution among all
competing models, while the model with the highest value of the selection statistic was the least fitting.
The efficiency of the above model selection procedures has been studied in the literature for various
configurations of distributions [19,49–51].

3.2. Models Aggregation

In the classical approach, to estimate the probable maximum flow that serves as a hydrological
design value, the commonly used methods are based on the choice of the best probability distribution
from among m candidate distributions (i = 1, . . . , m). Meanwhile, the aggregation method proposed
by the authors uses all of the information contained in these distributions by aggregating quantiles of
individual distributions Q̂maxp i in the form of the weighted average. The formula of the aggregated
(average) quantile Qmaxp is expressed by Equation (6) [40]:

Qmaxp =
m∑

i=1

wi·Q̂maxp i (6)

The weights wi are based on the value of the AICi criterion according to Equation (7):

wi =
exp

(
−

1
2δi

)
∑m

r=1 exp
(
−

1
2δr

) (7)

where δi = AICi −min[AIC1, . . . , AICm] is the difference between the AIC value for the i-th model
and the lowest value of AIC among all distribution candidates, which in fact means the best fitted
distribution to the data series, according to the AIC criterion. For the set of PDFs with the same number
of parameters, Equation (7) reduces to Equation (8), and then the likelihood function is used instead of
the AIC value:

wi =
Li∑m

r=1 Lr
(8)

Note that the weights wi can be interpreted (based on the Bayes theorem with equal a priori
probabilities for all models) as the a posteriori probabilities of the adequacy of the i-th model. Hence,
the aggregated quantile represents the expected value of m quantiles conditioned by the set of m
models used for estimation as the candidate models.
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4. Results

4.1. Models for Seasonal Maximum Flows of Polish Data

For making the initial selection of appropriate distributions for Polish data of seasonal peak flows,
both conventional and linear moment ratio diagrams MRD were plotted in Figure 3. For two-parameter
distributions, both the relation of conventional skewness coefficient Cs versus variation coefficient Cv
(Figure 3a) and the relation of linear skewness coefficient LCs versus linear variation coefficient LCv
(Figure 3b) were plotted as the curves, while the above relations for the data series were plotted as the
point. Point number 17 (red and blue) in Figure 3 represents Proszówki Station on the Raba River,
which will serve here for the case study.
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When a point representing a gauging station is near a line that corresponds to a distribution,
it means that this distribution may be the best fit for the peak flow series from the station. In an ideal
situation, when the data follow a given distribution, an exact match would be achieved for an infinite
sample. Since the data series are of limited length, the above graphs can only provide an approximation
and should be established by procedures of model selection. The analysis of this issue is provided in
Section 4.2.2.

In Figure 3, there is a range of the values for Cv-Cs and LCv-LCs, respectively, which was achieved
by a large group of Polish measurement series and not covered by two-parameter distributions usually
used in FFA, marked by solid lines. The dotted lines illustrate inverse Gaussian and generalized
exponential distributions, which appear to fit well within the scope of Polish data of seasonal peak flows.
This is particularly evident for winter peak flows in Figure 3a and summer peak flows in Figure 3b,
where about half of the stations are out of range to match the commonly used probability distributions.

4.2. Distribution Identification and Its Parameter Estimation: Comparative Study

4.2.1. Estimation of Quantiles of the Maximum Flow Distribution

For seasonal maximum flows at Proszówki Station, seven hypothetical distributions were
successively assumed (see Table 1). For each of the PDFs, two goodness of fit tests, χ2 and the
Kołmogorov–Smirnov tests [47], were performed and both of them determined that all seven PDFs were
acceptable under the null hypothesis. The estimates of the 1% quantile calculated with three methods
are shown in Table 2 along with the standard deviation (σ) of the estimates for the individual methods.

Table 2. Estimates of the 1% quantile of seasonal maximum flows (m3/s) from the period 1951–2016
at the Proszówki gauging station and assuming selected two-parameter distributions along with the
standard deviation (σ) of estimates.

Season Estimation Method
Probability Distribution

σ
Ga We GE IG LN LL LG

Summer
MOM 1457 1403 1482 1570 1577 1533 1530 63.26

LMM 1477 1391 1515 1718 1760 1965 2247 302.36

MLM 1435 1348 1468 1941 1983 2528 10760 3417.87

Winter
MOM 590 554 609 630 676 642 656 41.54

LMM 585 535 613 653 755 739 858 112.54

MLM 566 539 596 671 780 803 2063 540.33

For both seasons, the bolded number represents the smallest value Q̂max1% among all considered
models, which is yielded by the Weibull distribution along with the MLM for the summer season
and with LMM for the winter one. The underlined number represents the greatest value Q̂max1% and,
for both seasons, it comes from the log-Gumbel distribution along with the MLM estimation method,
and it stands out with a huge value in comparison with other models. The heavy-tailed distributions,
represented by the LL and LG, were included in our studies, although their poor fit to the Polish data
(see Figure 3) may result in the overestimation of Q̂max1%, especially in the case of the LG distribution
and the MLM. The MLM’s estimators of quantiles are unbiased only if a parent (true) distribution is
used for the estimation and the sample is large (asymptotic). Moreover, the MLM concentrates on the
main mass of probability (i.e., far from the upper quantiles). In contrast, the MOM or LMM generally
produces less biased estimators of upper quantiles [52–54]. Please also note that the MOM, and to a
lesser extent the LMM, is more robust to the misspecification of the applied statistical models, and the
values of the estimators of the upper quantiles are similar, regardless of the model applied (see the
values of the standard deviation in the last column).
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Regarding the variability of the quantile estimates for a given distribution depending on the
choice of the estimation method, the Ga, We, GE distributions remain the least sensitive to the choice
of estimation method, while the LG is the most sensitive.

4.2.2. Uncertainty of Distribution Selection

To determine which of the alternative models is the best for modeling the maximum flow series of
each season, four procedures of model selection were used (Section 3.1) and the results are presented
in Table 3.

Table 3. The results of the model selection procedures for the two-parameter distributions being fitted
to the seasonal maximum flows in 1951–2016 at the Proszówki gauging station.

Season Model Selection
Procedure

Estimation
Method

Probability Distribution

Ga We GE IG LN LL LG

Summer

AIC criterion
MOM 921.1 923.1 920.7 934.3 927.9 936.6 2933

LMM 921.3 923.0 920.9 928.9 923.8 925.2 1128

MLM 921.0 922.8 920.7 926.5 923.0 923.6 942.5

QK procedure MLM 460.0 461.0 459.9 462.7 460.9 461.3 470.6

KS test

MOM 0.063 0.074 0.058 0.069 0.066 0.122 0.224

LMM 0.061 0.075 0.055 0.054 0.056 0.084 0.117

MLM 0.073 0.084 0.059 0.088 0.051 0.048 0.110

R procedure R1 22 56 14 371 407 995 9230

R2 42 44 47 222 223 562 8512

Winter

AIC criterion

MOM 804.2 808.7 802.9 804.8 803.9 807.0 1171

LMM 804.1 808.5 803.0 804.1 803.3 803.7 878.6

MLM 803.8 808.5 802.8 804.0 803.3 803.5 818.2

QK procedure MLM 401.7 404.1 401.2 401.8 401.4 401.5 454.6

KS test

MOM 0.089 0.111 0.077 0.058 0.060 0.083 0.147

LMM 0.089 0.115 0.077 0.055 0.056 0.058 0.095

MLM 0.091 0.119 0.076 0.066 0.058 0.053 0.113

R procedure R1 24 15 13 41 45 162 1407

R2 19 4 17 19 16 64 1206

For each model selection procedure and estimation method, the best fitting distribution is marked
in bold, while the PDFs fitting at the second and third place are marked in italics and underlined fonts,
respectively. For instance, for the summer peak flows, according to the AIC criterion and using the
MOM estimation method, the distribution best fitting the data was GE, followed by Ga and We, which
is identical to the results of the AIC criterion and the LMM and MLM estimation methods, and also
coincides with the results of the R1 procedure. The GE distribution also turns out to be the best fit to
the data among all competitive PDFs, after which the LN and LL are placed. The GE distribution also
turns out to be the best fit to the data among all competitive PDFs, when QK procedure or KS test along
with MOM method of estimation are applied. In both cases, the second and third place are occupied
by Ga and LN distributions, respectively. For the KS test with the LMM estimation method, the best
distribution was IG, followed by GE and LN, while with the MLM estimation method, surprisingly,
the best was the LL distribution, followed by LN and GE, respectively. Finally, according to the R2

selection procedure, first place was taken by the Ga distribution, followed by We and GE.
In the case of the winter maximum flows, there was a very similar layout of the best fitted

distributions (i.e., the first place) as was in the case of the summer maximum flows. The GE distribution
was the best according to the AIC criterion, regardless of the estimation method and according to
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the QK and R1 procedures. The IG and LL distributions occupied first place when the KS test was
applied, together with the LMM and MLM estimation methods, respectively. Except for the case of
the R1 procedure, in all variants of the model selection procedure with an estimation method, the LN
distribution was in second place.

Summarizing summer season, the GE distribution ranked first in six out of nine possible variants
of the model selection procedure with the estimation method, while the Ga, IG, and LL distributions
had one win each. For the winter season, the GE distribution was best in five out of nine possible
variants, IG ranked first in two variants, while We and LL had one each.

It is worth noting that for the Proszówki gauging station, the results of the distribution fitting to
the data from the model selection procedures coincided with the results from the LCv-LCs diagram
(Figure 3b). In general, the GE, Ga, LN, and IG distributions were the best fit for the summer peak flow
series (red point 17), while the GE, IG, LN, and LL were right for the winter peaks (blue point 17).

The analysis conducted for Proszówki and several other gauging stations from the Vistula and
Oder Basins presented in Figure 1 showed that both the GE and IG distributions can be recommended
for modeling the seasonal maximum flows in Poland. Compared with the distributions popular in flood
frequency modeling, the IG and GE distributions occupied leading positions. Nevertheless, the choice
of one model that best fits the data is ambiguous and depends on the selection of the estimation method
and the model selection procedure. This problem is typical for samples usually available in hydrology.
Meanwhile, at practical applications, for example, the design of hydraulic structures, one value for the
maximum flow estimate is desirable with the least uncertainty. The solution may be the method of
quantile aggregation proposed by the authors [19,40] and discussed in the next section.

4.3. Aggregation of Quantiles

4.3.1. Instability of High Quantile Estimates with Increasing Length of Data Series

In the classical approach to estimating quantiles of maximum flow distributions, apart from the
uncertainty resulting from the choice of the best distribution, there is a problem of the instability
of estimations when lengthening the measurement series. As the length of the observation series
increases, the repetition of the procedure (choice of distribution, estimation method, and model
selection procedure) can lead to a change in the type of the best distribution, and at least to a change in
the values of the parameter estimates of the current distribution. Due to the small size of the series
and hence the strong dependence of the result on the successive incoming elements, these changes are
periodic and chaotic and can cause significant changes in the design quantile during the multistage
procedure of designing. This phenomenon (more or less accentuated) has been observed for almost all
investigated seasonal peak flow series, as illustrated by the example of seasonal maximum flows from
the period 1951–2016 for the Proszówki gauging station on the Raba River (Figure 4).
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Figure 4. Estimates of the 1% quantile of maximum flows at Proszówki Station along with the
best matching distributions for: (a) summer season; (b) winter season. Distributions: Ga—gamma,
We—Weibull, GE—generalized exponential, IG—inverse Gaussian, LN—log-normal.
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Starting from the 25-year series of seasonal peak flows (i.e., the measurements from 1951 to 1975),
the best fitted distribution was chosen from among seven candidate distributions (see Table 1) and the
quantile Qmax1% corresponding to the best fitted distribution was assigned. This procedure has been
repeated for data series extended for a successive year, up to the complete 66-year series. The MLM
method was applied to estimate the distribution parameters and the AIC criterion was used to choose
the best fit distribution.

For the series of maximum summer flows (Figure 4a), a significant difference in the estimates
of 1% quantile was observed in the years 1982, 1984, and 1993–1994. Then, the type of the best fitted
distribution changed from GE to LN, resulting in a significant increase in design value. The changes of
other types of distribution did not cause such large changes in the estimates. It is worth noting that the
peaks in the estimation curve are related to those of the smallest value of the observations, especially
the peaks in 1982 and 1993 (see Figure 4a). For the series of maximum winter flows (Figure 4b), the
greatest decreases were observed in 1977 and 2000. These were due to the change in the distribution
type from IG or LN into GE. Moreover, in 2005–2006, there was a two-step increase in the 1% quantile
estimates. Since 2000, the GE was the best fit distribution among the seven competing models, the jump
was due to a change in the parameters of the current (GE) distribution with the addition of observations
from 2005 and 2006. Interestingly, the largest shifts in the estimation curve (i.e., in 1977 and 2000) were
downhill and were associated with those of the highest observation values (see Figure 4b).

The above results of the best matching distributions for the summer and winter maximum flows
are consistent with the LCv-LCs graph (Figure 2b) for the red and blue points of number 17, respectively.
Moreover, the variability of the seasonal 1% quantile estimates (Figure 4) broadly overlapped with the
earlier studies [55] and with the latest studies [28]. In general, the summer peak flows were identified
as stationary, while the winter peak flows were decreasing.

The jumps in the 1% quantile estimates occurred at various scales in all of the investigated data
series. Some examples are given in Figure 5.
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Figure 5. Estimates of the 1% quantile of maximum flows along with the best matching distributions
by the Akaike information criterion (AIC) for the stations: (a) Jagodniki [3]*; (b) Koszyce Wielkie [26];
(c) Mielec [31]; (d) Wyszków [33]. Distributions: Ga—gamma, We—Weibull, GE—generalized exponential,
IG—inverse Gaussian, LN—log-normal, LG—log-Gumbel. * The number of the station in Table A1.
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Significant differences in the estimates of hydrological design values in subsequent years are a big
problem for designers of hydrotechnical structures and engineers. As hydrological design investments
last several years, the projects require multiple revisions, resulting in high financial costs. To minimize
the effect of unstable design values, the method of aggregation (see Section 3.2) can be used to assess
the quantile of the peak flows.

4.3.2. Case Study of Model Aggregation

Characteristic values of the aggregation method calculated for seasonal maximum flows at the
Proszówki gauging station on the Raba River from the period 1951–2016 are shown in Table 4 for seven
candidate distributions.

Table 4. Data for the aggregation of the 1% quantile for individual candidate distributions of seasonal
maximum flows from 1951–2016 at Proszówki Station.

Season Probability Distribution AIC wi
^
Qmax1%(m3/s)

¯
Qmax1%(m3/s)

Summer

Ga 921.0 0.310 1420

1591

We 922.8 0.125 1348

GE 920.7 0.352 1467

IG 926.5 0.019 1941

LN 923.0 0.112 1983

LL 923.6 0.082 2528

LG 942.5 0.000 10758

Winter

Ga 803.8 0.184 566

642

We 808.5 0.018 539

GE 802.8 0.305 596

IG 804.0 0.171 671

LN 803.2 0.247 679

LL 805.6 0.075 853

LG 818.2 0.000 2063

For the summer season, the lowest AIC value corresponding to the GE distribution represents the
best fit of this distribution to the data series from all candidate distributions. This results in the largest
share (i.e., the highest weight) of the quantile of GE distribution Q̂max1%(GE) in the aggregated quantile
Qmax1% and is equal to 0.352. The second distribution in order was Ga with a slightly smaller weight
equal to 0.31. Hence, a contribution of both the GE and Ga distributions to the aggregated quantile
was similarly high. Significantly smaller weights had the quantiles of We, LN, and LL distributions,
which are 0.125, 0.112, and 0.082, respectively. The other two PDFs (i.e., IG and LG) yielded a much
smaller contribution to the aggregated quantile, especially LG, since its weight is of the order of zero
(it is 7E-06 exactly).

Regardless of the matching criterion, the distribution matches were less pronounced when the
observation series was shorter. For instance, for the 40-element series from the period 1951–1990,
the weights of candidate distributions are in sequence: Ga—0.219, We—0.154, GE—0.230, IG—0.126,
LN—0.195, LL—0.073, and LG—0.003. Thus, the leaders have lower weights and the least fit
distributions have higher weights, compared to the whole observation period.

For the winter season, the GE distribution was clearly dominant as the best fit to the data and the
next was LN. The smallest weights corresponded to the We and LG distributions and the latter had an
exact weight equal to 14E-05.
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Due to the above considerations, the question arises as to how the poorly matched distributions
affect the value of an aggregate quantile. Is it more sensible to take into account the poorly matching
distributions, or to use selection and reject the distribution (or distributions) with the weakest fit
and not include them in the calculation of the aggregate quantile? The analysis of the above issue is
presented in the next subsection.

4.3.3. Impact of Competitive Distributions on Aggregated Quantiles

For the analyzed station, the 1% quantile estimates obtained from the classical method of selecting
the best fitted distribution (using the MLM estimation method and AIC for the selection of the best
matched distribution) were compared with the estimates from the aggregation method with several
variants of the distribution sets. The results are illustrated in Figure 6.
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gauging station on the Raba River obtained by the method of selecting the best fit distribution and by
the aggregation method with variants of the candidate distributions.

In comparison with the classical approach to flood quantile estimation (black line with dots in
Figure 6), the original variant of the aggregation method (i.e., when all alternative distributions are
taken into account (red line)) significantly reduced the variability of the 1% quantile estimate when
extending the observation series for subsequent years. For both the summer and winter seasons, the
jumps at the quantile estimates were smoothed out. When the least fitted distribution (i.e., the one with
the lowest weight) was removed from the group of candidate distributions, then the estimate value of
the 1% quantile decreased for a given observation length (blue line). This was due to the fact that for
each length of the measurement series of the maximum flows for both seasons, the distribution of the
least fit was the LG distribution, which provided much higher estimates of the design values than
the other alternative distributions (see Table 1). After the removal of the second worst-fit distribution
(green line), the estimates of Qmax1% still decreased in the case of the summer season, while they
slightly increased in the winter season. In the case of the maximum summer flows, the second least fit
distribution is the LL until 1998 and since 1999 it is the IG distribution. Meanwhile, in the case of the
maximum winter flows, the second weakest matching distribution was We. It is worth noting that the
1% quantile estimates were almost identical for all three variants of aggregation method (i.e., for all
three groups of candidate distributions, for the summer peak flow series of more than 49 elements,
that is, for the series ending in 1999 or later (Figure 6a). In this case, for the long observation series, the
least-fitting distributions (i.e., LG and IG) had very small weights of zero order, so their removal from
the set of alternative distributions did not significantly affect the estimation value of Qmax1%. A similar
effect was observed for the same period (from 1999) of the winter peak flows, but only for two variants
of aggregation, when all seven candidate distributions were considered and when the least fit PDF was
excluded from aggregation (Figure 6b). Excluding two least fit distributions caused a slight increase of
Qmax1%.
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5. Conclusions

In this paper, the classical and alternative approaches to the estimation of the upper quantiles of
the probability distribution of maximum seasonal flows were presented for the Proszówki gauging
station on the Raba River. Despite the multiplicity of probability distributions that have been proposed
for flood frequency modeling, the analysis of Polish data of seasonal maximum flows from 37 gauging
stations shows that new models are still desirable. The classical approach based on the selection
of the best fitting distribution among candidate distributions reveals that the inverse Gaussian and
generalized exponential distributions, which are not commonly applied in standard flood frequency
modeling, occupy leading positions in the fit to the seasonal peak flows of Polish rivers. At the
same time, the heavy tailed distributions turned out to not be suitable for the description of seasonal
maximum flows for Polish rivers, in particular the log-Gumbel distribution (i.e., two-parameter
equivalent of the GEV distribution). Generally, the choice of the best model and consequently the
estimation of the hydrological design value (e.g., 1% quantile) strongly depends on the estimation
method and the model selection procedure, which is characteristic of hydrological sample sizes. As a
consequence, the development of flood frequency analysis methods by improving statistical techniques
using new probability distributions, estimation methods, and model selection procedures, increases
the uncertainty of flood quantile estimates.

When the ML method and model selection procedure based on AIC criterion were used for year
to year successive evaluation of design quantiles, then their sudden upward or downward jumps
can occur. This is not explainable by the changes of the flood generating processes themselves, but
results only from the properties of the procedure applied. Our long-term research and experience
in the field of FFA and design quantile assessment confirm the occurrence of sudden changes in the
design quantiles in most of the analyzed cases. In the meantime, both researchers and practitioners
like hydrological designers desire one specific design value with the least uncertainty. The solution
may be a method of the aggregation of models, providing quantile estimates, and thus design values
that are much more stable by extending the data series than the classical statistical methods used in
FFA. The problem yet to be solved is the objective selection of models for aggregation. As was shown,
the poorly suited models (with low weights) may significantly affect the quantile values while used in
aggregation, especially in the range where the classical FFA shows high variability of quantile estimates.
It is difficult to impose a strict limit on the weights as a selection criterion. In practice, hydrologists can
support their decisions through the analysis of neighboring stations on the same river or in all region
to narrow or enlarge the list of potential best distributions or to justify their use. However, it should be
stressed that by aggregating the models, we take advantage of the wider information provided by
several best fitted models.

The application of the method has utility in many areas, especially in the natural sciences, when
performing experiments of the passive type (i.e., not being able to control all of the parameters of the
experiment or the experiment cannot be repeated under the same, fixed conditions.
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Appendix A

Table A1. Basic characteristics of the seasonal peak flows of 37 gauging stations at Polish rivers
analyzed in paper.

No Gauging Station River Observation
Period

Mean of
Summer Peak
Flows (m3/s)

Mean of
Winter Peak
Flows (m3/s)

1 Jawiszowice

Wisła

1951–2016 153 68

2 Tyniec 1951–1990 642 378

3 Jagodniki 1921–2016 990 621

4 Szczucin 1921–2016 1700 1018

5 Sandomierz 1921–2016 2010 1443

6 Zawichost 1951–2016 2727 2074

7 Puławy 1951–2016 2432 1960

8 Warszawa 1921–2016 2225 2302

9 Kępa 1921–2016 2545 3305

10 Toruń 1921–2016 2532 3334

11 Tczew 1921–2016 2400 3383

12 Żywiec Sola 1956–2016 330 160

13 Sucha
Skawa

1951–2016 148 66

14 Wadowice 1951–2016 253 117

15 Rudze Wieprzówka 1961–2016 61 22

16 Stróża
Raba

1956–2016 202 93

17 Proszówki 1951–2016 433 213

18 Kowaniec

Dunajec

1951–2016 240 87

19 Krościenko 1951–2016 427 161

20 Nowy Sącz 1946–2016 887 366

21 Żabno 1956–2016 1010 444

22 Nowy Targ Czarny Dunajec 1961–2016 160 56

23 Zakopane Biały Dunajec 1961–2016 40 9

24 Muszyna Poprad 1951–2016 214 120

25 Stary Sącz 1951–2016 278 171

26 Koszyce Wlk. Biała 1951–2016 240 121

27 Jarosław
San

1951–2016 469 465

28 Radomyśl 1951–2016 435 657

29 Tryńcza Wisłok 1951–2016 158 178

30 Żółków
Wisłoka

1951–2016 152 99

31 Mielec 1951–2016 419 331

32 Klęczany Ropa 1951–2016 129 55

33 Wyszków Bug 1921–2016 272 587

34 Konin

Warta

1921–1991 122 238

35 Poznań 1822–2016 156 404

36 Skwierzyna 1921–2016 184 362

37 Gorzów 1921–2016 276 494
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Warsaw, Poland, 2010; Volume 68, pp. 57–70. ISBN 9788389293930. (In Polish)

41. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723.
[CrossRef]

42. Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, Vol. 1. Distribution Theory; Charles Griffin and
Company Limited: London, UK, 1969.

43. Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis. An Approach Based on L-Moment; Cambridge
University Press: Cambridge, UK, 1997.

44. Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics. Vol. 2. Inference and Relationship; Charles Griffin
and Company Limited: London, UK, 1973.

45. Quesenberry, C.P.; Kent, J. Selecting among probability distributions used in reliability. Technometrics 1982,
24, 59–65. [CrossRef]

http://dx.doi.org/10.5194/hess-22-3883-2018
http://dx.doi.org/10.1623/hysj.54.3.456
http://dx.doi.org/10.5194/esd-5-67-2014
http://dx.doi.org/10.1038/s41586-019-1495-6
http://www.ncbi.nlm.nih.gov/pubmed/31462777
http://dx.doi.org/10.1126/science.aan2506
http://www.ncbi.nlm.nih.gov/pubmed/28798129
http://dx.doi.org/10.1016/j.jhydrol.2010.09.010
http://dx.doi.org/10.5697/oc.55-4.787
http://dx.doi.org/10.1002/hyp.8179
http://dx.doi.org/10.1002/hyp.8178
http://dx.doi.org/10.1080/02626667.2017.1328558
http://dx.doi.org/10.1029/2004WR003133
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1080/00401706.1982.10487710


Water 2020, 12, 704 18 of 18

46. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione [On the empirical determination
of a distribution law]. G. Inst. Ital. Attuari 1933, 4, 83–91.

47. Kaczmarek, Z. Statistical Methods in Hydrology and Meteorology; Published for the Geological Survey, US
Department of the Interior and the National Science Foundation, Washington, DC, by the Foreign Scientific
Publications Department of the National Centre for Scientific, Technical and Economic Information; Foreign
Scientific Publications Department of the National Center for Scientific, Technical and Economic Information:
Warsaw, Poland, 1977.

48. Chakravarti, I.M.; Laha, R.G.; Roy, J. Handbook of Methods of Applied Statistics, Vol. 1; John Wiley and Sons:
New York, NY, USA, 1967.

49. Mitosek, H.T.; Strupczewski, W.G.; Singh, V.P. Three procedures for selection of annual flood peak distribution.
J. Hydrol. 2006, 323, 57–73. [CrossRef]

50. Kim, J.S.; Yum, B.J. Selection between Weibull and lognormal distributions: A comparative simulation study.
Comput. Stat. Data Anal. 2008, 53, 477–485. [CrossRef]

51. Dey, A.K.; Kundu, D. Discriminating among the log-normal, Weibull, and generalized exponential
Distributions. IEEE Trans. Reliab. 2009, 58, 416–424. [CrossRef]

52. Strupczewski, W.G.; Kochanek, K.; Singh, V.P.; Weglarczyk, S. Are Parsimonious Flood Frequency Models
More Reliable than the True Ones? I. Accuracy of Quantiles and Moments Estimation (AQME)—Method of
Assessment. Acta Geophys. Pol. 2005, 53, 419–436.

53. Kochanek, K.; Strupczewski, W.G.; Singh, V.P.; Weglarczyk, S. Are Parsimonious Flood Frequency Models
More Reliable than the True Ones? II. Comparative assessment of the perfor-mance of simple models versus
the parent distribution. Acta Geophys. Pol. 2005, 53, 437–457.

54. Strupczewski, W.G.; Kochanek, K.; Weglarczyk, S.; Singh, V.P. On robustness of large quantile estimates to
largest elements of the observation series. Hydrol. Process. 2007, 21, 1328–1344. [CrossRef]

55. Strupczewski, W.G.; Singh, V.P.; Mitosek, H.T. Non-stationary approach to at-site flood frequency modelling.
III. Flood analysis of Polish rivers. J. Hydrol. 2001, 248, 152–167. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2005.08.016
http://dx.doi.org/10.1016/j.csda.2008.08.012
http://dx.doi.org/10.1109/TR.2009.2019494
http://dx.doi.org/10.1002/hyp.6342
http://dx.doi.org/10.1016/S0022-1694(01)00399-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Case Study 
	Materials and Methods 
	Model Selection Procedures 
	Models Aggregation 

	Results 
	Models for Seasonal Maximum Flows of Polish Data 
	Distribution Identification and Its Parameter Estimation: Comparative Study 
	Estimation of Quantiles of the Maximum Flow Distribution 
	Uncertainty of Distribution Selection 

	Aggregation of Quantiles 
	Instability of High Quantile Estimates with Increasing Length of Data Series 
	Case Study of Model Aggregation 
	Impact of Competitive Distributions on Aggregated Quantiles 


	Conclusions 
	
	References

