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Abstract: A future variation of precipitation characteristics, due to climate change, will affect the
ability of rainfall to precipitate soil loss. In this paper, the monthly and annual values of rainfall
erosivity (R) in Greece are calculated, for the historical period 1971–2000, using precipitation records
that suffer from a significant volume of missing values. In order to overcome the data limitations, an
intermediate step is applied using the calculation of monthly erosivity density, which is more robust
to the presence of missing values. Spatial Quantile Regression Forests, a data driven algorithm that
imitates kriging without the need of strict statistical assumptions, was utilized and validated, in order
to create maps of R and its uncertainty using error propagation. The monthly average precipitation
for the historical period 1971–2000 estimated by five (5) Global Circulation Models-Regional Climatic
Models were validated against observed values and the one with the best performance was used
to estimate projected changes of R in Greece for the future time period 2011–2100 and two different
greenhouse gases concentration scenarios. The main findings of this study are: (a) the mean annual R
in Greece is 1039 MJ·mm/ha/h/y, with a range between 405.1 and 3160.2 MJ·mm/ha/h/y. The highest
values are calculated at the mountain range of Pindos and the lowest at central Greece; (b) the
monthly R maps adhere to the spatiotemporal characteristics of precipitation depth and intensities
over the country; (c) the projected R values, as an average over Greece, follow the projected changes
of precipitation of climatic models, but not in a spatially homogenous way.

Keywords: rainfall erosivity; erosivity density; climate change; regional climate models; quantile
regression forests; Greece

1. Introduction

Rainfall erosivity concerns the ability of rainfall to precipitate soil loss [1], as it supplies energy to
the mechanical processes of soil erosion. Decertification has been identified as one of the most serious
issues facing Mediterranean European countries, including Greece [2], and a possible increase in future
rainfall, due to climate change, will aggravate this process, as soil erosion increases at a greater rate [3].
Unanticipatedly, a decrease in future rainfall and a possible decrease of biomass production may also
lead to higher erosion rates [4].

Higher erosion rates in conjunction with unsustainable land management and increasing human
pressure can lead to soil degradation [5], and consequently a disrupted ecological balance, a decreasing
agricultural production and income [6] and even the reduction of effectiveness of adaptation options [7].
Several issues may arise due to accelerated soil losses on achieving of the Sustainable Development
Goals of the United Nations [8], as these goals are dependent on a healthy biophysical environment
in which the soil is the base [9]. In order to predict these soil erosion future changes it is necessary
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to simulate changes in future rainfall erosivity, land uses and the application of policies on land
management [10].

Universal Soil Loss Equation (USLE) [11], which is the most widely used soil erosion prediction
model in the world [12], is an empirical equation that estimates the long-term, average, rate of soil loss
involving the product of six factors. The USLE erosivity factor, R, is calculated using high frequency or
break-point precipitation data with a duration of over 20 years [13,14], as a function of rainfall intensity
and depth. In the second revised version of USLE, RUSLE2 [15], monthly Erosivity Density (ED) was
introduced, as a measure of rainfall erosivity per unit rainfall, which requires shorter precipitation
record lengths. ED is approximately a function of values only related to rainfall intensity and was
used in RUSLE2 as an intermediate step, in conjunction with coarser, monthly, precipitation data, to
compute R values in the USA.

Precipitation in Greece has been investigated in several studies over the past two decades [16–23].
In general, precipitation varies from its maximum values during winter to a minimum during summer.
The highest precipitation values are observed on the mountain range of Pindos, and its expansion
on Peloponnesus, and the lowest values of precipitation are recorded on the Cyclades Islands, at the
center of the Aegean Sea. Due to the fact that most weather systems and prevailing winds are moving
over the Ionian Sea perpendicularly to Pindos, a contrast exists between the wetter western parts of
the country and the dryer eastern ones. During summer months convective activity over northern
Greece produces higher precipitation amounts than over the drier southern parts.

Global Circulation Models (GCMs) are models that represent the atmosphere, land surface, ocean
and sea ice and simulate their interactions in three dimensions, to make long-term predictions of
climate [24]. Different scenarios about future concentrations of greenhouse gases (Representative
Concentration Pathways, RCPs) are employed to describe a set of different climate futures that drive
GCMs [25]. Due to the coarse grid scale of GCMs (over 80 to ~300 km), Regional Climate Models
(RCMs) were developed to downscale them and provide information on a finer scale, more applicable
to local scaled phenomena, impact studies and adaptation decisions. RCMs are dependent on GCMs,
because GCMs provide the response of global circulation, greenhouse gases concentrations, etc.
and RCMs refine them in a spatiotemporal sense, using features such as the topography, coastlines,
land cover or mesoscale dynamics [26]. The climatic models from COordinated Regional Climate
Downscaling EXperiment over Europe (EURO-CORDEX) [27], using high-resolution RCMs for the high
greenhouse gases concentration scenario, RCP8.5, project a decrease of precipitation from 1971–2000 to
2071–2100 and for the medium concentration scenario, RCP4.5, project the same trend with a smaller
magnitude [27,28]. Regarding rainfall intensity, in the form of heavy precipitation that exceeds the
intensity at the 95th percentile of daily precipitation, the same models project diverging trends that are
not statistically significant in most areas of Greece [27,28].

In our previous studies about ED in Greece [29,30] it was proven that, in general, ED values are
robust to the presence of missing values in contrast to R, which is highly affected, and specifically in
Greece: (a) the values of ED are not significantly correlated with the elevation, (b) ED annual timeseries
are found to be stationary, in contrast to reported precipitation trends for the same time period and
(c) ED can be considered as spatially autocorrelated, as three contiguous areas were identified using
clustering analysis, that had distinct temporal patterns. A comparison of our studies with an earlier
study about R in Greece by Panagos et al. [31] revealed that the previously reported R values were
underestimated due to the presence of a significant volume of missing data in the precipitation records
used in the calculations.

In the Mediterranean region, the annual R model MedREM was developed using annual
precipitation depth, the longitude and annual daily maximum precipitation data [32]. A recent
paper regarding the estimation of future R values in Europe for 2050 [10], used one GCM and a single
RCP, applied Gaussian Process Regression using monthly variables obtained from the WorldClim
dataset [33] and estimated an increase of R by 14.8% in Greece. A number of papers in Europe examined
the potential increase of rainfall erosivity using temporal trends of high resolution precipitation data
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in Western Germany [34], Belgium [35] and in the Czech Republic [36]. Other studies in various
parts of the world used GCMs in conjunction with empirical equations that predict R using annual
precipitation [37,38], monthly [39,40] and daily rainfall indices [41,42]. A different approach estimated
projected R changes, using a weather generator with spatial and temporal downscaled precipitation
values coming from various GCMs [43].

Random Forests [44] is a data-driven algorithm in the area of supervised learning which tries to
fit a model using a set of paired input variables and their associated output response and can be used
in classification and regression problems. Quantile Regression Forests (QRF) [45], is an extension of RF
that is able to compute prediction intervals of the output response in regression problems. RF has been
used for spatial prediction in various domains [46–50] and recently, Hengl et al. [51] presented RF for a
spatial predictions framework, that can make equally accurate predictions as kriging, without the need
of statistical assumptions.

The aim of this work is to calculate the current and estimate the future changes of R values in
Greece. The latest methodologies developed and presented with RUSLE2 are used, taking into account
the presence of missing values in precipitation records. The first objective of the analysis is to create
monthly precipitation and ED maps, as intermediate datasets, and to estimate the uncertainty of their
predictions and their errors using cross-validation. Consequently, the current R values in Greece are
computed from the interpolated surfaces and error propagation is used to estimate approximately
their uncertainty. Finally, downscaled precipitation from GCMs-RCMs is validated and used, along
with ED, to estimate the potential changes of R in Greece for the years 2040, 2070 and 2100 using two
future greenhouse gases concentration trajectories/pathways (i.e., RCPs). This type of analysis is a
novel approach and it has not been presented, until now, in the international literature.

2. Materials and Methods

The methodology that was applied in the study, is presented in the flowchart of Figure 1, where
data flows from the left to the right. Blue symbolizes the data that were used as input (pointwise and
raster), orange the intermediate raster datasets that were created and green the final results, also in
raster format, that were computed using different sets of input and intermediate datasets.
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Figure 1. Flowchart of the applied methodology.

2.1. Data Acquisition and Processing

Point precipitation data from 237 meteorological stations across Greece (Figure 2), was used in the
analysis. The data consisted of:
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• Pluviograph data for 87 meteorological stations that were taken from the Greek National Bank of
Hydrological and Meteorological Information (NBHM) [52]. The time series comprised a total of
2273 years of 30-min-records and 394 years of five-min-records for the time period from 1953 to
1997, with a mean length of 30 years per station. The timeseries coverage was 62.8% on average.

• Mean monthly precipitation data for 150 meteorological stations that were taken from the Hellenic
National Meteorological Service (HNMS) [53]. These are homogenized data and available for the
time period from 1971 to 2000. These data were used to overcome the limitations of precipitation
data from NBHM.

• Five different monthly GCM-RCM raster datasets were downloaded for a number of experiments and
time periods (Table 1). These data were computed in the framework of the EURO-CORDEX [27,54],
had a horizontal resolution 0.11◦ × 0.11◦ and were remapped using bilinear interpolation to a 30” ×
30” resolution grid using the Climate Data Operator (CDO) software [55].

Table 1. Global Circulation Models (GCMs)-Regional Climate Models (RCMs) used in the analysis (i.e.,
data retrieved from EURO-CORDEX).

GCM RCM Institution

1 EC-EARTH DMI-HIRHAM5 Danish Meteorological Institute
2 EC-EARTH KNMI-RACMO22E Royal Netherlands Meteorological Institute
3 HadGEM2-ES KNMI-RACMO22E Royal Netherlands Meteorological Institute
4 MPI-ESM-LR CSC-REMO2009 Max Planck Institute for Meteorology
5 NorESM1-M DMI-HIRHAM5 Danish Meteorological Institute
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pluviograph data from the Greek National Bank of Hydrological and Meteorological Information
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National Meteorological Service (HNMS).
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The GCM-RCM monthly precipitation timeseries data were:

• Historical, for the time period from 1971 to 2000 (like the ones coming from HNMS) as they were
driven by the boundary conditions provided by the GCMs.

• Future, for the forcing scenarios RCP4.5 (where greenhouse gases emissions peak around 2040
and then decline) and RCP8.5 (where greenhouse gases emissions continue to rise throughout the
21st century), using the control ensemble of the CORDEX climate projection experiments. The
dataset period was from 2011 to 2100.

Digital elevation raster data were downloaded from the NASA Shuttle Radar Topography
Mission (SRTM) [56], and aggregated to the same 30” × 30” resolution grid as the one used in the
GCM-RCMs datasets.

2.2. Monthly Erosivity Density Calculation

The erosivity of a single erosive rainfall event, EI30 (MJ·mm/ha/h), given the product of the kinetic
energy of rainfall and its maximum 30 min intensity, was computed using the pluviograph records
from NBHM [15]:

EI30 =

 m∑
r=1

er · vr

× I30 (1)

where er is the kinetic energy per unit of rainfall (MJ/ha/mm), vr the rainfall depth (mm) for the time
interval r of the hyetograph, which has been divided into r = 1, 2, . . . , s time sub-intervals and I30 is the
maximum rainfall intensity for a 30 min duration during that rainfall.

The quantity er was calculated for each time sub-interval, r, applying the kinetic energy equation
that was used in RUSLE2 [57], which was recently evaluated in Italy, a nearby country to Greece, and
had the best performance among alternative literature expressions [58]:

er = 0.29 ·
(
1− 0.72e−0.82ir

)
(2)

where ir is the rainfall intensity (mm/h).
An individual rainfall event was extracted from the continuous pluviograph data, if its cumulative

depth for a duration of 6 h at a certain location was less than 1.27 mm. A rainfall event was considered
to be erosive if it had a cumulative rainfall depth greater than 12.7 mm. Only the screened events with
a return period of less than 50 years were used in the calculations.

On the grounds that the use of coarser fixed time intervals to a finer one can lead to an
underestimation of the value of erosivity [59,60], monthly conversion factors cm were computed using
the five-min-time-step timeseries:

cm =
1

nm

∑nm

i=1

(EI30)m, ts=5 min

(EI30)m, ts=30 min
(3)

where nm is the number of storms at month m, (EI30)m, ts=5 min is the erosivity of a storm using the five
min time step and (EI30)m, ts=30 min the erosivity of the same storm when the timeseries was aggregated
using a 30 min time step. These conversion factors were applied to the values of erosivity that were
estimated from 30-min pluviograph data.

After the computation of EI30 values, the average monthly rainfall erosivity density EDm (MJ/ha/h)
per station was calculated:

EDm =
1
n

∑n

i=1


∑stm

k=1(EI30)k

Pm


i

(4)

where stm is the number of storms during the month m, (EI30)k the erosivity of storm k, Pm the monthly
precipitation height and n the number of years.
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2.3. Spatial Quantile Regression Forests

Random Forests (RF) [44] is one of the most successful methods used in Machine Learning [61],
among other reasons because of: (a) its robustness to outliers [62] and overfitting [63], (b) its ability to
perform feature selection [64] and (c) the fact that its default parameters, as implemented in software,
give satisfactory results [61,65]. Examples of RF open source software are the R’s language packages
randomForest [66] and its faster alternative, ranger [67].

In summary, RF consists of a number of decision trees [68]. For each tree, a random set of the
dataset is created via bootstrapping [69] and in each node of the tree a random set of n input variables
from the p variables of the dataset is considered to pick the best split [70]. The prediction of the output
response in regression problems is the mean value of the estimations of these random decision trees.
The estimate of the out-of-sample error is computed using the out-of-bag error [71], without the need
of cross-validation.

Quantile Regression Forests (QRF) is an extension of RF that provides information about the full
conditional distribution of the output response and not only about its mean [45], as is the case in plain
RF. In this way, it is possible to provide prediction intervals and measures of uncertainty.

The use of QRF as a framework for the modeling of spatial variables was introduced by Hengl
et al. [51], where the distances among observation locations are used as variables in QRF in order
to incorporate geographical proximity effects. In this way, using these buffer distances, spatial QRF
imitate kriging’s spatial correlation. Spatial QRF (spQRF) produces comparable results, in terms of
accuracy, compared to the state-of-the-art kriging methods, with the advantage of no prior assumptions
about the distribution or stationarity of the response variable [51].

In this work, spQRF were used for the spatial prediction of monthly precipitation and ED:

• The 12 monthly ED models (one model for each month of the year) were trained using as input
variables the buffer distances for each one of the 87 stations of NBHM in a chained procedure [72].
In that procedure, at the first run, only the distances are used as input variables and at the nth
both distances and the monthly results from the previous step, with the exception of the month
that is the output response. This procedure stops when the out-of-sample error estimated by RFs
in the form of out-of-the-bag error ceases to decrease.

• The 12 monthly precipitation models were trained using as input variables the buffer distances for
each one of the 150 stations of HNMS and elevation data from the SRTM.

As a measure of the out-of-sample error, the average Root Mean Squared Error (RMSE), the
coefficient of determination R2 and Lin’s Concordance Correlation Coefficient (CCC) were computed
using 10-fold cross validation:

RMSE =

√√
1
n

n∑
i=1

(
ŷ(si) − y(si)

)2
(5)

R2 = 1−

∑n
i=1

(
ŷ(si) − y(si)

)2

∑n
i=1

(
ŷ(si) − µy

)2 (6)

CCC =
2 · σŷy

σ2
ŷ + σ2

y +
(
µŷ − µy

)2 (7)

where n is the total number of cross-validation locations, ŷ(si) is the predicted value of y(si) at a
cross-validation location si (i.e., the coordinates longitude and latitude of location i), µŷ, µy, σ2

ŷ, σ2
y are

the means and variances of ŷ(si) and y(si), respectively, and σŷy is the covariance of ŷ(si) and y(si).
R2 describes the ratio of variance that is explained by a model and may be negative, among other

reasons, if an inappropriate model is used [73]. CCC combines measures of both precision and accuracy
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and examines how far ŷ deviate from the line of perfect concordance (the line of 45 degrees on a square
scatterplot) and ranges from 0 to ±1 [74,75].

The uncertainty of the predictions from the models, in the form of prediction error standard
deviation, was computed using a dense level of all the quantiles per 1% of the output response and for
every location [51]:

σ(Si) =

√√√√∑100%
p=1%

(
ŷp(si) − µŷ(si)

)2

100− 1
(8)

where ŷp
(si) is the pth percentile of the distribution of the response variable at location si and µŷ(si) the

mean value of ŷp
(si) for all the percentiles.

The quantity z-score, which quantifies the error of prediction errors, was calculated at cross
validation locations [76]:

z(si) =
ŷ(si) − y(si)

σ(si)
(9)

where z, ideally, should have a mean equal to zero and variance equal to one. On the contrary:

• If variance(z) >> 1, the model underestimates the actual prediction uncertainty.
• If variance(z) << 1, the model overestimates the actual prediction uncertainty.

2.4. Regional Climate Models Historical Precipitation Validation

In order to validate and select one of the GCMs-RCMs for the projected erosivity calculations,
at first, a multi-layer raster dataset was computed for each of the five models with the overall
30-year-mean-monthly precipitation values, using the historical time period from 1971 to 2000. Then,
using the monthly precipitation spQRF models to create raster datasets with the same 30” × 30”
resolution grid, RMSE, CCC and R2 errors metrics were computed, setting in Equations (5)–(7) as ŷ(si)

the values estimated by GCMs-RCMs and as y(si) the values calculated by the spQRF models.

2.5. Current and Projected Erosivity Calculation

The estimation of current and future monthly erosivity was made under the assumption of future
temporal stationarity of ED values, due to the fact that ED is related to seasonal rainfall intensity [15]
and EURO-CORDEX GCMs-RCPs models does not project statistically significant trends in most areas
of Greece [27]. Temporal stationarity of ED values already has been documented in Greece for the
historical period [30].

The current monthly erosivity was calculated as the product of predictions of the trained spQRF
models of monthly EDm and precipitation Pm for each month m:

R̂m
(si) = P̂m

(si) · ˆEDm
(si) (10)

The prediction error standard deviation of monthly Rm was calculated using error propagation [77]:

σ
(si)
Rm

= R̂m
(si) ·

√√√√√√ σ
(si)
Pm

P̂m(si)


2

+

 σ
(si)
EDm

ˆEDm(si)


2

(11)

In order for Equation (11) to hold true, P̂m
(si) and ˆEDm

(si) were considered as the true values on
locations si and that were independent of each other. More specifically, these values were considered,
to a good approximation, as not correlated on the basis of the following remarks:

• P̂m
(si) came from monthly average data and ˆEDm

(si) from random proportions of pluviograph
data due to missing values.
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• In general, precipitation depth, alone, is a poor indicator of erosivity [78].
• Using the approximation that kinetic energy in Equation (1) can be replaced with a constant

monthly value [79], then as is proved in RUSLE2 [15], monthly ED is directly proportional to
30-min rainfall intensity without the effect of precipitation depth.

The annual rainfall erosivity and its error standard deviation were calculated, respectively:

R̂(si) =
∑12

m=1
R̂m

(si) (12)

σ
(si)
R =

√∑12

m=1

(
σ
(si)
Rm

)2
(13)

The projected values of monthly erosivity were computed using the ratio δ f ,m of the future

30-years-mean P(si)

GCM−RCM, f uture, m to the historical 30-years-average-monthly precipitation values

P(si)

GCM−RCM, historical, m that came from a GCM-RCM:

R̂(si) f , m =
(
δ
(si)

f ,m · P̂
(si)m

)
· ˆEDm

(si) = δ
(si)

f ,m · R̂m
(si) (14)

where f is the future year in which long term average monthly values refer to and:

δ
(si)

f ,m =
P(si)

GCM−RCM, f uture, m

P(si)

GCM−RCM, historical, m

(15)

The projected annual erosivity was estimated with:

R̂(si) f =
∑12

m=1
δ
(si)

f ,m · R̂m
(si) (16)

And the ratio of future to current values:

r̂(si) f =
R̂(si) f

R̂(si)
(17)

With Equations (14)–(17), the projected annual erosivity values were calculated preserving the
relative projected changes of precipitation without the direct use of simulated values coming from a
GCM-RCM and the need to apply a bias-correction method. However, the need to use a statistical
downscaling technique to apply bias correction to the GCM + RCM output will be tested.

3. Results and Discussion

3.1. Precipitation and ED Pointwise Values

The monthly conversion factors cm that were computed specifically for Greece using the
five-min-time-step timeseries have a mean value 1.22, close to the one calculated for Europe [59], but
had different seasonality with their maximum values in the period from May to October and minimum
during March (Table 2).

Table 2. Monthly erosivity conversion factors cm (unitless) for 30 min timestep compared to the base
timestep of five min.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

cm 1.20 1.18 1.16 1.18 1.25 1.24 1.29 1.26 1.24 1.25 1.19 1.19 1.22
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The first four central moments (mean, standard deviation, skew and kurtosis) and other statistical
properties were used to describe the calculated monthly values of ED (87 stations from NBHM, Table 3)
and the average monthly precipitation (150 stations from HNMS, Table 4).

Table 3. The average statistical properties of calculated monthly Erosivity Density (ED) (MJ/ha/h). SD
is an abbreviation for standard deviation and CV for coefficient of variation (the ratio of the standard
deviation to the mean).

Prec (mm) Min Mean Median Max SD Skew Kurtosis CV

January 0.380 1.138 1.110 2.345 0.435 0.416 −0.455 0.383
February 0.535 1.149 1.088 2.403 0.409 0.787 0.130 0.356

March 0.525 1.113 1.054 2.413 0.356 1.105 1.681 0.320
April 0.464 1.099 1.062 2.175 0.316 0.895 0.876 0.288
May 0.407 1.496 1.404 2.645 0.447 0.377 −0.435 0.299
June 0.850 1.854 1.712 4.137 0.641 0.992 0.953 0.346
July 1.215 2.341 2.102 5.445 0.863 1.381 1.800 0.369

August 0.703 2.079 1.987 5.993 0.819 1.637 4.921 0.394
September 0.912 1.842 1.657 3.786 0.669 1.017 0.427 0.363

October 0.666 1.916 1.791 3.891 0.706 1.018 0.650 0.369
November 0.589 1.732 1.619 3.904 0.677 0.574 −0.103 0.391
December 0.517 1.442 1.435 3.497 0.568 0.680 0.635 0.394

Table 4. The average statistical properties of observed monthly precipitation values (mm). SD is
an abbreviation for standard deviation and CV for coefficient of variation (the ratio of the standard
deviation to the mean).

Prec (mm) Min Mean Median Max SD Skew Kurtosis CV

January 25.8 101.5 99.6 227.8 46.2 0.515 −0.378 0.455
February 34.6 104.9 93.4 257.4 50.5 0.766 −0.096 0.482

March 29.5 83.8 75.0 202.4 35.8 0.802 0.045 0.427
April 18.5 69.9 61.6 183.8 36.8 0.644 −0.371 0.526
May 7.4 51.3 51.6 149.1 29.3 0.342 −0.455 0.571
June 1.0 26.9 26.1 81.9 19.1 0.692 0.097 0.711
July 0.1 23.6 22.8 80.6 18.0 0.877 0.726 0.762

August 0.1 24.5 24.4 78.3 16.7 0.498 0.012 0.679
September 4.4 37.0 36.7 96.9 20.2 0.375 −0.414 0.546

October 30.6 85.9 75.7 205.7 40.6 0.738 −0.172 0.473
November 47.5 134.8 110.4 300.6 66.0 0.556 −0.808 0.490
December 43.9 133.0 117.6 329.2 65.6 0.742 −0.249 0.493

Monthly precipitation and ED had different monthly temporal patterns (Figure 3). The temporal
pattern of precipitation is typical for a Mediterranean area with the minimum precipitation occurring
during summer and the maximum precipitation observed in November and December (Figure 3a).
This temporal pattern of monthly precipitation is typical for Greece [80]. The second had an almost
bimodal shape with its two peaks at July and October. The values of ED were slightly different from
the ones already reported in our previous work [30], due to the application of the seasonal monthly
conversion factors cm to a constant one.



Water 2020, 12, 687 10 of 20
Water 2020, 12, 687 10 of 20 

 

 
(a) (b) 

Figure 3. Scatterplots for: (a) Observed mean monthly precipitation values; (b) Calculated ED 
monthly values. In the above plots jitter exists in order to make visible all points. With color are the 
smooth lines produced by means of Local Polynomial Regression Fitting [81]. 

3.2. Spatial Models of Precipitation and ED 

The training and cross validation of the spatial models was made using the implementation of 
QRF in the ranger [67] package of language R [82]. The number of trees was set to 1000 and the fine-
tuning of the parameters of the model was made using the tuneRanger [83] package. 

The cross validation error metrics of the models for monthly precipitation were satisfactory 
(Table 5), especially comparing them to recent precipitation models for Greece that showed weak 
correlation during the spring season [17] or equally good estimations [23]. As most months had a z-
score variance smaller than one, these monthly models overestimated the actual prediction 
uncertainty (i.e., the error of prediction the error from the models in cross-validation locations). 

Table 5. Cross validation metrics for monthly precipitation spQRF models. RMSE units are in mm, 
R2, z-score related values and Concordance Correlation Coefficient (CCC) are unitless. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean 𝑹𝑴𝑺𝑬 24.4 25.9 19.9 15.9 11.8 7.4 6.8 7.6 7.9 16.2 26.6 30.6 16.7 
R2 0.68 0.68 0.62 0.77 0.81 0.83 0.84 0.76 0.83 0.81 0.81 0.75 0.77 

CCC 0.81 0.83 0.79 0.87 0.89 0.90 0.91 0.86 0.90 0.90 0.90 0.86 0.87 𝒛ത −0.11 −0.08 −0.03 −0.03 0.01 −0.03 −0.02 −0.07 −0.04 −0.04 −0.07 −0.07 −0.05 𝝈𝒛  1.01 0.87 0.89 0.73 0.69 0.64 0.58 0.68 0.77 0.92 1.10 0.87 0.81 

The same cross validation error metrics of the models for monthly ED did not show equally good 
performance (Table 6), as most months had moderate results with the exception of summer months 
that had poor results. These poor results were coming from the scarcity of the stations used and the 
predictions of high ED values that the models underestimated them (Figure 4b), affecting especially 
RMSE and R2 metrics that are sensitive to outliers. Given the values of z-score’s variance, in general, 
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Figure 3. Scatterplots for: (a) Observed mean monthly precipitation values; (b) Calculated ED monthly
values. In the above plots jitter exists in order to make visible all points. With color are the smooth
lines produced by means of Local Polynomial Regression Fitting [81].

3.2. Spatial Models of Precipitation and ED

The training and cross validation of the spatial models was made using the implementation of
QRF in the ranger [67] package of language R [82]. The number of trees was set to 1000 and the
fine-tuning of the parameters of the model was made using the tuneRanger [83] package.

The cross validation error metrics of the models for monthly precipitation were satisfactory
(Table 5), especially comparing them to recent precipitation models for Greece that showed weak
correlation during the spring season [17] or equally good estimations [23]. As most months had a z-score
variance smaller than one, these monthly models overestimated the actual prediction uncertainty (i.e.,
the error of prediction the error from the models in cross-validation locations).

Table 5. Cross validation metrics for monthly precipitation spQRF models. RMSE units are in mm, R2,
z-score related values and Concordance Correlation Coefficient (CCC) are unitless.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

RMSE 24.4 25.9 19.9 15.9 11.8 7.4 6.8 7.6 7.9 16.2 26.6 30.6 16.7
R2 0.68 0.68 0.62 0.77 0.81 0.83 0.84 0.76 0.83 0.81 0.81 0.75 0.77

CCC 0.81 0.83 0.79 0.87 0.89 0.90 0.91 0.86 0.90 0.90 0.90 0.86 0.87
¯
z −0.11 −0.08 −0.03 −0.03 0.01 −0.03 −0.02 −0.07 −0.04 −0.04 −0.07 −0.07 −0.05
σz 1.01 0.87 0.89 0.73 0.69 0.64 0.58 0.68 0.77 0.92 1.10 0.87 0.81

The same cross validation error metrics of the models for monthly ED did not show equally good
performance (Table 6), as most months had moderate results with the exception of summer months
that had poor results. These poor results were coming from the scarcity of the stations used and the
predictions of high ED values that the models underestimated them (Figure 4b), affecting especially
RMSE and R2 metrics that are sensitive to outliers. Given the values of z-score’s variance, in general,
also, most of the monthly ED models overestimated the actual prediction uncertainty.
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Table 6. Cross validation metrics for monthly ED Spatial Quantile Regression Forests (spQRF) models.
RMSE units are in MJ/ha/h, R2 z-score related values and CCC are unitless.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

RMSE 0.29 0.29 0.27 0.22 0.35 0.48 0.71 0.67 0.46 0.44 0.39 0.33 0.41
R2 0.38 0.37 0.23 0.37 0.02 0.07 0.06 0.13 0.38 0.49 0.46 0.36 0.28

CCC 0.62 0.56 0.51 0.55 0.51 0.52 0.39 0.38 0.59 0.66 0.74 0.73 0.56
¯
z −0.07 −0.15 −0.08 −0.10 −0.06 −0.10 −0.10 −0.10 −0.06 −0.07 −0.06 −0.08 −0.09
σz 1.09 1.00 0.79 0.95 0.70 1.21 1.10 1.01 0.82 0.79 0.76 0.68 0.91
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Figure 4. Scatterplots based on the results from ten-fold cross validation for: (a) Predicted vs. observed
precipitation monthly values; (b) Predicted vs. calculated ED monthly values. Black line symbolized
the identity function f(x) = x.

3.3. Rainfall Erosivity and Its Uncertenty

The produced maps (Figures 5 and 6) illustrate the spatiotemporal distribution of R in Greece.
The eastern, dryer part of the country has lower values than the wetter western part for the period
during autumn and winter. During summer the convective activity over norther Greece produces
higher R values than southern Greece, with the largest values occurring in the area of Thrace. The
monthly temporal patterns illustrated in Figure 5, are compatible to the three areas that were identified
in our previous study [30].
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Supplementary Materials.

The lowest annual values of R were computed at the central mainland area of Greece (west and
central Macedonia, Thessaly and Attica). The uncertainty map of annual R (Figure 7) follows the
variation of the predicted annual erosivity and the scarcity of stations. The mean annual R (Table 7,
Figure 6) has a value of 1039.0 MJ·mm/ha/h/y, with a range between 405.1 and 3160.2 MJ·mm/ha/h/y.
The annual mean prediction error standard deviation is 116.9 MJ·mm/ha/h/y and its range is from 46.7
to 353.4 MJ·mm/ha/h/y (Table 7, Figure 7). The ratio of the mean annual error to the mean annual R is
11.25%, a value that was probably overestimated, given the cross-validation results of z-scores (Tables 5
and 6). These errors are not considered very high, bearing in mind the spatially sparse data and the
data-sets limitations. Although these errors may affect the reliability of the assessment of the potential
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impacts of climate change, their effect is rather small when compared with the large uncertainties in
GCMs projections in monthly and daily precipitation and rainfall intensity [84].
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Table 7. Mean, minimum and maximum values of erosivity R and its uncertainty σR. Values are in
MJ·mm/ha/h/month for monthly values and MJ·mm/ha/h/y for annual. Min is an abbreviation for
minimum and max for maximum values.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Rmin 14.3 25.6 26.7 20.2 8.2 1.7 0.3 0.6 9.5 44.7 52.1 32.6 405.1
R 95.4 94.5 74.1 58.3 65.7 44.8 46.0 42.9 54.5 128.9 182.5 151.5 1039.0

Rmax 369.6 314.3 234.7 193.5 187.2 207.4 222.6 161.5 188.8 441.7 739.2 505.7 3160.2
σR,min 10.7 9.0 8.2 3.9 4.0 2.2 4.5 1.2 4.7 11.2 18.7 10.8 46.7
σR 33.1 33.3 24.2 19.5 25.0 21.5 25.2 21.4 22.2 32.8 55.5 48.1 116.9
σR,max 97.6 129.3 74.8 61.2 62.0 69.8 100.9 83.4 50.2 95.6 220.5 192.9 353.4

The largest monthly mean R value are observed in November with 182.5 MJ·mm/ha/h/y and in
December with 151.5 MJ·mm/ha/h/y and the lowest ones during summer months which have values
about 44 MJ·mm/ha/h/y. The computed R values, due to the fact that R is linearly underestimated as
the missing values ratio increases [30], were larger than the values reported by Panagos et al. [31] (i.e.,
the mean annual R was underestimated by 28.8%, the mean minimum by 381% and the maximum by
12%). On the contrary, the range of R values in this study is smaller (405.1–3160.2 MJ·mm/ha/h/y) than
the respective values reported in [31] (was 84.2–2825 MJ·mm/ha/h/y).

In the above cited, older, study [31], the spatial distribution and annual values of R were affected
by the used interpolated precipitation dataset. As a result, the highest values were calculated at
the northwest corner of Greece. However, in this study, the maximum observed precipitation from
HNMS’s stations were recorded at the mountain range of Pindos, which is, also, the area with the
maximum annual R values in our study, indicating that the two variables are consistent.

3.4. Projected Rainfall Erosivity Changes

In order to cope with the uncertainties in climatic models, five (5) GCMs-RCMs were evaluated in
terms of RMSE, R2 and CCC using the monthly precipitation maps that were created in this study. The
EC-EARTH–KNMI-RACMO22E GCM-RCM (Table 8) gave the best results for each one of months and
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for all the error metrics. Given its performance, this GCM-RCM seemed to represent better monthly
precipitation in Greece, for the historical time period and consequently used to estimate futures changes
for the RCP forcing scenarios RCP4.5 and RCP8.5 and the years 2040, 2070 and 2100. However, the
large errors presented in Table 8 indicate that statistical downscaling techniques have to be applied to
the outputs of GCMs-RCMs for bias correction and reduction of errors.

Table 8. Mean monthly precipitation errors of the used GCMs-RCMs. RMSE units are in mm, R2 and
CCC are unitless.

GCM RCM RMSE R2 CCC

1 EC-EARTH DMI-HIRHAM5 64.4 −4.21 0.30
2 EC-EARTH KNMI-RACMO22E 25.5 0.11 0.63
3 HadGEM2-ES KNMI-RACMO22E 31.5 −0.37 0.57
4 MPI-ESM-LR CSC-REMO2009 34.9 −0.47 0.50
5 NorESM1-M DMI-HIRHAM5 61.9 −3.73 0.29

Using the RCP4.5 scenario, the ratio of the mean projected R to current values were −3.7%, −4.3%
and −0.7% for 2040, 2070 and 2100, respectively. The same values for the RCP8.5, scenario were −9.0%,
+0.01% and −14.6%. Annual R followed the annual ratio δ

(si)

f of projected to 30-years-mean historical
precipitation, which fluctuated around zero for RCP4.5 (Figure 8a) and had a negative trend for the
years 2040–2100 for RCP4.5.
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Figure 8. Ratio δs
f of precipitation to the historical 30-years-mean annual on Greece for the scenarios:

(a) Representative Concentration Pathway (RCP)45 and (b) RCP85. Values are unitless. With blue are
marked the smooth lines and with grey bands the standard error variance produced by means of Local
Polynomial Regression Fitting [81].

Despite the decrease of the projected R values, using RCP4.5, R, spatially, has a tendency to
increase at the central parts of Macedonia and Thessaly that have the highest agricultural productivity
in the country and the northern Thrace (Figure 9a). For RCP8.5 (Figure 9b) projected erosivity increases
on 2070, having a hotspot at Thessaly and then decreases, following the precipitation trend (Figure 8b).
In the previously reported study concerning Europe, that did not use information about rainfall
intensities in the applied model, the projected change of R values for Greece on 2050 was +14.8% using
the GCM HadGEM2 and RCP4.5 [10].
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Figure 9. Projected percentage changes of rainfall erosivty, R, for the scenarios: (a) RCP4.5 and (b) 
RCP8.5 over the historical values. 
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The results of projected changes of R in both RCP scenarios are coherent to the precipitation
trends that are reported by EURO-CORDEX, in which precipitation decreases by a larger magnitude
in RCP8.5 than RCP4.5, from 1971–2000 to 2071–2100 [27]. This change in precipitation dominates in
projected R’s calculations and is depicted in Figure 9b for the year 2100.

4. Conclusions

The estimation of mean annual and monthly R values over Greece using precipitation records
that suffered from a significant volume of missing values was the main result of this paper, utilizing
as an intermediate step the creation of monthly precipitation and ED QRF models. The models of
monthly precipitation had better performance than the ones of monthly ED in terms of prediction
accuracy, mostly due to the scarcity of stations with calculated ED values. Validating the error of
uncertainty reported from the models on cross validation locations, showed that the models, on
average, overestimate the actual prediction error (i.e., the error of error predictions). More specifically,
the findings of the present study can be summarized as follows:

1. The mean annual R in Greece is 1039 MJ·mm/ha/h/y, with a range between 405.1 and
3160.2 MJ·mm/ha/h/y, during the historical period 1971–2000. The highest values are calculated at
the mountain range of Pindos and the lowest at central Greece’s mainland.
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2. The calculated monthly mean R values follow the already documented spatiotemporal
characteristics of precipitation depth and intensity over the country.

3. The climatic model EC-EARTH-KNMI-RACMO22E from the Royal Netherlands Meteorological
Institute better reproduces the monthly precipitation for the historical period 1971–2000 in Greece
than the other four GCMs-RCMs used and tested in this study.

4. The projected mean annual erosivity, R, as an average over Greece, follows, in general, the
projected changes of precipitation from the selected GCM-RCM model but not in a spatially
homogenous way.

The results about future values of R inherit a set of uncertainties that have to do with the limitations
of climatic models in general and the assumptions about future temporal stationarity of ED that
had been made in our study, based on the observed stationarity of ED for the historical time. This
holds true, as well as for the calculated current ED values due to missing values from the utilized
timeseries. Future research will eventually provide more robust climatic models, as computational
power increases and research continues, and hopefully we will also have high quality, high density,
observed precipitation data for longer durations and more stations to estimate more accurately current
and projected rainfall erosivity in the country.

Supplementary Materials: The annual R values raster is available online at: https://doi.org/10.5281/zenodo.
3692645.
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